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Parametric vs Nonparametric Models

Parametric models assume some finite set of parameters 6. Given the parameters,
future predictions, x, are independent of the observed data, D:

P(z|0,D) = P(x|0)
therefore 6 capture everything there is to know about the data.

So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional 6. Usually we think of 6 as a function.

The amount of information that # can capture about the data D can grow as
the amount of data grows. This makes them more flexible.



Why?

o flexibility
e better predictive performance

e more realistic
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Outline

Bayesian nonparametrics has many uses.

Some modelling goals and examples of associated nonparametric Bayesian models:

Modelling Goal Example process
Distributions on functions Gaussian process
Distributions on distributions  Dirichlet process
Polya Tree
Clustering Chinese restaurant process
Pitman-Yor process
Hierarchical clustering Dirichlet diffusion tree

Kingman's coalescent
Sparse latent feature models  Indian buffet processes
Survival analysis Beta processes
Distributions on measures Completely random measures




Gaussian Processes

A Gaussian process defines a distribution P(f) on functions, f, where f is a function
mapping some input space X to R.

f: X — R

Let £ = (f(x1), f(x2),..., f(x,)) be an n-dimensional vector of function values
evaluated at n points z; € X. Note f is a random variable.

Definition: P(f) is a Gaussian process if for any finite subset {z1,...,z,} C &,
the marginal distribution on that finite subset P(f) has a multivariate Gaussian
distribution, and all these marginals are coherent.

We can think of GPs as the extension of multivariate Gaussians to distributions on
functions.



Samples from Gaussian processes with different c(x, z’)




Dirichlet Processes

e Gaussian processes define a distribution on functions

where p is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional” Gaussians

e Dirichlet processes define a distribution on distributions (a measure on measures)
G ~ DP(lGo, Oé)

where v > 0 is a scaling parameter, and (G is the base measure.
We can think of DPs as “infinite-dimensional” Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



Dirichlet Process

Let © be a measurable space, Gy be a probability measure on O, and « a positive
real number.

A
For all (A4,... Ak) finite partitions of O,
e
e

G ~ DP(-|Go, @)
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(Ferguson, 1973)



Dirichlet Distribution

The Dirichlet distribution is a distribution on the K-dim probability simplex.

Let p be a K-dimensional vector s.t. Vj : p; > 0 and Zlepj =1

P(p|la) = Dir(a, . ..,ax) <

where the first term is a normalization constant” and E(p;) = a;/(>_, ax)

The Dirichlet is conjugate to the multinomial distribution. Let

c|p ~ Multinomial(:|p)

That is, P(c = j|p) = pj. Then the posterior is also Dirichlet:

P(c= jlp)P(p|c)
P(c = jla)

P(plc = j,a) = = Dir(c)

Wherea;:aj—l—l, and V0 # j: o) = ay

T(z) = (z — DI(z — 1) = I t*~le~tdt. Forinteger n, T'(n) = (n — 1)!




Dirichlet Process

G ~ DP(:|Gy, a) OK, but what does it look like?

Samples from a DP are discrete with probability one:

G(0) = i 7100, (6)
k=1

where g, (+) is a Dirac delta at 6, and 0, ~ Go(+).

Note: E(G) = Gy

As o« — 00, G looks more “like” Gj.



Relationship between DPs and CRPs

DP is a distribution on distributions

DP results in discrete distributions, so if you draw n points you are likely to get
repeated values

A DP induces a partitioning of the n points
e.g. (134) (25) <~ 91 = 93 = 94 # 92 = 95

Chinese Restaurant Process (CRP) defines the corresponding distribution on
partitions

Although the CRP is a sequential process, the distribution on 6¢,...,6, is
exchangeable (i.e. invariant to permuting the indices of the 0s): e.g.

