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Abstract

We introduce Time-Sensitive Dirichlet Process Mixture models for clustering. The
models allow infinite mixture components just like standardDirichlet process mixture
models. However they also have the ability to model time correlations between in-
stances.



1 Introduction

Traditional clustering algorithms make two assumptions that are often false in practice:
1. that the number of clusters is known; 2. that the data points are independent. We
propose a model that allows infinite number of clusters, and cluster members may have
certain dependency in time.

Consider emails received by a user over a period of time. Suppose we want to
cluster the emails by topic thread. There are several ways todo this:

• We can sort emails by the ‘subject’ line. However it is unreliable and we want a
more flexible probabilistic model based on email content.

• We can model each thread with a multinomial distribution over the vocabulary,
and treat each email as a ‘bag of words’. The whole email collection can be
modeled as a mixture of multinomial. The problem is that we donot know the
number of threads (mixing components). Fixing the number, which is a common
practice, seems arbitrary.

• We can model the collection as a Dirichlet process mixture model (DPM) [1].
DPMs allow potentially infinite number of components. Nonetheless DPMs are
exchangeable. When applied to emails, this means that old threads never die
down. This is undesirable because we want the emails from years ago to have
less influence than those from this morning in predicting thenext email.

We therefore would like to introduce the concept of time intoDPMs, while keeping
the ability to model unlimited number of clusters. This is achieved with the proposed
Time-Sensitive Dirichlet Process Mixture (tDPM) models.

2 The tDPM Framework

Consider a sequence of inputd with time stampt: (d1, t1), . . . , (dn, tn), where the time
monotonically increases. For concreteness let us assume the d’s are email documents,
each represented as a bag-of-word vector. Letsi ∈ {1, 2, . . .} be the true cluster
membership (email thread) ofdi. Notice we do not set the number of clusters a priori.
There could potentially be an unlimited number of clusters as the number of documents
n grows.

Without loss of generality we assume that each clusterj is represented by a multi-
nomial distributionθj over the vocabulary. The probability for clusterj to generate
documentdi is then

P (di|θj) =
∏

v∈vocabulary

θj(v)
di(v) (1)

Since past email threads can influence the current email, we wantsi to depend on
the historys1, . . . , si−1. We also want such dependency to vary with time: older emails
should have less influence. We introduce aweight function w(t, j) which summarizes
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Figure 1: (a) The time kernel withλ = 0.5. (b) The weight functions with data from
two clusters, marked as star or circle respectively.

the history at timet. It gives the weight (or ‘influence’) of clusterj at timet, given the
history so fars1, . . . , si : ti < t,

w(t, j) =
∑

{i|ti<t,si=j}

k(t− ti) (2)

Note the weight function is the sum of some time kernelk. In the email example we
can use a kernel likek(t) = exp(−λt) if t ≥ 0, andk(t) = 0 if t < 0. This kernel
stipulates that an email will boost the probability of the same thread in later emails, but
the boost decreases exponentially as specified by the parameter λ. Figure 1(a) shows
an example time kernel withλ = 0.5, while (b) shows two weight functions built upon
the kernel. In the example there are documents from cluster 1at time 0,2,6, and from
cluster 2 at time 3,4. Other forms of the time kernel are possible too.

We define the prior probability of assigning clusterj todi, given the historys1, . . . , si−1,
to be

P (si = j|s1, . . . , si−1) (3)

= P (si = j|w(ti, ·)) (4)

=

{

w(ti,j)
P

j′ w(ti,j′)+α
if j is in history

α
P

j′ w(ti,j′)+α
if j is new

(5)

whereα is a concentration parameter. We call this a time-sensitiveDirichlet process
mixture (tDPM) model. Intuitively if there has been many recent emails from cluster
j, the new email will have a large probability also fromj. In addition, there is always
a possibility that the new email is from a new cluster not seenso far.

tDPM is very similar to the standard Dirichlet process mixture (DPM) models.
In fact, it can be shown that if the time kernelk is a step function, then we recover
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Figure 2: The graphical model for Time-sensitive DirichletProcess Mixture models.d
is the feature (e.g. words of an email),t is the time stamp,s is the cluster label, andw
is the sufficient statistic that summarizes the history. Shaded nodes are observed.

the standard DPMs. It is the decaying ofk over time that allows us to include time
information in to the process. The graphical model representation of tDPM is given in
Figure 2.

