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Modeling time series

Sequence of observations:
Y1,Y2,¥3,---, Yt
For example:

e Sequence of images

e Speech signals

e Stock prices

e Kinematic variables in a robot

e Sensor readings from an industrial process

e Amino acids, etc. ..

Goal: To build a probilistic model of the data:
something that can predict p(y:|y: 1,¥:t 2,V 3--.)
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Causal structure and “hidden variables”

Speech recognition:

e x - underlying phonemes or words (x:) (X)—> " )
e y - acoustic waveform
W ®»  ® (%)

Vision:
e X - object identities, poses, illumination

e y - image pixel values

Industrial Monitoring:
e X - current state of molten steel in caster

e y - temperature and pressure sensor readings

Two frequently-used tractable models:
e Linear-Gaussian state-space models

e Hidden Markov models
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Graphical Model for HMM
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e Discrete hidden states s; € {1..., K}, and outputs y; (discrete or continuous).
Joint probability factorizes: -

P(si,...,87¥Y1...,¥7) = P(s1)P(y1ls1) H P(s¢|st—1)P(y¢|st)

e a Markov chain with stochastic measurements:

e or a mixture model with states coupled across time:
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Hidden Markov Models

« Hidden Markov models (HMMs) are widely used, but how do we choose
the number of hidden states?

— Variational Bayesian learning of HMMs
— A non-parametric Bayesian approach: infinite HMMs.

« Can we extract richer structure from sequences by grouping together
states in an HMM?

— Block-diagonal iIHMMs.

* Asingle discrete state variable is a poor representation of the history.
Can we do better?

— Factorial HMMs

« Can we make Factorial HMMs non-parametric?
— infinite factorial HMMs and the Markov Indian Buffet Process
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Part |

Variational Bayesian learning
of
Hidden Markov Models
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Bayesian Learning

Apply the basic rules of probability to learning from data.
Data set: D = {x1,...,x,} Models: m, m' etc. Model parameters: 6

Prior probability of models: P(m), P(m/') etc.
Prior probabilities of model parameters: P(6|m)
Model of data given parameters (likelihood model): P(x|0, m)

If the data are independently and identically distributed then:

P(D|0,m) HP x;|0, m)

Posterior probability of model parameters:

POID,m) = (D!?(gim)(@!m)
Posterior probability of models:
P(m|p) = 2t ;fg'm)
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Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m/, using posterior probabilities given D:
p(Dim) p(m
pmfD) = "L D) = [ p(DI6.m) p(6lm) do

Interpretations of the Marginal Likelihood (“model evidence”):

e The probability that randomly selected parameters from the prior would generate D.

e Probability of the data under the model, averaging over all possible parameter values.

e log, (W) is the number of bits of surprise at observing data D under model m.
A

Model classes that are too simple are unlikely
to generate the data set.

P(DIm)

Model classes that are too complex can
generate many possible data sets, so again,

. ] —— "just right"
they are unlikely to generate that particular J_ 1
data set at random. : -

D

All possible data sets 8f size n
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Bayesian Model Comparison: Occam’s Razor at Work

Model Evidence

0.8

~0.6f

|
(N
=

For example, for quadratic polynomials (m y = ag + a1z + asx? + €, where

e ~ N(0,0%) and parameters 8 = (ag a; a o)

demo: polybayes
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Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?

How many auditory sources in the input?

Which graph structure best models the data?

demo: run_simple
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Variational Bayesian Learning
Lower Bounding the Marginal Likelihood

Let the observed data be D, the hidden state variables be s, and the parameters be 6.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen's inequality:

log P(D|m) = log / Y P(D,s,6|m) db

0
— log/ZQ(S,H)P(g’zjeﬁm) de

(

> /ZQ(S,H) log P(g’;’gim) do.

Here (s, 8) is an approximation to the posterior P(s,8|D, m).
Assume (s, @) is a simpler factorised distribution:

) - S
0.5)0s(0) %@ = 7(Q:(5),Q0(6), D),

log P(Dlm) = [ 37 Q.(5)Q0(6) o

S

Maximize this lower bound with respect to () leads to generalization of the EM algorithm.
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Hidden Markov Models

O~

Discrete hidden states, s;.

Observations y;.

How many hidden states?
What structure state-transition matrix?

