
Probabilistic Modelling, Machine Learning,
and the Information Revolution

Zoubin Ghahramani

Department of Engineering

University of Cambridge, UK

zoubin@eng.cam.ac.uk

http://learning.eng.cam.ac.uk/zoubin/

MIT CSAIL 2012

An Information Revolution?

• We are in an era of abundant data:

– Society: the web, social networks, mobile networks,

government, digital archives

– Science: large-scale scientific experiments, biomedical

data, climate data, scientific literature

– Business: e-commerce, electronic trading, advertising,

personalisation

• We need tools for modelling, searching, visualising, and

understanding large data sets.

Modelling Tools

Our modelling tools should:

• Faithfully represent uncertainty in our model structure

and parameters and noise in our data

• Be automated and adaptive

• Exhibit robustness

• Scale well to large data sets

Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.

Bayes Rule

P (hypothesis|data) =
P (data|hypothesis)P (hypothesis)

P (data)

Rev’d Thomas Bayes (1702–1761)

• Bayes rule tells us how to do inference about hypotheses from data.

• Learning and prediction can be seen as forms of inference.

How do we build thinking machines?

Representing Beliefs in Artificial Intelligence

Consider a robot. In order to behave intelligently
the robot should be able to represent beliefs about
propositions in the world:

“my charging station is at location (x,y,z)”

“my rangefinder is malfunctioning”

“that stormtrooper is hostile”

We want to represent the strength of these beliefs numerically in the brain of the
robot, and we want to know what rules (calculus) we should use to manipulate
those beliefs.

Representing Beliefs II
Let’s use b(x) to represent the strength of belief in (plausibility of) proposition x.

0 ≤ b(x) ≤ 1
b(x) = 0 x is definitely not true
b(x) = 1 x is definitely true
b(x|y) strength of belief that x is true given that we know y is true

Cox Axioms (Desiderata):

• Strengths of belief (degrees of plausibility) are represented by real numbers
• Qualitative correspondence with common sense
• Consistency

– If a conclusion can be reasoned in more than one way, then every way should
lead to the same answer.

– The robot always takes into account all relevant evidence.
– Equivalent states of knowledge are represented by equivalent plausibility

assignments.

Consequence: Belief functions (e.g. b(x), b(x|y), b(x, y)) must satisfy the rules of
probability theory, including Bayes rule.

(Cox 1946; Jaynes, 1996; van Horn, 2003)

The Dutch Book Theorem

Assume you are willing to accept bets with odds proportional to the strength of your
beliefs. That is, b(x) = 0.9 implies that you will accept a bet:{

x is true win ≥ $1
x is false lose $9

Then, unless your beliefs satisfy the rules of probability theory, including Bayes rule,
there exists a set of simultaneous bets (called a “Dutch Book”) which you are
willing to accept, and for which you are guaranteed to lose money, no matter
what the outcome.

The only way to guard against Dutch Books to to ensure that your beliefs are
coherent: i.e. satisfy the rules of probability.

Bayesian Machine Learning

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ

Modeling vs toolbox views of Machine Learning

• Machine Learning seeks to learn models of data: define a space of possible
models; learn the parameters and structure of the models from data; make
predictions and decisions

• Machine Learning is a toolbox of methods for processing data: feed the data
into one of many possible methods; choose methods that have good theoretical
or empirical performance; make predictions and decisions

Bayesian Nonparametrics

Why...

• Why Bayesian?

Simplicity (of the framework)

• Why nonparametrics?

Complexity (of real world phenomena)

Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.

Why nonparametrics?

• flexibility

• better predictive performance

• more realistic
0 2 4 6 8 10

−20

−10

0

10

20

30

40

50

60

70

All successful methods in machine learning are essentially nonparametric1:

• kernel methods / SVM / GP

• deep networks / large neural networks

• k-nearest neighbors, ...

1or highly scalable!

Overview of nonparametric models and uses

Bayesian nonparametrics has many uses.

