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Abstract

We introduce Time-Sensitive Dirichlet Process Mixture misdfor clustering. The
models allow infinite mixture components just like standandchlet process mixture

models. However they also have the ability to model timeedations between in-
stances.



1 Introduction

Traditional clustering algorithms make two assumptiotas #re often false in practice:
1. that the number of clusters is known; 2. that the data p@nt independent. We
propose a model that allows infinite number of clusters, duster members may have
certain dependency in time.

Consider emails received by a user over a period of time. &ppe want to
cluster the emails by topic thread. There are several wags this:

e We can sort emails by the ‘subject’ line. However it is urable and we want a
more flexible probabilistic model based on email content.

e We can model each thread with a multinomial distributionrabe vocabulary,
and treat each email as a ‘bag of words’. The whole email ciolie can be
modeled as a mixture of multinomial. The problem is that wendbknow the
number of threads (mixing components). Fixing the numbhbickvis a common
practice, seems arbitrary.

e We can model the collection as a Dirichlet process mixtureleh¢DPM) [1].
DPMs allow potentially infinite number of components. Ndredéss DPMs are
exchangeable. When applied to emails, this means that aédbkrnever die
down. This is undesirable because we want the emails froms a0 to have
less influence than those from this morning in predictingriévet email.

We therefore would like to introduce the concept of time iB®Ms, while keeping
the ability to model unlimited number of clusters. This isi@ved with the proposed
Time-Sensitive Dirichlet Process Mixture (tDPM) models.

2 ThetDPM Framework

Consider a sequence of inplivith time stamp: (dy,¢1), ..., (dn, t,), where the time
monotonically increases. For concreteness let us assumaéstare email documents,
each represented as a bag-of-word vector. d;e€ {1,2,...} be the true cluster
membership (email thread) df. Notice we do not set the number of clusters a priori.
There could potentially be an unlimited number of clustertha number of documents
n grows.

Without loss of generality we assume that each clusterepresented by a multi-
nomial distributiond; over the vocabulary. The probability for clustgto generate
documenti; is then

Pl = I ™" (1)
vevocabulary

Since past email threads can influence the current email,am¢ayto depend on

the historysy, ..., s;_1. We also want such dependency to vary with time: older emails
should have less influence. We introduceeght function w(¢, j) which summarizes
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Figure 1: (a) The time kernel with = 0.5. (b) The weight functions with data from
two clusters, marked as star or circle respectively.

the history at time. It gives the weight (or ‘influence’) of clustgrat timet, given the
history so farsy, ..., s; : t; <t,

w(t,j)= D k(t—t) (2)

{i|ti<t,si=j}

Note the weight function is the sum of some time kerlaeln the email example we
can use a kernel liké(t) = exp(—At) if ¢ > 0, andk(¢t) = 0if ¢ < 0. This kernel
stipulates that an email will boost the probability of thenggthread in later emails, but
the boost decreases exponentially as specified by the pemalnea=igure 1(a) shows
an example time kernel with = 0.5, while (b) shows two weight functions built upon
the kernel. In the example there are documents from clusatifne 0,2,6, and from
cluster 2 at time 3,4. Other forms of the time kernel are fuss$00.

We define the prior probability of assigning clusfdo d;, given the history,, ..., s;_1,
to be
P(Si:j|81,...,8i,1) (3)
= P(s; = jlw(t,)) (4)
sl if jis in history :
= J v
m if jis new ©)

whereq is a concentration parameter. We call this a time-sendliviehlet process
mixture (tDPM) model. Intuitively if there has been manyertemails from cluster
j, the new email will have a large probability also frgmin addition, there is always
a possibility that the new email is from a new cluster not sseefar.

tDPM is very similar to the standard Dirichlet process migtyDPM) models.
In fact, it can be shown that if the time kernielis a step function, then we recover
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Figure 2: The graphical model for Time-sensitive Dirictifebcess Mixture modelgl
is the feature (e.g. words of an email)s the time stamps is the cluster label, ana
is the sufficient statistic that summarizes the history.dedanodes are observed.

the standard DPMs. It is the decaying/obver time that allows us to include time
information in to the process. The graphical model repriediem of tDPM is given in
Figure 2.

