Bayesian Learning of Model Structure

Zoubin Ghahramani
Gatsby Computational Neuroscience Unit
Univer sity Colleg e London

December 2000

http://ww. gat sby. ucl . ac. uk/



40

20

=20

40

20

-20

Model structure and overfitting:

a simple example
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Model Selection Questions

How many clusters in the data? ST

What is the intrinsic dimensionality of the data?

s this input relevant to predicting that output? WN

What is the order of this dynamical system?

How many states for this hidden Markov model?
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How many auditory sources in the input? @)



Bayesian Learning

dataY
models My ... , M,
parameter sets 61 ... ,0n

(let’s ignore hidden variables X for the moment, this will just introduce
another level of averaging/integration)

Model Selection:

_ P(Y|M;)P(M;)
o P(Y)

Model Averaging:

P(ylY) = ZP(yIY, M;)



Ockham’s Razor

PY|M;)P(M;)

P(M;|Y) = PY)

POYIMY) = [ P(Y16:, M) P8 M;)

What is the probability that if you randomly selected pa-
rameter values from your model class you would generate
datasetY ?

Model classes that are too simple will be very unlikely to
generate that particular data set.

Model classes that are too complex can generate many
possible data sets, so again, they are unlikely to generate
that particular data set at random.
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Bayesian Model Selection

Model Evidence
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A subtle point about Ockham’s Hill

Unscaled models:

Order O Order 2 Order 4 Order 6 Order 8 Order 10

Model order

Scaled models:

Order O Order 2 Order 4 Order 6 Order 8 Order 10

Model order



Practical Bayesian approaches

Laplace approximations:
— Appeals to Central Limit Theorem making a Gaus-
sian approximation about maximum a posteriori pa-
rameter estimate.

Large sample approximations (e.g. BIC).

Markov chain Monte Carlo methods (MCMC):

— In the limit are guaranteed to converge, but:
— Many samples required to ensure accuracy.
— Hard to assess convergence.

Variational approximations...



Variational Bayesian Learning

Let the hidden states be x, data y and the parameters 6.

We can lower bound the (Jensen’s inequality):
In — In/dxd@ P(y,x,8|M)

P(y,x,0)

Q((X,H))
P(y,x,0
> /dxd@ Q(x,0)In 0(x.0) °

Use a simpler, factorised approximation to Q(x, 0):

P(y,x,0)
In P(y) > /dx dO Qx(x)Qg(0) In Ox(x)Qp(0)
—_ j:'(QX(X% Q9(0)7Y)

— In/dde O(x, 0)

Maximising this lower bound, F, leads to EM-like updates:

Qx(x) oc exp(In P(x,y10))q,(6) E —like step
Qy(0) o< P(O)exp(In P(x,y|0))0, () M —like step

Equivalent to minimizing KL-divergence between the ap-
proximating and true posteriors.



Conjugate-Exponential models

Condition (1). The joint probability over variables is in the

P(x,y|0) = f(x,y) 9(8) exp {$(8) "u(x,y)}

where ¢(0) is the vector of natural parameters.

Condition (2). The prior over parameters is to
this joint probability:

P(8)n,v) = h(n,v) g()" exp {¢(6) v}
where n and v are hyperparameters of the prior.
Conjugate-exponential (CE) models satisfy (1) and (2).

e Conjugate priors: n: number of pseudo-observations,
v:. values of pseudo-observations.

e Usually (2) implies (1).



Conjugate-Exponential examples

In the CE family:

e Gaussian mixtures

e factor analysis, probabilistic PCA

e hidden Markov models and factorial HMMs

e linear dynamical systems and switching models
e discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma,

Poisson, Dirichlet, Wishart, Multinomial and others.

Not in the CE family:

e Boltzmann machines (no conjugacy)
e logistic regression (N0 conjugacy)

e sigmoid belief networks (not exponential)

e independent components analysis (not exponential)

Note: one can often approximate these models with mod-
els in the CE family.



Theoretical Results

Theorem 1 Given an iid data sety = (y1,...yn), if the
model is then:

(a) Qg(O) is also i.e.
Qe(0) = h(ii,7)9(0)"exp {¢(6) 7}

(b) Qx(x) = [I'q @x;(x;) is of the as in the
E step of regular EM, but using pseudo parameters
computed by averaging over Qg(8)

Qxi(x;) o< f(xi,y:) exp{p(0) Tulx;,yi)}
= P(xlyi, #(6))

KEY points :

(a) the approximate parameter posterior is of the same
form as the prior;

(b) the approximate hidden variable posterior, averaging
over all parameters, is of the same form as the exact hid-
den variable posterior for a single setting of the parame-
ters.



The Variational EM algorithm

VE Step: Compute the expected sufficient statistics

t(y) = > ;u(x;,y;) under the hidden variable distri-
butions Qx,(x;).

VM Step: Compute expected natural parameters ¢(0)
under the parameter distribution given by n and v.

Properties:

e VE step has same complexity as corresponding E step.

e Reduces to the EM algorithm if Qg(8) = 6(0 — 6™).
M step then involves re-estimation of 0*.

e F increases monotonically, and incorporates the model
complexity penalty.



Graphical models and

propagation algorithms

9 (D)

Singl y-connected nets .
g1y Multipl y-connected nets

The belief ti _
© -ele Propagation The junction tree algorithm.
algorithm.

These are efficient ways of applying Bayes rule using the
conditional independence relationships implied by the
graphical model.