Some modelling goals and examples of associated nonparametric Bayesian models:

Modelling goal Example process
Distributions on functions Gaussian process
Distributions on distributions Dirichlet process

Polya Tree
Clustering Chinese restaurant process

Pitman-Yor process
Hierarchical clustering Dirichlet diffusion tree

Kingman’s coalescent
Sparse binary matrices Indian buffet processes
Survival analysis Beta processes
Distributions on measures Completely random measures
... ...

Gaussian and Dirichlet Processes

• Gaussian processes define a distribution on functions

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

f(
x)

f ∼ GP(·|µ, c)

where µ is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional” Gaussians

• Dirichlet processes define a distribution on distributions

G ∼ DP(·|G0, α)

where α > 0 is a scaling parameter, and G0 is the base measure.
We can think of DPs as “infinite-dimensional” Dirichlet distributions.

Note that both f and G are infinite dimensional objects.

Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)

Let f = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function values
evaluated at n points xi ∈ X . Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution over that subset p(f) is multivariate Gaussian.

Gaussian Processes and SVMs

Support Vector Machines and Gaussian Processes

We can write the SVM loss as: min
f

1

2
f>K−1f + C

∑
i

(1− yifi)+

We can write the negative log of a GP likelihood as:
1

2
f>K−1f −

∑
i

ln p(yi|fi) + c

Equivalent? No.

With Gaussian processes we:

• Handle uncertainty in unknown function f by averaging, not minimization.

• Compute p(y = +1|x) 6= p(y = +1|f̂ ,x).

• Can learn the kernel parameters automatically from data, no matter how
flexible we wish to make the kernel.

• Can learn the regularization parameter C without cross-validation.

• Can incorporate interpretable noise models and priors over functions, and can
sample from prior to get intuitions about the model assumptions.

• We can combine automatic feature selection with learning using ARD.

Easy to use Matlab code: http://www.gaussianprocess.org/gpml/code/

Some Comparisons

Table 1: Test errors and predictive accuracy (smaller is better) for the GP classifier, the support
vector machine, the informative vector machine, and the sparse pseudo-input GP classifier.

Data set GPC SVM IVM SPGPC

name train:test dim err nlp err #sv err nlp M err nlp M

synth 250:1000 2 0.097 0.227 0.098 98 0.096 0.235 150 0.087 0.234 4
crabs 80:120 5 0.039 0.096 0.168 67 0.066 0.134 60 0.043 0.105 10
banana 400:4900 2 0.105 0.237 0.106 151 0.105 0.242 200 0.107 0.261 20
breast-cancer 200:77 9 0.288 0.558 0.277 122 0.307 0.691 120 0.281 0.557 2
diabetes 468:300 8 0.231 0.475 0.226 271 0.230 0.486 400 0.230 0.485 2
flare-solar 666:400 9 0.346 0.570 0.331 556 0.340 0.628 550 0.338 0.569 3
german 700:300 20 0.230 0.482 0.247 461 0.290 0.658 450 0.236 0.491 4
heart 170:100 13 0.178 0.423 0.166 92 0.203 0.455 120 0.172 0.414 2
image 1300:1010 18 0.027 0.078 0.040 462 0.028 0.082 400 0.031 0.087 200
ringnorm 400:7000 20 0.016 0.071 0.016 157 0.016 0.101 100 0.014 0.089 2
splice 1000:2175 60 0.115 0.281 0.102 698 0.225 0.403 700 0.126 0.306 200
thyroid 140:75 5 0.043 0.093 0.056 61 0.041 0.120 40 0.037 0.128 6
titanic 150:2051 3 0.221 0.514 0.223 118 0.242 0.578 100 0.231 0.520 2
twonorm 400:7000 20 0.031 0.085 0.027 220 0.031 0.085 300 0.026 0.086 2
waveform 400:4600 21 0.100 0.229 0.107 148 0.100 0.232 250 0.099 0.228 10