3 Inference

Givend andt, we would like to infers. We use a Markov Chain Monte Carlo method.
Notice w is a deterministic function of and¢ and does not need to be sampled. As
shown later if we used conjugate priors, we do not need taallgtsamplef but can
analytically integrate it out. Therefore we only need to phm.

In Gibbs sampling, we need to samplefrom the distribution

P(s; = jls_i,dy,...,dn) o P(s; = jls_i)P(dild_i.s_,=j) (6)

whered_;.s _,—; is the set of documents in clustgr= j, excludingd;.
The priorP(s; = j|s—;) in (6) involves all nodes before and after

P(s; = jls—)
i—1 n
o (H P(sm|s1y-- -4 sm_1)> P(s;i=jls1,.-y8i-1) ( H P(smls1,---, sm_1)>
m=1 m=1i+1
x  P(si=jls1y.--y8i-1) < H P(smls1,.--, sm1)> (7)
m=i+1

Substituting in the definition (5), it is easy to show that demominators are the same
for different values ofj, and the only difference is in the numerator.



The likelihood ternp(d;|d_;.s_,—;) in (6) is domain-specific. For the email task,
a Dirichlet-multinomial [2] is the natural choice:

p(dild_ss =) = / P(dil0)p(O)d_ses—;)d0 ®)

wherep(6|d_;.s_,=;) is a posterior Dirichlet distribution. The posterior is ged
from a prior (base) Dirichlet distributio&, and the observed dada ;.; ,—;. Let the
Dirichlet prior Gy be parameterized bym, wherem is a vector over the vocabulary
andm sums to 1, and is the strength of the prior:

p(0lm) = 1;(6% o0 ©)

Treating the document collectiafL;.; ,—; as a single, large document, the Dirichlet
posterior after observing counfs for wordv in d_;.;_,—; is

v

p(Old_i.s_,—;) = p(0|f,Bm) = Mngfﬁﬁmuﬂ (10)

H F fv + 6mv v
And the Dirichlet-multinomial is
P(dild—i:s_,=5) = /p(di|0)p(9|d—i:s_,;:j)d0 (11)

L T(fo + 8my) T, di(v) + 22, fo + 5)

Putting everything together for (6), we can fix all otkemd sample fog;. A single
Gibbs sampling iteration consists of looping through 1...n and sample; in turn.
The algorithm is given in Figure 3. The time complexity($n?) for each iteration
of the Gibbs sampler. I& has limited support, the complexity redua@$én) but we
lose the ability to model long range correlations. Finally mun the Gibbs sampler for
many iterations to get the marginals en

Some readers may be disturbed by the apparent ‘double aguimiFigure 3 when
we assign:(c) = « to not only the brand new statgew, but also to states not i, }
butin {s-;}. We assure the readers that it is merely an artifact of nuimipeif we
were to renumber the states at each iteration, we can re(gvexactly.

4 Parameter Learning

The parameters of the model include the base Dirichletibdigton G, the concentra-
tion parametety, and the time kernel parametir We fix the base Dirichlet7,. For
the time being let us assume that all clusters share the samellparametek. The
free parameters a@ = {a, A}.

We learn the parameters by evidence maximization. Sincenodel is conditioned
on time, the evidence is defined as

P(D|T,0) = Zp D|S)P(S|T, ©) (13)



for positioni = 1 ton
/* C isthe candidate statesfor s;, */
/* where {s_; } isthe set of current states at positions other than i, */
/* and cnew ¢ {s_;} isanew state, represented by an arbitrary new number. */

C= {S,Z-} U {cnew}

* Compute the unnormalized probability p(s; = ¢|s_;) for all candidate ¢ */
forceC
/* evaluate candidate s; = ¢ */
S; — C
* Prior: the history part. {s.;} isthe set of states before position i */
if ¢ € {s<;} thenu(c) = w.(t;)
elseu(c) = «
[* Prior: the future part. */
forj=i+1ton
if s; € {s<;} thenu(c) = u(c) * ws, (t;)
elseu(c) = u(c) x a
end
* Likelihood. */
u(c) = u(c) * P(d;|d—i.s_,=c)
end