P(01792a93394) — P(02704703701)



Chinese Restaurant Process

The CRP generates samples from the distribution on partitions induced by a DPM.

tojcyofol

Generating from a CRP:

customer 1 enters the restaurant and sits at table 1.
K=1,n=1n=1

forn=2,...,
k with prob n—nlkil—oz fork=1...K
customer n sits at table _
K +1 with prob ——3—  (new table)

if new table was chosen then K «— K 4+ 1 endif
endfor

“Rich get richer” property. (Aldous 1985; Pitman 2002)



Dirichlet Processes: Big Picture

There are many ways to derive the Dirichlet Process:

e Dirichlet distribution >

e Urn model . ".’_‘:'
e Chinese restaurant process | ':D g ) .°
e Stick breaking . & "‘:
e Gamma process .h-’,.. .

DP: distribution on distributions

Dirichlet process mixture (DPM): a mixture model with infinitely many
components where parameters of each component are drawn from a DP. Useful
for clustering; assignments of points to clusters follows a CRP.



Hierarchical Clustering



Dirichlet Diffusion Trees (DFT)
(Neal, 2001)

In a DPM, parameters of one mixture component are independent of another
components — this lack of structure is potentially undesirable.

A DFT is a generalization of DPMs with hierarchical structure between components.

To generate from a DFT, we will consider 6 taking a random walk according to a
Brownian motion Gaussian diffusion process.

e 01(t) ~ Gaussian diffusion process starting at origin (61(0) = 0) for unit time.

e 05(t), also starts at the origin and follows 6; but diverges at some time 7,4, at
which point the path followed by 65 becomes independent of 6¢'s path.

e a(t) is a divergence or hazard function, e.g. a(t) =1/(1 —t). For small dt:

t)dt
P(Odiverges € (t,t+dt)) = alt)dt
m

where m is the number of previous points that have followed this path.
e If 0, reaches a branch point between two paths, it picks a branch in proportion
to the number of points that have followed that path.



Generating from a DFT:
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Dirichlet Diffusion Trees (DFT)

Some samples from DFT priors:
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Kingman’s Coalescent

(Kingman, 1982)

A model for genealogies. Working backwards in time from ¢t =0

e Generate tree with n individuals at leaves by merging lineages backwards in time.
e Every pair of lineages merges independently with rate 1.

e Time of first merge for n individuals is t; ~ Exp(n(n —1)/2), etc

This generates w.p.1. a binary tree where all lineages are merged at t = —oc.

The coalescent results in the limit n — oo and is infinitely exchangeable over
individuals and has uniform marginals over tree topologies.

The coalescent has been used as the basis of a hierarchical clustering algorithm by
(Teh, Daumé, Roy, 2007)
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Latent Feature Models



Indian Buffet Processes:
Distributions on Sparse Binary Matrices

I. | .. l.l -E
. n ...l .I. .
e Rows are data points i
e Columns are latent features :_._ -
e There are infinitely many latent features e, e
. ) | | ..-
e Each data point can have multiple features .ot
I. ... ..l
. I . I |
| | .I |

Another way of thinking about this:

e there are multiple overlapping clusters

e cach data point can belong to several clusters simultaneously.

If there are K features, then there are 2% possible binary latent representations for
each data point.

(Griffiths and Ghahramani, 2005)



From finite to infinite binary matrices

zir. = 1 means object ¢ has feature k:
2k ~ Bernoulli(6y)

0 ~ Beta(a/K, 1)

e Note that P(zix = 1|a) = E(6k) = 5547 50

as K grows larger the matrix gets sparser.

e So if Z is N x K, the expected number of
nonzero entries is Na/(1+ a/K) < Na.

e Even iIn the K — oo limit, the matrix is
expected to have a finite number of non-zero
entries.



From finite to infinite binary matrices

We can integrate out vector of Beta variables 6, leaving:

P(Zla) — / P(Z|0)P(0]a)d6

e 5ht F(mk+%)F(N—mk+ 1) F(l—l—%)
L H ['(2) D(N+1+%)

k

The conditional feature assignments are:

(0%

N+

1
P(zip =1z_ik) = / P(zik|0k)p(Ok|Z—i 1) dOr =
0

where z_; 1, is the set of assignments of all objects, not including i, for feature k,
and m_; i is the number of objects having feature k, not including <.
We can take limit as K — oc.

