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Motivation

e Large amounts of unlabelled data, small amounts of labelled data

e Labelling/annotating data is expensive

e We want supervised learning methods that can use information in the input
distribution



Example: Images
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Classification using Unlabelled Data

Assumption: there is information in the data distribution
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Outline

e Graph-based semi-supervised learning
e Active graph-based semi-supervised learning

e Some thoughts on Bayesian semi-supervised learning



Graph-based Semi-supervised Learning
Labeled and Unlabeled Data as a Graph

e Idea: Construct a graph connecting similar

o ¥l | data points
92 ‘?________________‘_ four
\ / " 4~ ’ .
5 P N e Let the hidden/observed labels be random
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label
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e Information “propagates” from labeled data
points

e Graph encodes intuition

Work with Xiaojin Zhu (U Wisconsin) and John Lafferty (CMU)



The Graph
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e nodes: instances in L U U. Binary labels y € {0,1}"

e edges: local similarity. n x n symmetric weight matrix W assumed given.
o energy: E(y) =5, wij (Yi — y;)’

11— happy, low energy
unhappy, high energy



Low energy — Label Propagation

energy: E(y) = QZ”wzg( yg)

With no labelled data, then y = 1 or y = 0 is a min energy configuration:
0 \é\?\ Qb

Og%%@—%j energy=0
Conditioned on labeled data:
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Discrete Markov Random Fields

/m E :1 Wi \Yi — j2
*: \1%% (y) 22; (yi — y5)

ho p(y) o exp(— E(y)) Iy, 1

%‘\%W/ y; € {0,1}
Graph mincut can find the min energy (MAP) configuration.

Problems: computing the probabilities is expensive, multi-class case is also
harder to compute, and learning W is very hard.

[Zhu & Ghahramani 02] see also [Blum and Chawla 01]



We relaxed this to a
Gaussian random fields



Discrete Markov Random Fields, revisited

p(y) < exp(—E(y)) |y,=L
Y; € {O, 1}



Gaussian Random Fields

p(y) x exp(—E(y)) ly;=L
y; € R



Gaussian Random Fields

The Laplacian A =D — W

Arr | Aru
A\ =
[ Avr | Avu ]




The Laplacian

w11 ce W1in Zwl. 0

Wp1 ... Wpn 0 > wa.

This is the combinatorial or graph Laplacian A = D — W

Arr | Ay ]
A =
[ Avr | Avu

The graph Laplacian plays the same role on graphs as the Laplace operator in
other spaces.

For example, in a Cartesian coordinate system, the Laplacian is given by sum
of second partial derivatives of the function
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Af =V -Vf=



Gaussian Random Fields

p(y) o exp(=E(y)) ly,=L
eXp (; sz‘j (i — ?Jj)2> ly =L

— €exXp (_yTAY) |yL=L

The distribution of y; given y, is Gaussian: yi ~ N (fu, 2(Apy) ™)

The meanis fy = —(Avpy)  "Auryr



The Mean fy

The mean fy = mode of Gaussian Random Field
= min energy state

e “soft labels”, unique

e harmonic 5 /
- Wya T
Af =0 or fi=22 "7 jcU
D jimi Wi
0< fi<l1

e Related to heat kernels etc. in spectral graph theory.



fu Interpretation: Random Walks




fu Interpretation: Electric Networks
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Classification

e naive: threshold f;; at 0.5. Classification often unbalanced.

e incorporating Class Priors (heuristic)

e.g. prior: 90% class 1

minimize E(y)=y'Ay
subjectto y;, =L

and % —0.9



OCR Ten Digits (| U U| = 4000)
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20-Newsgroups (PC vs. MAC, |L U U| = 1943)
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Hyperparameter Learning

Learn the graph weights (or hyperparameters):

. m (Tig—jq)° | th les-
® Wi; =exp | —> 41 -2 , length scales;

e kNN unweighted graph, k;

e cNN unweighted graph, ¢, etc.;



Hyperparameter Learning

e Minimize entropy on U (maximize label confidence);

e Evidence maximization with Gaussian process classifiers
[tech report CMU-CS-03-175].



Hyperparameter Learning

OCR Digits “1” vs. “2”,

4

L| =92, |U| = 2108.

H (bits) GF acc
start | 0.6931 | 94.70 = 1.19 %
end | 0.6542 | 98.02 4+ 0.39 %




An Example Application of Graph-based SSL

Person Identification in Webcam Images:
An Application of Semi-Supervised Learning
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The FreeFoodCam

Figure 1. Four typical FreeFoodCam images.



Background Extraction

date | 10/24 11/13 1/6 1/14 1/20 1/21 1/27
1 128 193 153 | 474
2 256 193 448
3 288 305 593
4 204 190 394
5 266 41 189 19 515
6 195 34 179 104 | 512
7 126 163 200 180 70 22 28 | 789
8 189 66 172 117 15 559
9 189 94 215 69 30 43 | 640
10 65 143 122 330
total | 1841 398 831 1196 384 276 328 | 5254

Figure 2. Left: mean background image used for background subtraction. Right: breakdown of the 10 subjects by date.