Propagation Algorithms for VEM

Corollary 1: CE Belief Networks . If the model is CE, with
hidden and visible variables z = (x,y), and satisfies a

P(z|0) = HP(zj|zpj,0)
J
then the approximate joint satisfies the BN factorisa-

tion but with ¢(8) = ¢(8), i.e.
Qz(z) = HQ(Zﬂijaé)
j

Corollary 2: CE Markov Networks . If the model is a CE
Markov network then the approximate joint distribution is

Qz(z) = §H¢j(0'a é)
J

where the cliqgue potentials have exactly the as
in the model, but with natural parameters ¢(0) = ¢(0).

Intuition: We can use the junction tree, belief propagation,
Kalman filter, etc, algorithms in the VE step of VEM, but
using expected natural parameters.



A Generative Model for Generative Models
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Variational Bayes & Ensemb le Learning

multilayer perceptrons (Hinton & van Camp, 1993)
mixture of experts (Waterhouse, MacKay & Robinson, 1996)

hidden Markov models (MacKay, 1995)

e other work by Jaakkola, Barber, Bishop, Tipping, etc

Examples of VB Learning Model Structure

Model learning has been treated with variational Bayesian
techniques for:

mixtures of factor analysers (Ghahramani & Beal, 1999)
mixtures of Gaussians (Attias, 1999)

Independent components analysis (Attias, 1999; Miskin &
MacKay, 2000; Valpola 2000)

principal components analysis (Bishop, 1999)
linear dynamical systems (Ghahramani & Beal, 2000)
mixture of experts (Ueda & Ghahramani, 2000)

hidden Markov models (Ueda & Ghahramani, in prep)



Mixture of Factor Analysers

Goal:

e Infer number of clusters

e Infer intrinsic dimensionality of each cluster

Under the assumption that each cluster is Gaussian



Mixture of Factor Analysers

True data: 6 Gaussian clusters with dimensions:
(174 322) embedded in 10 dimensions
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e Finds the clusters and dimensionalities efficiently.

e The model complexity reduces in line with the lack of
data support.



Digit Clustering
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e Trained on 700 8x8 images of each digit (CEDAR ROM.
e Determines the number of clusters (styles) required
e ARD determines the number of deformations

e The number to the right of each digit is the dimension
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e Each image is classified using hard assignment

e Unsupervised classif: 8.8% train, 7.9% test error.

e K-means (same # of clusters): 12.2%, 13.3% error.



Mixture of Experts

X




Learning Mixture of Experts Structure
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Figure 1: Result for synthetic data.
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Linear Dynamical Systems

O

Assumes y; generated from a hidden state variable x;,
and that the sequence of x; .7 is Markov.

If transition and output functions are linear, time-invariant,
and noise distributions are Gaussian, this is a Linear-
Gaussian state-space model:

Xt = Axp_1 + Wy, Y =0Cxp+ vy
Dynamic generalisation of factor analysis.

Three levels of inference:

| Given data, structure and parameters,
Kalman smoothing — hidden state;

Il Given data and structure,
EM — hidden state and parameter point estimates;

lll Given data only, VEM — model structure and dis-
trib utions over parameter s and hid den state.



Linear Dynamical Systems Results

Inferring model structure (synthetic):

a) SSM(0,3)i.e. FA  b) SSM(3,3) c) SSM(3,4)

a3}

< 0000000000

Inferred model comple xity reduces with less data:

True model: e SSM(6,6) e 10-dim observation vector.
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Steel Plant Data

e 38 sensors (temperatures, pressures, etc.) sampled at
2Hz from a continuous casting process for 150 secs.

e Sensors covaried and were temporally correlated, sug-
gesting an LDS could capture some of its structure.

JLlH,J [ W

e True model: ?77?.

y 'W J'i&v :

Time ——>

e Inferred model: 16 state variables required, of which
14 emitted outputs.



Sampling from Variational Appr oximations

Sampling 0,,, ~ Q(0) gives us estimates of:

e The Exact Predictive Density:
P@yIY) = [ do P(y0)P(8]Y)

_ P(O]Y)
= [ 40 QPO oy
M

~ Z P(y|0m) wm

m=1

weights: wy, = &7 l) with @ s.t. 3 wm = 1

e The True Evidence:

P(Y|M) = [ do o)~ g)(’;)/) — (Quw)

e The KL Divergence:

KL(QO)|IP(O]Y)) = In{w) — (Inw).

Note: same weights can be used for all three!



Train and Test fractional error
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Switc hing state-space model

Switch transitions:
P(st = ilsg—1 = j) = T,
Hidden state dynamics:
P(x¢|si—1,%¢—1) = N(As,_1X¢-1,Qs,_1)
Output function:

P(Yt"staxt) — N(CStXtaRSt)

Contains as special cases: mixtures of factor analysers,
mixtures of linear dynamical systems, Gaussian-output HMMs,
mixtures of Gaussians, ...

IS a conjugate-e xponential belief network



Summary & Conclusions

Bayesian learning avoids overfitting and can be used
to learn model structure

Tractable Bayesian learning using variational methods
Conjugate-exponential families

Variational EM and Propagation theorems

Some examples

Sampling from variational approximation estimates:

— the true
— the
— the exact

Combining variational methods and sampling:
best of both worlds, fast and reliable algorithms for
Bayesian learning?



Application Areas

computational molecular biology
financial time series prediction
speech and video processing

analysis of functional neuro-imaging data

Future Directions and Other Interests

extensions to other models (HMMs, hierarchies)
combination with other approximations (MCMC, loopy)
extension to influence diagrams for decision/control/RL
inferring causality

human motor control and computational neuroscience