linear models. In all cases, we employed the isotropic squared exponential kernel, avoiding here the
anisotropic version primarily to allow comparison with the SVM: lacking a probabilistic foundation,
its kernel parameters and regularization constant must be set by cross-validation. For the IVM,
hyperparameter optimization is interleaved with active set selection as described in [2], while for the
other GP models, we fit hyperparameters by gradient ascent on the estimated marginal likelihood,
limiting the process to twenty conjugate gradient iterations; we retained for testing that of three
to five randomly initialized models which the evidence most favoured. Results on the Rätsch data
for the semi-parametric radial basis function network are omitted for lack of space, but available at
the site given in footnote 5. In comparison with that model, SPGP tends to give sparser and more
accurate results (with the benefit of a sound Bayesian framework).

Identical tests were run for a range of active set sizes on the IVM and SPGP classifier, and we have
attempted to present the large body of results in its most comprehensible form: we list only the
sparsest competitive solution obtained. This means that using M smaller than shown tends to cause
a deterioriation in performance, but not that there is no advantage in increasing the value. After all,
as M N we expect error rates to match those of the full model (at least for the IVM, which
uses a subset of the training data).6 However, we believe that in exploring the behaviour of a sparse
model, the essential question is: what is the greatest sparsity we can achieve without compromising
performance? (since if sparsity were not an issue, we would simply revert to the original GP).
Small values of M for the FITC approximation were found to give remarkably low error rates, and
incremented singly would often give an improved approximation. In contrast, the IVM predictions
were no better than random guesses for even moderate M—it usually failed if the active set was
smaller than a threshold around N / 3, where it was simply discarding too much information—and
greater step sizes were required for noticeable improvements in performance. With a few exceptions
then, for FITC we explored small M , while for the IVM we used larger values, more widely spread.

More challenging is the task of discriminating 4s from non-4s in the USPS digit database: the data
are 256-dimensional, and there are 7291 training and 2007 test points. With 200 pseudo-inputs (and
51,200 parameters for optimization), error rates for SPGPC are 1.94%, with an average negative log
probability of 0.051 nats. These figures improve when the allocation is raised to 400 pseudo-inputs,
to 1.79% and 0.048 nats. When provided with only 200 points, the IVM figures are 9.97% and 0.421
nats—this can be regarded as a failure to generalize, since it corresponds to labelling all test inputs
as “not 4”—but given an active set of 400 it reaches error rates of 1.54% and NLP of 0.085 nats.

6Note that the evidence is a poor metric for choosing M since it tends to increase monotonically as the
explicative power of the full GP is restored.

6

From (Naish-Guzman and Holden, 2008), using exactly same kernels.

A picture

Logistic
Regression

Linear
Regression

Kernel
Regression

Bayesian
Linear

Regression

GP
Classification

Bayesian
Logistic

Regression

Kernel
Classification

GP
Regression

Classification

Bayesian
Kernel

Outline

Bayesian nonparametrics applied to models of other structured objects:

• Time Series

• Sparse Matrices

• Deep Sparse Graphical Models

• Hierarchies

• Covariances

• Network Structured Regression

Infinite hidden Markov models (iHMMs)

Hidden Markov models (HMMs) are widely used sequence models for speech recognition,

bioinformatics, text modelling, video monitoring, etc. HMMs can be thought of as time-dependent

mixture models.

In an HMM with K states, the transition
matrix has K ×K elements. Let K →∞.

S 3
�

Y3
�

S 1

Y1

S 2
�

Y2
�

S T
�

YT
�

0 0.5 1 1.5 2 2.5
x 10

4

0

500

1000

1500

2000

2500

word position in text

w
or

d
id

en
tit

y

• Introduced in (Beal, Ghahramani and Rasmussen, 2002).

• Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet

processes, and provided a more efficient Gibbs sampler.

• We have recently derived a much more efficient sampler based on Dynamic Programming

(Van Gael, Saatci, Teh, and Ghahramani, 2008). http://mloss.org/software/view/205/

• And we have parallel (.NET) and distributed (Hadoop) implementations

(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).