“Rich get richer”, like in Chinese Restaurant Processes.
Infinite vector of Beta random variables 6 related to Beta process.



Indian buffet process
(Griffiths and Ghahramani, 2005)

pishes “Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”
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e First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(a) number of dishes.

e The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k with probability my/n, and trying a
Poisson(a;/n) number of new dishes.

e [ he customer-dish matrix is the feature matrix, Z.



Properties of the Indian buffet process
I1 (N — my)!(my — 1)!

P((2]]a) = exp { —aHN}Hh>O e 11 =

Prior sample from IBP with a=10
0 T T T T T

objects (customers)

Figure 1: Stick-breaking construction for the DP and IBP.
] ) The black stick at top has length 1. At each iteration the
e ' T ' vertical black line represents the break point. The brown

features (dishes) dotted stick on the right is the weight obtained for the DP,

Shown in (Griffiths and Ghahramani, 2005): gﬁl};;he blue stick on the left is the weight obtained for

It is infinitely exchangeable.

The expected total number of ones is V.

[ J

e The number of ones in each row is Poisson(«)

[

e The number of nonzero columns grows as O(alog N).
Additional properties:

e Has a stick-breaking representation (Teh, Goriir, Ghahramani, 2007)
e Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan, 2007)



Completely Random Measures
(Kingman, 1967)

measurable space: © with o-algebra (2

measure: function p : 2 — [0, 0o] assigning to each measurable set a non-neg. real
random measure: measures are drawn from some distribution on measures: p ~ P
completely random measure (CRM): the values that p takes on disjoint subsets

are independent: p(A)lLu(B) if ANB=10

CRMs can be represented as sum of nonrandom measure, atomic measure with fixed
atoms but random masses, and atomic measure with random atoms and masses.

N or oo M or oo

1= po + Z u,’i5¢;—|— Z U0,
i=1 i=1

We can write i~ CRM(po, A, {9, Fi})

where v, ~ F; and {u;, ¢;} are drawn from a Poisson process on (0, 00] x © with
rate measure A called the Lévy measure.

Examples:
Gamma process, Beta process (Hjort, 1990), Stable-beta process (Teh and Gortir, this NIPS, 2009).




Beta Processes
(Hjort, 1990)

CRMs can be represented as sum of nonrandom measure, atomic measure with fixed
atoms but random masses, and atomic measure with random atoms and masses.

N or oo M or oo

= o + Z u;5¢;+ Z ;0 ,
i=1 i=1

For a beta process we have y ~ CRM(0, A, {}) where {u;, ¢;} are drawn from a
Poisson process on (0, 00| x © with rate Lévy measure:

Aldu x df) = acu (1 —w) *du H(d)




A Few Topics | Didn’t Cover

Models for time series

e infinite Hidden Markov Model / HDP-HMM (Beal, Ghahramani, Rasmussen, 2002; Teh,
Jordan, Beal, Blei, 2006; Fox, Sudderth, Jordan, Willsky, 2008)

e infinite factorial HMM / Markov IBP (van Gael, Teh, Ghahramani, 2009)
e beta process HMM (Fox, Sudderth, Jordan, Willsky, 2009)

Hierarchical models for sharing structure

e hierarchical Dirichlet processes (Teh, Jordan, Beal, Blei, 2006)

e hierarchical beta processes (Thibaux, Jordan, 2007)

Many generalisations.

Inferencel!!



Some Relationships

1995 1997
factorial ] factorial
model HMM
Jinite | HMM
mixture + ¥ 2000
IBP } ifHMM
2005
\ / \/ factorial
‘ DPM ]I IHMM
2002
HDP-HMM 2006
non-param.

Thanks for your patience!