Variational Bayesian HMMs (MacKay 1997; Beal PhD thesis 2003):

demo: vbhmm_demo 12
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Summary of Part |

« Bayesian machine learning
* Marginal likelihoods and Occam’s Razor
* Variational Bayesian lower bounds

* Application to learning the number of
hidden states and structure of an HMM

13
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Part Il

The Infinite Hidden Markov Model
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Hidden Markov Models
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= Core: hidden K-state Markov chain

= initial distribution p(s, = 1) =1

= transition probability p(s; = j|s;-1 = i) = 7y
= Peripheral: observation model y, ~ F(3.,)
= Parameters of the modelare K. x, ¢
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Choosing the number of
hidden states

« How do we choose K, the number of
hidden states, in an HMM?

« Can we define a model with an
unbounded number of hidden states,
and a suitable inference algorithm?
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Alice in Wonderland
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Infinite Hidden Markov models

Hidden Markov models (HMMs) can be thought of as time-dependent mixtures.

In an HMM with K states, the transition  G)—G)—GEr— - - - —)
matrix has A x K elements. ; ; v 1
Z::Y. Ya) Vs (vy :jn

We let K — o, this results in an IHMM.

o’ ! 1

¢ . ¢ ¢ e R LRy R

{
: KU B DA P 4 // ' / / / / / : /
ML i ///.’/r. WA / Aat, 1.1 vi s

e Introduced in (Beal, Ghahramani and Rasmussen, 2002).

e Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet

processes, and provided a more efficient Gibbs sampler.

e We have recently derived a much more efficient sampler based on Dynamic Programming (Van

Gael, Saatci, Teh, and Ghahramani, 2008).
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lierarchical Urn Scheme for generating
transitions in the iHMM (2002)

I

znij + P+ Xnij +pP+0 anj ++«
J J J

self existing oracle
transition transition

- /\

n.[l
J
2n’ +y 2n° +y
j ] j
existing new
state state

« n; is the number of previous transitions from i to j
* 0, B, and y are hyperparameters

« prob. of transition from i to j proportional to n;

« with prob. proportional to gy jump to a new state
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Relating IHMMs to DPMs

 The infinite Hidden Markov Model is closely related
to Dirichlet Process Mixture (DPM) models

 This makes sense:
— HMMs are time series generalisations of mixture models.

— DPMs are a way of defining mixture models with countably
infinitely many components.

— iHMMs are HMMs with countably infinitely many states.
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HMMs as sequential mixtures

What is conditional distribution of y.?

@1 @s @3

p(y:|se—1 = k) is a mixture distribution with K components.
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Infinite Hidden Markov Models

= We want HMM in the limitof &' — o~
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Infinite Hidden Markov Models

* |dea: introduce DP’s
identify mixture weights with HMM transitions

identify base distribution draws with observation
model parameters

I

P(Ysl|Si—1 = k) = Z n ,‘._S,F(’C)M)
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Infinite Hidden Markov Models

= Generative Model for iHMM

(D
@)

Teh, Jordan, Beal and Blei (2005) derived iHMMs in
terms of Hierarchical Dirichlet Processes.
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Efficient inference in IHMMs?
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Inference and Learning in HMMs and iHMMs

HMM inference of hidden states p(s,|y,...y-0):

— forward backward = dynamic programming = belief
propagation

HMM parameter learning:

— Baum Welch = expectation maximization (EM), or
Gibbs sampling (Bayesian)

IHMM inference and learning, p(s;,0 |y,...y7):
— Gibbs Sampling

This is unfortunate: Gibbs can be very slow for
time series!

« Can we use dynamic programming?
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Dynamic Programming in HMMs
Forward Backtrack Sampling

O ke
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Beam Sampling

= Can we use Forward-Backtrack for iHMM?
=» No, O(TK?) with K = infinity is intractable

= A (bad?) idea:
= Truncate transition matrix

= Use dynamic programming to sample s

= This is only approximately correct.