Infinite HMM: Changepoint detection and video segmentation

Experiment: Changepoint Detection

� ��� � ���
� � ��

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
B a t t i n g B o x i n g P i t c h i n g T e n n i s

(a) (b)

(c)

(w/ Tom Stepleton, 2009)

Sparse Matrices

From finite to infinite sparse binary matrices

Figure 5: Binary matrices and the left-order

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so as K grows larger the matrix

gets sparser.

• So if Z is N×K, the expected number of nonzero entries is Nα/(1+α/K) < Nα.

• Even in the K → ∞ limit, the matrix is expected to have a finite number of
non-zero entries.

• K →∞ results in an Indian buffet process (IBP)

Indian buffet process

Dishes

1

2

3

4

5

6

7

8

9

10

11

12

C
us

to
m

er
s

13

14

15

16

17

18

19

20

“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as his plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k with probability mk/n, and trying a
Poisson(α/n) number of new dishes.

• The customer-dish matrix, Z, is a draw from the IBP.

(w/ Tom Griffiths 2006; 2011)

Properties of the Indian buffet process

P ([Z]|α) = exp
{
− αHN

} αK+∏
h>0Kh!

∏
k≤K+

(N −mk)!(mk − 1)!

N !

Shown in (Griffiths and Ghahramani 2006, 2011):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(α)

• The expected total number of ones is αN .

• The number of nonzero columns grows as O(α logN).

ob
je

ct
s

(c
us

to
m

er
s)

features (dishes)

Prior sample from IBP with α=10

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100Additional properties:

• Has a stick-breaking representation (Teh, et al 2007)

• Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan 2007)

• More flexible two and three parameter versions exist (w/ Griffiths & Sollich 2007; Teh

and Görür 2010)

The Big Picture:
Relations between some models

finite
mixture

DPM

IBP

factorial
model

factorial
HMM

iHMM

ifHMM

HMM

factorial

time

non-param.

Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N ×D matrix of observed data, and Z be the
N ×K matrix of binary latent features

P (X,Z|α) = P (X|Z)P (Z|α)

By combining the IBP with different likelihood functions we can get different kinds
of models:

• Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for choice behaviour (Görür & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)

• Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

• Models for overlapping clusters (w/ Heller, 2007)

Nonparametric Binary Matrix Factorization

genes × patients
users × movies

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.

Learning Structure of Deep Sparse Graphical Models

Zoubin Ghahramani :: Cambridge / CMU :: 33

Multi-Layer Belief Networks

...

Learning Structure of Deep Sparse Graphical Models

Zoubin Ghahramani :: Cambridge / CMU :: 34

Multi-Layer Belief Networks

...

...

Learning Structure of Deep Sparse Graphical Models

Zoubin Ghahramani :: Cambridge / CMU :: 35

Multi-Layer Belief Networks

...

...

...

Learning Structure of Deep Sparse Graphical Models

Zoubin Ghahramani :: Cambridge / CMU :: 36

Multi-Layer Belief Networks

...

...

...

...

...

...

(w/ Ryan P. Adams, Hanna Wallach, 2010)

Learning Structure of Deep Sparse Graphical Models

Olivetti Faces: 350 + 50 images of 40 faces (64× 64)
Inferred: 3 hidden layers, 70 units per layer.

Reconstructions and Features:

Zoubin Ghahramani :: Cambridge / CMU :: 46

Olivetti: Reconstructions & Features

Learning Structure of Deep Sparse Graphical Models

Fantasies and Activations:

Zoubin Ghahramani :: Cambridge / CMU :: 47

Olivetti: Fantasies & Activations

Hierarchies

• true hierarchies

• parameter tying

• visualisation and interpretability

�����

���	�	

����	��

���

�����
���

����
�	��

��

�����

���
���

�������

�����

�	���

�������

�
���

�	����

��	�

��	��

��� ���

����

�!��

��

"����

����

#���

���

�	�

��� �	��

$�
	���

%�
��

$�
���	

����

���

��&

�	���

Dirichlet Diffusion Trees (DDT)

(Neal, 2001)

In a DPM, parameters of one mixture component are independent of other
components – this lack of structure is potentially undesirable.