3 Inference

Givend andt, we would like to infers. We use a Markov Chain Monte Carlo method.
Noticew is a deterministic function ofs andt and does not need to be sampled. As
shown later if we used conjugate priors, we do not need to actually sampleθ but can
analytically integrate it out. Therefore we only need to samples.

In Gibbs sampling, we need to samplesi from the distribution

P (si = j|s−i, d1, . . . , dn) ∝ P (si = j|s−i)P (di|d−i:s−i=j) (6)

whered−i:s−i=j is the set of documents in clustersi = j, excludingdi.
The priorP (si = j|s−i) in (6) involves all nodes before and aftersi:

P (si = j|s−i)

∝

(

i−1
∏

m=1

P (sm|s1, . . . , sm−1)

)

P (si = j|s1, . . . , si−1)

(

n
∏

m=i+1

P (sm|s1, . . . , sm−1)

)

∝ P (si = j|s1, . . . , si−1)

(

n
∏

m=i+1

P (sm|s1, . . . , sm−1)

)

(7)

Substituting in the definition (5), it is easy to show that thedenominators are the same
for different values ofj, and the only difference is in the numerator.
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The likelihood termp(di|d−i:s−i=j) in (6) is domain-specific. For the email task,
a Dirichlet-multinomial [2] is the natural choice:

p(di|d−i:s−i=j) =

∫

p(di|θ)p(θ|d−i:s−i=j)dθ (8)

wherep(θ|d−i:s−i=j) is a posterior Dirichlet distribution. The posterior is derived
from a prior (base) Dirichlet distributionG0, and the observed datad−i:s−i=j . Let the
Dirichlet prior G0 be parameterized byβm, wherem is a vector over the vocabulary
andm sums to 1, andβ is the strength of the prior:

p(θ|βm) =
Γ(β)

∏

v Γ(βmv)

∏

v

θβmv−1
v (9)

Treating the document collectiond−i:s−i=j as a single, large document, the Dirichlet
posterior after observing countsfv for wordv in d−i:s−i=j is

p(θ|d−i:s−i=j) = p(θ|f, βm) =
Γ(
∑

v fv + β)
∏

v Γ(fv + βmv)

∏

v

θfv+βmv−1
v (10)

And the Dirichlet-multinomial is

P (di|d−i:s−i=j) =

∫

p(di|θ)p(θ|d−i:s−i=j)dθ (11)

=
Γ(
∑

v fv + β)
∏

v Γ(fv + βmv)

∏

v Γ(di(v) + fv + βmv)

Γ(
∑

v di(v) +
∑

v fv + β)
(12)

Putting everything together for (6), we can fix all others and sample forsi. A single
Gibbs sampling iteration consists of looping throughi = 1 . . . n and samplesi in turn.
The algorithm is given in Figure 3. The time complexity isO(n2) for each iteration
of the Gibbs sampler. Ifk has limited support, the complexity reducesO(n) but we
lose the ability to model long range correlations. Finally we run the Gibbs sampler for
many iterations to get the marginals ons.

Some readers may be disturbed by the apparent ‘double counting’ in Figure 3 when
we assignu(c) = α to not only the brand new statecnew, but also to states not in{s<i}
but in {s>i}. We assure the readers that it is merely an artifact of numbering. If we
were to renumber the states at each iteration, we can recover(5) exactly.

4 Parameter Learning

The parameters of the model include the base Dirichlet distributionG0, the concentra-
tion parameterα, and the time kernel parameterλ. We fix the base DirichletG0. For
the time being let us assume that all clusters share the same kernel parameterλ. The
free parameters areΘ = {α, λ}.

We learn the parameters by evidence maximization. Since ourmodel is conditioned
on time, the evidence is defined as

P (D|T,Θ) =
∑

S

P (D|S)P (S|T,Θ) (13)
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for positioni = 1 to n
/* C is the candidate states for si, */
/* where {s−i} is the set of current states at positions other than i, */
/* and cnew /∈ {s−i} is a new state, represented by an arbitrary new number. */
C = {s−i} ∪ {cnew}

/* Compute the unnormalized probability p(si = c|s−i) for all candidate c */
for c ∈ C