=» Beam Sampling = Slice Sampling

+

Dynamic Programming
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Beam Sampling

= Each G, can be represented as

J

T11 12

= Letusintroduce an auxiliary variable

| |l|||.
w13 °* = °

)

ug ~ Uniform (0, w,,_, s,

" Uy partitions up G,

(5 iy SR e [ T
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Auxiliary variables

&8

Note: adding u variables, does not change distribution over other vars.
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Beam Sampling
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Experiment: Text Prediction

Alice in Wonderland

* training data: 1000 characters from 1%t chapter
= 35 possible output characters
= testing data: 1000 subsequent characters

=200 e~ =
VB-HMM:
3 —2950 Transiti T
g * Transition matrix: Dirichlet(4/K, ..., 4/K)
i -3000} q\< *Emission matrix: Dirichlet(o.3)
S -3050 iHMM:
S * o~ Gamma(s,1)
% e — VB-HMM * Y ~ Gamma(3,a)
& -3150( | —Beam Sampling ||  *H ~ Dirichlet(o.3)
- - =Gibbs Sampling
-3200 : :
0 10 20 30 40 50

Number of hidden states (K)

Friday, 16 July 2010



Experiment. Changepoint Detection

Well Log (NMR Response) — Change point Detection
* oo noisy NMR response measurements
* Qutput model is Student-t with known scale

Beam sampler output of iIHMM after 8ooo iterations:

-t g
-1

- 4
e, 8 E
g*"v’?;a;r‘:;.:? '; ) P !
A e e .

NMR Response

500 1000 1500 2000 2500 3000 3500 4000
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Experiment. Changepoint Detection

What is probability of two data points in same cluster?
= Left: average over first g samples
= Right: average over last 30 samples datapoints

Note: 1) gray areas for beam; 2) slower mixing for Gibbs

Gibbs Sampler Gibbs Sampler
E—N_I | S—

__:- [
1500 2000 2500 3000 3500 4000 5[5!0 'CC 1500 2000 2500 30 J] 35;30 JD.CO

Beam Sampler Beam Sampler

=i

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
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Parallel and Distributed
Implementations of iIHMMs

* Recent work on parallel (.NET) and distributed

(Hadoop) implementations of beam-sampling for iHMMs
(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).

« Applied to unsupervised learning of part-of-speech tags
from Newswire text (10 million word sequences).

* Promising results; open source code available for beam
sampling IHMM:  http://mloss.org/software/view/205/

35
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http://mloss.org/software/view/205/
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Part Ill:
IHMMs with clustered states

* We would like HMM models that can
automatically group or cluster states.

« States within a group are more likely to
transition to other states within the same group.

* This implies a block-diagonal transition matrix.

36
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The Block-Diagonal iIHMM

(Stepleton, Ghahramani, Gordon & Lee, 2009)

37
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BD-IHMM finding sub-behaviours in
video gestures (Nintendo Wii)

C
Batting Boxing (©) Pitching Tennis
i ' | T
' ) 'z T ‘ JI J ﬂ[' | ﬂ | l
1000 2000 3000 4000 5000

38
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Part IV

« Hidden Markov models represent the entire
history of a sequence using a single state
variable s,

* This seems restrictive...

|t seems more natural to allow many hidden
state variables, a “distributed representation’
of state.

J

e ...the Factorial Hidden Markov Model
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Factorial HMMs
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 Factorial HMMs (Ghahramani and Jordan, 1997)

A kind of dynamic Bayesian network.

* Inference using variational methods or sampling.

* Have been used in a variety of applications (e.g. condition
monitoring, biological sequences, speech recognition).
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From factorial HMMs to
infinite factorial HMMs?
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» A non-parametric version where the number of chains is unbounded?

* In infinite factorial HMM (ifHMM) each chain is binary (van Gael, Teh,
and Ghahramani, 2008).

« Based on the Markov extension of the Indian Buffet Process (IBP).
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Bars-in-time data
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Bars-in-time data
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ITHMM Toy Experiment:
Bars-in-time
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I CA i F HMM (more signals than sources)

]

True ICA iIFHMM ICA

separating speech audio of multiple speakers in time
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I CA i F HMM (fewer signals than sources)

:

True ICAIFHMM 1CA
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The Big Picture

factorial ]
model

.| factorial
HMM

finite
mixture

DPM

non-param.
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Summary

« Bayesian methods provide a flexible framework for modelling.

« HMMSs can be learned using variational Bayesian methods. This
should always be preferable to EM.

* IHMMs provide a non-parametric sequence model where the number
of states is not bounded a priori.

« Beam sampling provides an efficient exact dynamic programming-
based MCMC method for iHMMs.

» Block-Diagional iHMMs learn to cluster states into sub-behaviours.
« ifHMMs extend iIHMMs to have multiple state variables in parallel.

* Future directions: new models, fast algorithms, and other
compelling applications.
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