A DDT is a generalization of DPMs with hierarchical structure between components.

To generate from a DDT, we will consider data points x1, x2, . . . taking a random
walk according to a Brownian motion Gaussian diffusion process.

• x1(t) ∼ Gaussian diffusion process starting at origin (x1(0) = 0) for unit time.
• x2(t) also starts at the origin and follows x1 but diverges at some time τ , at

which point the path followed by x2 becomes independent of x1’s path.
• a(t) is a divergence or hazard function, e.g. a(t) = 1/(1− t). For small dt:

P (xi diverges at time τ ∈ (t, t+ dt)) =
a(t)dt

m

where m is the number of previous points that have followed this path.
• If xi reaches a branch point between two paths, it picks a branch in proportion

to the number of points that have followed that path.

Dirichlet Diffusion Trees (DDT)

Generating from a DDT:

Figure from (Neal 2001)

Pitman-Yor Diffusion Trees

Generalises a DDT, but at a branch point, the probability of following each branch
is given by a Pitman-Yor process:

P(following branch k) =
bk − α

m + θ
,

P(diverging) =
θ + αK

m + θ
,

to maintain exchangeability the probability of diverging also has to change.

• naturally extends DDTs (θ = α = 0) to arbitrary non-binary branching

• infinitely exchangeable over data

• prior over structure is the most general Markovian consistent and exchangeable
distribution over trees (McCullagh et al 2008)

(w/ Knowles 2011)

Pitman-Yor Diffusion Tree: Results

Ntrain = 200,Ntest = 28,D = 10 Adams et al. (2008)

Figure: Density modeling of the D = 10,N = 200 macaque skull
measurement dataset of Adams et al. (2008). Top: Improvement in test
predictive likelihood compared to a kernel density estimate. Bottom:
Marginal likelihood of current tree. The shared x-axis is computation
time in seconds. �����

���	�	

����	��

���

�����
���

����
�	��

��

�����

���
���

�������

�����

�	���

�������

�
���

�	����

��	�

��	��

��� ���

����

�!��

��

"����

����

#���

���

�	�

��� �	��

$�
	���

%�
��

$�
���	

����

���

��&

�	���

Covariance Matrices

Covariance Matrices

Consider the problem of modelling a covariance matrix Σ that can change as a
function of time, Σ(t), or other input variables Σ(x). This is a widely studied
problem in Econometrics.

! !

!"#$%&'()#*

!"#$%&'#'(#)(*"+#%#,-.,#*-)"&/-(&%+#
########0,%&.-&.#0(1%2-%&0"#)%'2-34

Models commonly used are multivariate GARCH, and multivariate stochastic
volatility models, but these only depend on t, and generally don’t scale well.

Generalised Wishart Processes for Covariance modelling

Modelling time- and spatially-varying covariance
matrices. Note that covariance matrices have to
be symmetric positive (semi-)definite.

If ui ∼ N , then Σ =
∑ν
i=1uiu

>
i is s.p.d. and has a Wishart distribution.

We are going to generalise Wishart distributions to be dependent on time or other
inputs, making a nonparametric Bayesian model based on Gaussian Processes (GPs).

So if ui(t) ∼ GP, then Σ(t) =
∑ν
i=1ui(t)ui(t)

> defines a Wishart process.

This is the simplest form, many generalisations are possible.
Also closely linked to Copula processes.

(w/ Andrew Wilson, 2010, 2011)

Generalised Wishart Process Results

! !