[* pick the state s; with probability proportional to u() */
s; ~u(C)
end

Figure 3: A single Gibbs sampling iteration for tDPM



whereD is the set of all document§; is the corresponding set of time stamps, &hd
is the set of cluster assignments. We want to find the besipessO* that maximize
the evidence:

o = argmgxP(D|T, O) (14)

= argmax ES: P(D|S)P(S|T,©) (15)

We find the parameters with a stochastic EM algorithm. ThsteluabelsS are
hidden variables. Le®, be the current parameters. We can sansplé . . . S(*) from
the posterior distributiolP(S|D, T, ©,), as detailed in section 3. In generalized EM
algorithm, we seek a new parametmhich increases the expected log likelihood of
the complete data

Q(©0,0) = Ep(sip,re,)llogP(S,D|T,0)] (16)
= Ep(sip,1,0,) [log P(D|S) +log P(S|T,0)] (17)

Noticelog P(D|S) does not depend am, A\. We approximate the expectation by sam-
ple average

Q(©0,0) = Const(0)+ Ep(s|p,r,0,) [log P(S|T,O)] (18)
M
1
~ L (m)
Const(©) + Mﬂ;mgp(s IT,0) (19)

And we find the gradients w.r.© for parameter update

0Q 91

LN —§ log P(S™)|T 2

90 00 M og P(S™|T. ©) (20)
1 ZZN 9 (m)| (m)  _(m)

= —m:1 — %logp(sl |Sl . '87;717T7@) (21)

whereP(s{™|s\™ ... s'™) T, ©)is defined in (5). The gradients are:

< _ﬁ if s; in history
a—logP(SﬂSl...Sl;l,T,@) — { l%ﬁ e 22)
i o > w(tio)ta i
o P(si|s1...si-1,T,0)
a)\ g i|S1.--8i—1, s
2ow(ts,si) . Aw(tie) o
= { "’;Z(:ti,sg) (_ )chﬂ@hc)m if s; in history )
c N W ti,c . 4
_m if s; new



where

w(t,c) = Dokt —t) =) e Mt (24)
it <t,s;=c

a%w(t,c) = ) —(t—ty)e N (25)
1:t; <t,s;=c

We then take a gradient step in the M-step of the generalikédl§orithm to improve
the log likelihood.

5 Experiments

We create synthetic datasets which have explicit time ddgrery between instances,
and use them to illustrate the time sensitivity of tDPM medel

All synthetic datasets hawe = 100 instances. We first create the time stamps of
each instances by sampling from a Poisson process. Inylariithe interval between
two consecutive time stamps has an exponential distributith meanl /v = 1:

p(ti+1 _ tq',) — 76*7(75#1*751‘) (26)

For the instance; at timet,, its states; is sampled from the conditional distribution
(5). We use an exponential function as the kefnel

E(t)=e 9%t >0 (27)

and the concentration parameteis set to 0.2. This emulates the situation where new
clusters are created from time to time, and a cluster staystatter if many preceding
instances are from the cluster.

If a new clusterc is created, we sample its multinomial distributi6nfrom the
base distributionGy. The base distributiolr is a flat Dirichlet on a vocabulary of
size threeGy ~ Dir(1,1, 1), so that all multinomials are equally likely. Finally docu-
ments are sampled from their corresponding multinomiathere all documents have
the same lengthd|. We create two datasets with document lengihequals 20 and
50 respectively, with everything else being the same. Giliahthe vocabulary size is
3, they correspond to somewhat hard (less words) and easy (noyds) datasets re-
spectively. Figure 4 shows time vs. cluster plots of the tatadets. Notice documents
from the same cluster tend to group together in time, whighditr intuition on real
world problems like emails.

During evaluation, the input to various algorithms are tbeutnentsd; and their
time stampg;, and the goal is to infer the clusterig. Notice the true number of
clusters is not given to the algorithms.

