The Indian Buffet Process and Extensions

Zoubin Ghahramani

University of Cambridge

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

Bayesian Nonparametrics Workshop

Moncalieri, Italy 2009




Clustering

Basic idea: each data point belongs to a cluster

Goals:

e to model the distribution of data:
e to partition data into groups;
e to infer the number of groups

A Classical Approach: mixture modelling with finitely many components

A Bayesian Nonparametric Approach: Dirichlet process mixtures, with countably
infinitely many components



A binary matrix representation for clustering

e Rows are data points a”
e Columns are clusters .

e Since each data point is assigned to one and only one cluster, rows sum to one.
o

o

Finite mixture models: number of columns is finite
Dirichlet Process Mixtures (DPM): number of columns is countably infinite

The Chinese restaurant process (CRP; Aldous, 1985) is the distribution on partitions
of the data induced by a DPM.

Thus, we can think of the CRP as a distribution on such binary matrices.



More general distributions on binary matrices
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e Rows are data points
e Columns are latent features

e We can think of infinite binary matrices...
...where each data point can now have multiple features, so...
...the rows can sum to more than one.



More general distributions on binary matrices

Another way of thinking about this:

e there are multiple overlapping clusters

e cach data point can belong to several clusters simultaneously.

If there are K latent features, then there are 2% possible settings of the binary
latent features for each data point.



Why?

e Many statistical models can be thought of as modelling data in terms of hidden
or latent variables.

e Clustering algorithms (e.g. using mixture models) represent data in terms of
which cluster each data point belongs to.

e But clustering models are restrictive...

e Consider modelling people's movie preferences (the “Netflix" problem). A movie
might be described using features such as “is science fiction”, “has Charlton
Heston”, “was made in the US", “was made in 1970s", “has apes in it"... these
features may be unobserved (latent).

e The number of potential latent features for describing a movie (or person, news
story, image, gene, speech waveform, etc) is unlimited.

Other reasons: graph structures, stick breaking, Beta processes, time series!



From finite to infinite binary matrices

Znk = 1 means object n has feature k:

Znk ~ Bernoulli(6y)

0 ~ Beta(a/K, 1)

e Note that P(z,x = 1|a) = E(0x) = %

as K grows larger the matrix gets sparser.

SO

e So if Z is N x K, the expected number of
nonzero entries is Na /(1 + a/K) < Na.

e Even iIn the K — oo limit, the matrix is
expected to have a finite number of non-zero
entries.

(Griffiths and Ghahramani, 2005)



From finite to infinite binary matrices

We can integrate out 6, leaving:

P(Zla) — / P(Z|0)P(0]a)d6
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The conditional feature assignments are:
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where z_,, 1 is the set of assignments of all objects, not including n, for feature k,
and m_,, x is the number of objects having feature k, not including n.
We can take limit as K — oc.

“Rich get richer”, like in Chinese Restaurant Processes.



From finite to infinite binary matrices

- A technical difficulty: the probability for any particular matrix goes
e to zero as K — oc:

R lim P(Zla) = 0

S K—oo

However, if we consider equivalence classes of matrices in left-ordered form obtained
by reordering the columns: [Z] = lof(Z) we get:

- P([Z”O‘):eXp{_O‘HN}H;O;h' 1 (N—mkj)v!(!mk—l)!.

K—oo !
E<K_,

K, is the number of features assigned (i.e. non-zero columns).
Hy = ij:l% is the Nth harmonic number.

K}, are the number of features with history i (a technicality).

This distribution is infinitely exchangeable, i.e. it is not affected by the ordering
on objects. This is important for its use as a prior in settings where the objects
have no natural ordering.



Binary matrices in left-ordered form

(@) (b)

(a) The matrix on the left is transformed into the matrix on the right by the function

lof(). The resulting left-ordered matrix was generated from a Chinese restaurant
process (CRP) with a = 10.