/* evaluate candidate si = c */
si ← c
/* Prior: the history part. {s<i} is the set of states before position i */
if c ∈ {s<i} thenu(c) = wc(ti)
elseu(c) = α
/* Prior: the future part. */
for j = i + 1 to n

if sj ∈ {s<j} thenu(c) = u(c) ∗ wsj
(tj)

elseu(c) = u(c) ∗ α
end
/* Likelihood. */
u(c) = u(c) ∗ P (di|d−i:s−i=c)

end

/* pick the state si with probability proportional to u() */
si ∼ u(C)

end

Figure 3: A single Gibbs sampling iteration for tDPM
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whereD is the set of all documents,T is the corresponding set of time stamps, andS
is the set of cluster assignments. We want to find the best parametersΘ∗ that maximize
the evidence:

Θ∗ = arg max
Θ

P (D|T,Θ) (14)

= arg max
Θ

∑

S

P (D|S)P (S|T,Θ) (15)

We find the parameters with a stochastic EM algorithm. The cluster labelsS are
hidden variables. LetΘ0 be the current parameters. We can sampleS(1) . . . S(M) from
the posterior distributionP (S|D,T,Θ0), as detailed in section 3. In generalized EM
algorithm, we seek a new parameterΘ which increases the expected log likelihood of
the complete data

Q(Θ0,Θ) = EP (S|D,T,Θ0) [log P (S,D|T,Θ)] (16)

= EP (S|D,T,Θ0) [log P (D|S) + log P (S|T,Θ)] (17)

Noticelog P (D|S) does not depend onα, λ. We approximate the expectation by sam-
ple average

Q(Θ0,Θ) = Const(Θ) + EP (S|D,T,Θ0) [log P (S|T,Θ)] (18)

≈ Const(Θ) +
1

M

M
∑

m=1

log P (S(m)|T,Θ) (19)

And we find the gradients w.r.t.Θ for parameter update

∂Q

∂Θ
≈

∂

∂Θ

1

M

M
∑

m=1

log P (S(m)|T,Θ) (20)

=
1

M

M
∑

m=1

N
∑

i=1

∂

∂Θ
log P (s

(m)
i |s

(m)
1 . . . s

(m)
i−1, T,Θ) (21)

whereP (s
(m)
i |s

(m)
1 . . . s

(m)
i−1, T,Θ) is defined in (5). The gradients are:

∂

∂α
log P (si|s1 . . . si−1, T,Θ) =

{

− 1
P

c w(ti,c)+α
if si in history

1
α
− 1

P

c w(ti,c)+α
if si new

(22)

∂

∂λ
log P (si|s1 . . . si−1, T,Θ)

=







∂
∂λ

w(ti,si)

w(ti,si)
−

P

c
∂

∂λ
w(ti,c)

P

c w(ti,c)+α
if si in history

−
P

c
∂

∂λ
w(ti,c)

P

c w(ti,c)+α
if si new

(23)
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where

w(t, c) =
∑

i:ti<t,si=c

k(t− ti) =
∑

e−λ(t−ti) (24)

∂

∂λ
w(t, c) =

∑

i:ti<t,si=c

−(t− ti)e
−λ(t−ti) (25)

We then take a gradient step in the M-step of the generalized EM algorithm to improve
the log likelihood.

5 Experiments

We create synthetic datasets which have explicit time dependency between instances,
and use them to illustrate the time sensitivity of tDPM models.

All synthetic datasets haven = 100 instances. We first create the time stamps of
each instances by sampling from a Poisson process. In particular, the interval between
two consecutive time stamps has an exponential distribution with mean1/γ = 1:

p(ti+1 − ti) = γe−γ(ti+1−ti) (26)

For the instancedi at timeti, its statesi is sampled from the conditional distribution
(5). We use an exponential function as the kernelk,

k(t) = e−0.5t, t ≥ 0 (27)

and the concentration parameterα is set to 0.2. This emulates the situation where new
clusters are created from time to time, and a cluster stays alive better if many preceding
instances are from the cluster.

If a new clusterc is created, we sample its multinomial distributionθc from the
base distributionG0. The base distributionG0 is a flat Dirichlet on a vocabulary of
size three:G0 ∼ Dir(1, 1, 1), so that all multinomials are equally likely. Finally docu-
ments are sampled from their corresponding multinomialθ, where all documents have
the same length|d|. We create two datasets with document length|d| equals 20 and
50 respectively, with everything else being the same. Giventhat the vocabulary size is
3, they correspond to somewhat hard (less words) and easy (more words) datasets re-
spectively. Figure 4 shows time vs. cluster plots of the two datasets. Notice documents
from the same cluster tend to group together in time, which fits our intuition on real
world problems like emails.