For the tDPM model, we assume we know the true base diswitbGl ~ Dir(1,1,1),
concentration parameter= 0.2, and the kernet(¢) = e~%-5. We run the Gibbs sam-
pler with initial statess; = ... = s,, = 1. Each MCMC iteration updates;, ..., s,
once, and thus consists ©fGibbs steps. We ignore the burn-in period of the first 100
MCMC iterations, and then take out a samplesgf. . ., s,, every 11 iterations. In this



experiment we take out 109 samples altogether. We evahajgtrformance of tDPM
by three measures:

1. Number of clusters discovered. Notice each sample. ., s,, is a clustering of
the data, and different samples may have different numbelusters. In fact
Figure 5(a,b) shows the distribution of number of clusterthe 109 samples,
on the hard|¢d| = 20) and easy|¢| = 50) synthetic datasets respectively. The
modes are at 12 and 15, very close to the true values of 12 arebpdctively.

2. Confusion matrix. One way to combine the samples withipbsdifferent num-
ber of clusters is to compute thex n confusion matrix}/, wherelM;; is the
probability thati, j are in same cluster. This can be easily estimated from the
109 samples by the frequency ©fj in the same cluster. Ideally/ should be
similar to the ‘true confusion matrix\/*, defined byM; = 1 if the true cluster
has labels; = s;, and 0 otherwise. In Figure 5(c,d) we plot the true confusion
matricesM*. Notice we sort the instances by their true cluster for befiwu-
alization. In Figure 5(e,f) we plot the tDPM confusion me#$, using the same
order. They are reasonably similar.

3. Variation of Information. We compute the variation ofaniation measure [3]
between the true clustering and each sample clustering.istViné mean and
standard deviation for the two synthetic datasets: (haf8®72 + 0.1718, (easy)
0.1245 £ 0.0911.

We compare tDPM to a standard DPM model, by using a step fumess the ker-
nel k. Again we assume we know the true base distributign~ Dir(1,1,1), and
concentration parameter= 0.2. The Gibbs sampling is done exactly the same as in
tDPM. We find that

1. Number of clusters discovered. Figure 6(a,b) shows theiloition of number
of clusters with DPM. DPM discovers fewer clusters than tDAKMe modes are
at 6(or 7) and 9 respectively, and the true values are 12 and 14

2. Confusion matrix. In Figure 6(c,d) we plot the DPM conéusimatrices. Notice
they are much less similar to the true matrices.

3. Variation of Information. With DPM we have (hard)8627 + 0.1753, (easy)
0.6630 + 0.1144. This means the sample clusterings are significantly farthe
away from the true clustering, compared to tDPM.

To summarize, tDPM is better than the standard DPM modelnwihe instances
have a time dependency.

6 Discussions

The tDPM model is a way to take time into consideration. Noitds different than
simply adding time as a new feature for cluster.



The tDPM is not time reversible nor exchangeable in gené&tas is different from
the standard DPM. It is both a blessing and curse. It allowshi® modeling of time,
but at the expense of computation.

There are many ways one can extend the tDPM model proposed her

e The time kernek can have different forms. For example, different clustens c
have different decay rate. More interestinglyk can even be periodic to model
repetitive emails like weekly meeting announcements.

e Currently the models for each cluster are stationary andotlevolve over time.
This can potentially be relaxed.

e One can have a generative model on time dependencies. Fopkxane can as-
sume a Poisson process on cluster, and then a non-homogdP@&sson process
on the documents within the cluster.
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Figure 4: Two synthetic datasets wid] = 20 (left) and|d| = 50 (right) respectively.
Top row: Time stamps; vs. cluster IDs;; Middle row: the cluster multinomiald,;
Bottom row: word counts for each documeht
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Figure 5: tDPM results on the harfli{ = 20, left) and easy|{| = 50, right) synthetic
datasets. (a, b) Number of clusters discovered in MCMC sasnft, d) Confusion
matrix with true cluster labels; (e, f) Confusion matrixfitdDPM MCMC samples.
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Figure 6: Standard DPM results on the hakdl & 20, left) and easy|| = 50, right)
synthetic datasets. (a, b) Number of clusters discoveredd@MC samples; (c, d)
Confusion matrix from DPM MCMC samples.
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