(b) A left-ordered feature matrix. This matrix was generated from the prior on
infinite binary matrices with a = 10.



Indian buffet process
(Griffiths and Ghahramani, 2005)

Dishes
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“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

.

e First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(«) number of dishes as her plate becomes overburdened.

e The nth customer moves along the buffet, sampling dishes in proportion to their
popularity, serving himself with probability my/n, and trying a Poisson(«a/n)

number of new dishes.

e [ he customer-dish matrix is our feature matrix, Z.



Properties of the Indian buffet process

P([Z]|o) = exp{ — aH }

Prior sample from IBP with a=10
0 T T T T T

objects (customers)

10 20 30 40 50
features (dishes)

Shown in (Griffiths and Ghahramani, 2005):

It is infinitely exchangeable.
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Figure 1: Stick-breaking construction for the DP and IBP.
The black stick at top has length 1. At each iteration the
vertical black line represents the break point. The brown
dotted stick on the right is the weight obtained for the DP,
while the blue stick on the left is the weight obtained for
the IBP.

The expected total number of ones is V.

[
e The number of ones in each row is Poisson(«)
[
[

The number of nonzero columns grows as O(alog N).

Additional properties:

e Has a stick-breaking representation (Teh, Goriir, Ghahramani, 2007)
e Can be interpreted using a Beta-Bernoulli process (Thibaux and Jordan, 2007)



What do we do with Z ?

Model data.



Modelling Data

Latent variable model: let X be the N x D matrix of observed data, and Z be the
N x K matrix of binary latent features

P(X,Z|a) = P(X|Z)P(Z|a)

By combining the IBP with different likelihood functions we can get different kinds
of models:

e Models for graph structures (w/ Wood, Griffiths, 2006)
e Models for protein complexes (w/ Chu, Wild, 2006)
e Models for overlapping clusters (w/ Heller, 2007)
e Models for choice behaviour (Gorir, Jakel & Rasmussen, 2006)
e Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2006)

e Sparse latent factor models (w/ Knowles, 2007)



Posterior Inference in IBPs
P(Z,a|X) x P(X|Z)P(Z|a)P(«)

Gibbs sampling: P(znk = 1Z_(nr), X, ) < P(2p1 = 1Z_ (), ) P(X]|Z)

o Ifm_, x>0, Plzpp=1z_,1) = m]_\?’k

e For infinitely many k& such that m_,, , = 0: Metropolis steps with truncation® to
sample from the number of new features for each object.
e |f o has a Gamma prior then the posterior is also Gamma — Gibbs sample.

Conjugate sampler: assumes that P(X|Z) can be computed.

Non-conjugate sampler: P(X|Z) = [ P(X|Z,0)P(0)df cannot be computed,
requires sampling latent 6 as well (c.f. (Neal 2000) non-conjugate DPM samplers).

*Slice sampler: non-conjugate case, is not approximate, and has an adaptive
truncation level using a stick-breaking construction of the IBP (Teh, et al, 2007).

Particle Filter: (Wood & Griffiths, 2007).

Accelerated Gibbs Sampling: maintaining a probability distribution over some of
the variables (Doshi-Velez & Ghahramani, 2009).

Variational inference: (Doshi-Velez, Miller, van Gael, & Teh, 2009).



An application of IBPs

“A Non-Parametric Bayesian Method for Inferring Hidden Causes”
(Wood, Griffiths, Ghahramani, 2006)

Inferring stroke localization from patient symptoms:
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Figure 6: Causal structure with highest posterior probability. Two grouping of signs are highlighted. In solid
black, we find a grouping of poor optokinetic nystagmus, lack of facial control, weakness, decreased rapid alter-
nating movements, abnormal deep tendon reflexes. Babinski sign, and double simultaneous stimulation neglect,
all on the left side, consistent with a right frontal/parietal infarct. In dashed black, we find a grouping of com-
prehension deficit, non-fluency, repetition. anomia. visual field deficit, facial weakness, and general weakness,
with the latter three on the right side. generally consistent with a left temporal infarct.