!"#$%&'()*'

!"#"$%&'()*+,-'./0-'/0-'1.2345

(,"'./0'67#$7879:$+;<'=*+>")8=)?6'7+6'9=?>"+7+=)6'@7$'1AB':$%'
;7C";7,==%D'=$'67?*;:+"%':$%'87$:$97:;'%:+:-'"E"$'7$';=F")'%7?"$67=$6
@GHD':$%'=$'%:+:'+,:+'76'"6>"97:;;<'6*7+"%'+='.2345I'

J$'HK'"L*7+<'7$%"M'%:+:-'*67$#':'./0'F7+,':'6L*:)"%'"M>=$"$+7:;'
9=E:)7:$9"'8*$9+7=$-'8=)"9:6+';=#';7C";7,==%6':)"&'
!"#+$,-./-''''/0&'NONP-'''QBRR'1.2345&'SOTPI'''

Gaussian process regression networks

A model for multivariate regression which combines structural properties of Bayesian
neural networks with the nonparametric flexibility of Gaussian processes

f2(x)

f1(x)

W11(x)

W12(x)

W21(x)

W22(x)

W31(x)

W32(x)

y1(x)

y2(x)

y3(x)

y(x) = W (x)[f(x) + σfε] + σyz

(w/ Andrew Wilson, David Knowles, 2011)

Gaussian process regression networks: properties

f2(x)

f1(x)

W11(x)

W12(x)

W21(x)

W22(x)

W31(x)

W32(x)

y1(x)

y2(x)

y3(x)

• multi-output GP with input-dependent correlation structure between the outputs

• naturally accommodates nonstationarity, heteroskedastic noise, spatially varying
lengthscales, signal amplitudes, etc

• has a heavy-tailed predictive distribution

• scales well to high-dimensional outputs by virtue of being a factor model

• if the input is time, this makes a very flexible stochastic volatility model

• efficient inference without costly inversions of large matrices using elliptical slice
sampling MCMC or variational Bayes

Gaussian process regression networks: results

GENE (50D) Average SMSE Average MSLL

SET 1:
GPRN (VB) 0.3356± 0.0294 −0.5945± 0.0536
GPRN (MCMC) 0.3236± 0.0311 −0.5523± 0.0478
LMC 0.6909± 0.0294 −0.2687± 0.0594
CMOGP 0.4859± 0.0387 −0.3617± 0.0511
SLFM 0.6435± 0.0657 −0.2376± 0.0456

SET 2:
GPRN (VB) 0.3403± 0.0339 −0.6142± 0.0557
GPRN (MCMC) 0.3266± 0.0321 −0.5683± 0.0542
LMC 0.6194± 0.0447 −0.2360± 0.0696
CMOGP 0.4615± 0.0626 −0.3811± 0.0748
SLFM 0.6264± 0.0610 −0.2528± 0.0453

GENE (1000D) Average SMSE Average MSLL

GPRN (VB) 0.3473± 0.0062 −0.6209± 0.0085
GPRN (MCMC) 0.4520± 0.0079 −0.4712± 0.0327
MFITC 0.5469± 0.0125 −0.3124± 0.0200
MPITC 0.5537± 0.0136 −0.3162± 0.0206
MDTC 0.5421± 0.0085 −0.2493± 0.0183

JURA Average MAE Training Time (secs)

GPRN (VB) 0.4040± 0.0006 3781
GPRN* (VB) 0.4525± 0.0036 4560
SLFM (VB) 0.4247± 0.0004 1643
SLFM* (VB) 0.4679± 0.0030 1850
SLFM 0.4578± 0.0025 792
Co-kriging 0.51
ICM 0.4608± 0.0025 507
CMOGP 0.4552± 0.0013 784
GP 0.5739± 0.0003 74

GP 0.5739± 0.0003 74

EXCHANGE Historical MSE L Forecast

GPRN (VB) 3.83× 10−8 2073
GPRN (MCMC) 6.120× 10−9 2012

GWP 3.88× 10−9 2020

WP 3.88× 10−9 1950
MGARCH 3.96× 10−9 2050
Empirical 4.14× 10−9 2006

EQUITY Historical MSE L Forecast

GPRN (VB) 0.978× 10−9 2740

GPRN (MCMC) 0.827× 10−9 2630
GWP 2.80× 10−9 2930
WP 3.96× 10−9 1710
MGARCH 6.69× 10−9 2760
Empirical 7.57× 10−9 2370