During evaluation, the input to various algorithms are the documentsdi and their
time stampsti, and the goal is to infer the clusteringsi. Notice the true number of
clusters is not given to the algorithms.

For the tDPM model, we assume we know the true base distributionG0 ∼ Dir(1, 1, 1),
concentration parameterα = 0.2, and the kernelk(t) = e−0.5t. We run the Gibbs sam-
pler with initial statess1 = . . . = sn = 1. Each MCMC iteration updatess1, . . . , sn

once, and thus consists ofn Gibbs steps. We ignore the burn-in period of the first 100
MCMC iterations, and then take out a sample ofs1, . . . , sn every 11 iterations. In this
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experiment we take out 109 samples altogether. We evaluate the performance of tDPM
by three measures:

1. Number of clusters discovered. Notice each samples1, . . . , sn is a clustering of
the data, and different samples may have different number ofclusters. In fact
Figure 5(a,b) shows the distribution of number of clusters in the 109 samples,
on the hard (|d| = 20) and easy (|d| = 50) synthetic datasets respectively. The
modes are at 12 and 15, very close to the true values of 12 and 14respectively.

2. Confusion matrix. One way to combine the samples with possibly different num-
ber of clusters is to compute then × n confusion matrixM , whereMij is the
probability thati, j are in same cluster. This can be easily estimated from the
109 samples by the frequency ofi, j in the same cluster. IdeallyM should be
similar to the ‘true confusion matrix’M∗, defined byM∗

ij = 1 if the true cluster
has labelsi = sj , and 0 otherwise. In Figure 5(c,d) we plot the true confusion
matricesM∗. Notice we sort the instances by their true cluster for better visu-
alization. In Figure 5(e,f) we plot the tDPM confusion matrices, using the same
order. They are reasonably similar.

3. Variation of Information. We compute the variation of information measure [3]
between the true clustering and each sample clustering. We list the mean and
standard deviation for the two synthetic datasets: (hard)0.9272± 0.1718, (easy)
0.1245± 0.0911.

We compare tDPM to a standard DPM model, by using a step function as the ker-
nel k. Again we assume we know the true base distributionG0 ∼ Dir(1, 1, 1), and
concentration parameterα = 0.2. The Gibbs sampling is done exactly the same as in
tDPM. We find that

1. Number of clusters discovered. Figure 6(a,b) shows the distribution of number
of clusters with DPM. DPM discovers fewer clusters than tDPM. The modes are
at 6(or 7) and 9 respectively, and the true values are 12 and 14.

2. Confusion matrix. In Figure 6(c,d) we plot the DPM confusion matrices. Notice
they are much less similar to the true matrices.

3. Variation of Information. With DPM we have (hard)1.8627 ± 0.1753, (easy)
0.6630 ± 0.1144. This means the sample clusterings are significantly farther
away from the true clustering, compared to tDPM.

To summarize, tDPM is better than the standard DPM model, when the instances
have a time dependency.

6 Discussions

The tDPM model is a way to take time into consideration. Notice it is different than
simply adding time as a new feature for cluster.
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The tDPM is not time reversible nor exchangeable in general.This is different from
the standard DPM. It is both a blessing and curse. It allows for the modeling of time,
but at the expense of computation.

There are many ways one can extend the tDPM model proposed here:

• The time kernelk can have different forms. For example, different clusters can
have different decay rateλ. More interestingly,k can even be periodic to model
repetitive emails like weekly meeting announcements.

• Currently the models for each cluster are stationary and do not evolve over time.
This can potentially be relaxed.

• One can have a generative model on time dependencies. For example one can as-
sume a Poisson process on cluster, and then a non-homogeneous Poisson process
on the documents within the cluster.
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Figure 4: Two synthetic datasets with|d| = 20 (left) and|d| = 50 (right) respectively.
Top row: Time stampsti vs. cluster IDsi; Middle row: the cluster multinomialsθc;
Bottom row: word counts for each documentdi.
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Figure 5: tDPM results on the hard (|d| = 20, left) and easy (|d| = 50, right) synthetic
datasets. (a, b) Number of clusters discovered in MCMC samples; (c, d) Confusion
matrix with true cluster labels; (e, f) Confusion matrix from tDPM MCMC samples.
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Figure 6: Standard DPM results on the hard (|d| = 20, left) and easy (|d| = 50, right)
synthetic datasets. (a, b) Number of clusters discovered inMCMC samples; (c, d)
Confusion matrix from DPM MCMC samples.
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