(50 stroke patients, 56 symptoms/signs)

The IBP models the graph structure connecting hidden causes to symptoms



Infinite Sparse Latent Factor Models

Model: Y =G(Z®X)+E

where Y is the data matrix, G is the factor loading matrix, Z ~ IBP(«, ) is a
mask matrix, X is heavy tailed factors and E is Gaussian noise.
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Fig. 1. True and inferred Z and algorithm convergence.

The IBP models the sparsity structure in the latent variables
(w/ Knowles, 2007)



Modelling Dyadic Data

genes X patients

(A)

Figure 5: Gene expression results. (A) The top-left is X sorted according to contiguous features in
the final U and V in the Markov chain. The bottom-left is V7 and the top-right is U. The bottom-

right is W. (B) The same as (A). but the expected value of X, X = UWV7™. We have hilighted
regions that have both u;; and v; on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

(B)

users X movies

The IBP models latent features of genes, patients, users, movies.
(w/ Meeds, Roweis, Neal, 2006)



Three generalizations

e a two-parameter generalization of the Indian buffet process
e from binary to non-binary latent features

e time series models



. A two-parameter generalization of the IBP?
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Limitation:
. def
e The hyperparameter o controls the number of features per object K, = >, zpr ~
Poisson ()

e But « also controls the total number of features possessed by a set of N objects, i.e. the
variability across rows of Z.

e This seems limited—we really want independent control over the mean number of features and
the variability across rows.



I. A two-parameter generalization of the IBP

Znk = 1 means object n has feature k

One-parameter IBP Two-parameter IBP
Znk ~ Bernoulli(6y) Znk ~ Bernoulli(6y)
0 ~ Beta(a/K, 1) 0, ~ Beta(af/K, ()

Properties of the two-parameter IBP

Number of features per object is Poisson(«)
Setting 3 = 1 reduces to IBP.

Parameter (3 is feature repulsion, 1/ is feature stickiness.

N
Total expected number of features is K, = « Z b
n=1 6 Tn - 1

lim K, = o
g0 T

B—o0

Joint work with Peter Sollich

aflog N




I. A two-parameter generalization of the IBP
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e First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(«) number of dishes as her plate becomes overburdened.

e The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself with probability my/(8 — 1 + n), and trying a
Poisson(a3/(6 — 1+ n)) number of new dishes.



Il. From binary to non-binary latent features

In many models we might want non-binary latent features.

A simple way to generate non-binary latent feature matrices from Z:

F=2%V

where ® is the elementwise (Hadamard) product of two matrices, and V is a matrix
of independent random variables (e.g. Gaussian, Poisson, Discrete, ...).
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I11. Markov Indian buffet process and time series

Let the Z,,1. have a Markov structure: e.g.
P(Zpy =1|Zp—15 = 0) = 0,01

Why? For time series data, we want latent factors to turn on and off in a manner
that depends on time.

The Markov IBP (MIBP) defines such a process, which has IBP marginals.
(van Gael, Teh, Ghahramani, 2009)

More generally we can have the IBP be dependent on covariates (Williamson).

The MIBP can be used to generalise the hidden Markov model...



I11. Markov Indian buffet process and time series

Figure 1: The Hidden Markov Model Figure 2: The Factorial Hidden Markov Model

0000

Figure 3: The Infinite Factorial Hidden Markov Model



The Big Picture

1995 1997
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model

factorial
HMM

finite
mixture *
IBP ] ifHMM
2005
factorial
DPM IHMM
2002
HDP-HMM 2006

non-parami.



Summary

e A distribution on infinite sparse binary matrices that can be used to define many
new non-parametric Bayesian models.

http://learning.eng.cam.ac.uk/zoubin
zoubin@eng.cam.ac.uk