Gaussian process regression networks: results

1 2 3 4 5
longitude

1

2

3

4

5

6

la
ti

tu
d
e

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

Predicted correlations between cadmium and zinc

Summary

• Probabilistic modelling and Bayesian inference are two sides of the same coin

• Bayesian machine learning treats learning as a probabilistic inference problem

• Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

• This motivates non-parametric Bayesian methods, e.g.:

– Gaussian processes for regression and classification
– Infinite HMMs for time series modelling
– Indian buffet processes for sparse matrices and latent feature modelling
– Pitman-Yor diffusion trees for hierarchical clustering
– Wishart processes for covariance modelling
– Gaussian process regression networks for multi-output regression

Thanks to

Ryan Adams Tom Griffiths David Knowles Andrew Wilson
Harvard Berkeley Cambridge Cambridge

http://learning.eng.cam.ac.uk/zoubin

zoubin@eng.cam.ac.uk

Some References

• Adams, R.P., Wallach, H., Ghahramani, Z. (2010) Learning the Structure of Deep Sparse

Graphical Models. AISTATS 2010.

• Griffiths, T.L., and Ghahramani, Z. (2006) Infinite Latent Feature Models and the Indian Buffet

Process. NIPS 18:475–482.

• Griffiths, T.L., and Ghahramani, Z. (2011) The Indian buffet process: An introduction and

review. Journal of Machine Learning Research 12(Apr):1185–1224.

• Knowles, D.A. and Ghahramani, Z. (2011) Nonparametric Bayesian Sparse Factor Models with

application to Gene Expression modelling. Annals of Applied Statistics 5(2B):1534-1552.

• Knowles, D.A. and Ghahramani, Z. (2011) Pitman-Yor Diffusion Trees. In Uncertainty in

Artificial Intelligence (UAI 2011).

• Meeds, E., Ghahramani, Z., Neal, R. and Roweis, S.T. (2007) Modeling Dyadic Data with Binary

Latent Factors. NIPS 19:978–983.

• Wilson, A.G., and Ghahramani, Z. (2010, 2011) Generalised Wishart Processes.

arXiv:1101.0240v1. and UAI 2011

• Wilson, A.G., Knowles, D.A., and Ghahramani, Z. (2011) Gaussian Process Regression Networks.

arXiv.

Appendix

Support Vector Machines

Consider soft-margin Support Vector Machines:

min
w

1

2
‖w‖2 + C

∑
i

(1− yifi)+

where ()+ is the hinge loss and fi = f(xi) = w · xi + w0. Let’s kernelize this:

xi → φ(xi) = k(·,xi), w→ f(·)

By reproducing property: 〈k(·,xi), f(·)〉 = f(xi).

By representer theorem, solution: f(x) =
∑
i

αik(x,xi)

Defining f = (f1, . . . fN)T note that f = Kα, so α = K−1f

Therefore the regularizer 1
2‖w‖2 → 1

2‖f‖2H = 1
2〈f(·), f(·)〉H = 1

2α
>Kα = 1

2f
>K−1f

So we can rewrite the kernelized SVM loss as:

min
f

1

2
f>K−1f + C

∑
i

(1− yifi)+

Posterior Inference in IBPs

P (Z, α|X) ∝ P (X|Z)P (Z|α)P (α)

Gibbs sampling: P (znk = 1|Z−(nk),X, α) ∝ P (znk = 1|Z−(nk), α)P (X|Z)

• If m−n,k > 0, P (znk = 1|z−n,k) =
m−n,k
N

• For infinitely many k such that m−n,k = 0: Metropolis steps with truncation∗ to
sample from the number of new features for each object.
• If α has a Gamma prior then the posterior is also Gamma → Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.

Non-conjugate sampler: P (X|Z) =
∫
P (X|Z, θ)P (θ)dθ cannot be computed,

requires sampling latent θ as well (e.g. approximate samplers based on (Neal 2000)

non-conjugate DPM samplers).

Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)

see also (Adams et al 2010).

Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010)