Foreground Extraction and Face Detection

Figure 3. Examples of foregrounds extracted by background subtraction and morphological transforms.

Figure 4. Examples of face images detected by the face detector.



A node and its neighbours

& Y
neighbor 3: color edge neighbor 4: color edge neighbor 5: face edge

Figure 5. A random image and its neighbors in the graph.



A walk on the graph
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Figure 7. An example “gradient walk” on the graph. The walk starts from an unlabeled image, through assorted edges, and ends at a
labeled image.



unlabeled set accuracy

freefoodcam, harmonic function
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(a) harmonic function accuracy

unlabeled set accuracy

freefoodcam, harmonic function + CMN
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(b) harmonic function + CMN accuracy

Figure 8. Harmonic function and CMN accuracy on two graphs. Also shown is the SVM linear kernel baseline. (a) The harmonic func-
tion algorithm significantly outperforms the linear kernel SVM, demonstrating that the semi-supervised learning algorithm successfully
utilizes the unlabeled data to associate people in images with their identities. (b) The semi-supervised learning algorithm classifies even
more accurately by incorporating class proportion knowledge through the CMN heuristic.



Computation

The basic computation involves solving a sparse linear system of equations.

fu=—(Avv) *Auryr

Some ways of solving this for large systems:

e Conjugate gradients
e Belief propagation

e Convert the original graph into a much smaller backbone graph (Zhu and
Lafferty 2005)



Other Approaches to Semi-supervised Learning

Caveat: This is a very big field, a lot has happened since 2003/

Nigam et al. (2000): An EM algorithm for SSL applied to text.
Szummer and Jaakkola (2001): SSL using Markov random walks on graphs.

Belkin and Niyogi (2002): regularize f by using the top few eigenvectors of
the Laplacian A

Lawrence and Jordan (2005): a Gaussian process approach similar to
TSVM using a null category noise model.

Zhou et al (2004) use the loss function 3" .(f;—v:)? and the normalised graph
Laplacian D~'/2AD~1/2 as a regulariser.

Transductive SVMs (also called Semi-Supervised Support Vector Machines
(S3VM)).



Transductive Support Vector Machines

Instead of finding maximum margin between labelled points, optimize over both
margin and labels of unlabelled points.




Active Semi-Supervised Learning

[Zhu, Lafferty, Ghahramani, 2003]

Semi-supervised learning uses U to help classification.

Active learning (pool based) selects queries in U to ask for labels.

Put it together, we have a better query selection criterion than naively selecting
the point with maximum label ambiguity.



Active Learning

Select a query to minimize the estimated generalization error, not by
maximum ambiguity.
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Active Learning

generalization error

err=2 > (san(f;) # yi) Pirye(vi)

€U y;=0,1

approximation
Pirue(wi = 1) < fi

estimated generalization error

err = Z min (fz, 1 — fz)

eU



Active Learning

estimated generalization error after querying x, and receiving label

GO Z min (f;r(xk,yk), 1 — f;r(xk,yk;)>
ieU

‘re-train’ is fast for the harmonic function
—1

z Avyu).
UU) kk

select query k* s.t.

¢ +(xk70)

k* =argmin, (1 — fy)err + fkeArrJr(x’“’l)
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Part lI: Some thoughts on
Bayesian semi-supervised learning



Moving forward...

e We have good methods for transduction.

e But we don’t seem to have a single unified Bayesian framework for inductive
SSL.

e How would we view this problem from a fully Bayesian framework?



Bayesian Semi-Supervised Learning

x inputs, y labels:
p(z,y) = p(z)p(y|lr) = p(y)p(z|y)

Usually we assume some model with parameters:

e Discriminative:

p(z,yl0,¢) = p(z|0)p(y|z, ¢)

SSL possible if 6 is somehow related to ¢, works well when
p(y|x, ¢) is very flexible (e.g. non-parametric, kernel-based).

e Generative:
p(z,yl0, ) = p(y|d)p(z|y, )
SSL possible but these methods are not currently widely used.

G<:—G@ e—@



Bayesian Semi-Supervised Learning

Generative:
p(z,y]0,¢) = p(ylo)p(x|y, )

Limitations of the Generative approach:

e Often we don’t wantto model the full z.
(Solution: maybe we can model some features of x?)

e Our models of p(x|y, 8) are usually too inflexible.
(Solution: use non-parametric methods?)

Some examples:

e Kemp et al (2003) Semi-supervised learning with trees.

e Radford Neal’'s entry using Dirichlet Diffusion trees into the NIPS feature
selection competition.

From a Bayesian perspective, semi-supervised learning is just another missing
data problem!



Summary

e Semi-supervised learning with harmonic functions

e Active semi-supervised learning using harmonic functions by minimizing
expected generalization error

e Much research in this area but still some open questions...
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