
Variational Learning for Swithing State-Spae ModelsZoubin GhahramaniGeo�rey E. HintonGatsby Computational Neurosiene UnitUniversity College London17 Queen SquareLondon WC1N 3AR, UKEmail: zoubin�gatsby.ul.a.ukSubmitted to Neural ComputationAbstratWe introdue a new statistial model for time series whih iteratively segments data into regimes withapproximately linear dynamis and learns the parameters of eah of these linear regimes. This modelombines and generalizes two of the most widely used stohasti time series models|hidden Markovmodels and linear dynamial systems|and is losely related to models that are widely used in the on-trol and eonometris literatures. It an also be derived by extending the mixture of experts neuralnetwork (Jaobs et al., 1991) to its fully dynamial version, in whih both expert and gating networksare reurrent. Inferring the posterior probabilities of the hidden states of this model is omputationallyintratable, and therefore the exat Expetation Maximization (EM) algorithm annot be applied. How-ever, we present a variational approximation that maximizes a lower bound on the log likelihood andmakes use of both the forward{bakward reursions for hidden Markov models and the Kalman �lterreursions for linear dynamial systems. We tested the algorithm both on arti�ial data sets and on anatural data set of respiration fore from a patient with sleep apnea. The results suggest that variationalapproximations are a viable method for inferene and learning in swithing state-spae models.1 IntrodutionMost ommonly used probabilisti models of time series are desendants of either hidden Markov models(HMM) or stohasti linear dynamial systems, also known as state-spae models (SSM). Hidden Markovmodels represent information about the past of a sequene through a single disrete random variable{thehidden state. The prior probability distribution of this state is derived from the previous hidden state using astohasti transition matrix. Knowing the state at any time makes the past, present and future observationsstatistially independent. This is the Markov independene property that gives the model its name.State-spae models represent information about the past through a real-valued hidden state vetor. Again,onditioned on this state vetor, the past, present, and future observations are statistially independent. Thedependeny between the present state vetor and the previous state vetor is spei�ed through the dynamiequations of the system and the noise model. When these equations are linear and the noise model isGaussian, the state-spae model is also known as a linear dynamial system or Kalman �lter model.Unfortunately, most real-world proesses annot be haraterized by either purely disrete or purelylinear{Gaussian dynamis. For example, an industrial plant may have multiple disrete modes of behavior,eah of whih has approximately linear dynamis. Similarly, the pixel intensities in an image of a translatingobjet vary aording to approximately linear dynamis for subpixel translations, but as the image movesover a larger range the dynamis hange signi�antly and nonlinearly.This paper addresses models of dynamial phenomena whih are haraterized by a ombination ofdisrete and ontinuous dynamis. We introdue a probabilisti model alled the swithing state-spae modelinspired by the divide-and-onquer priniple underlying the mixture of experts neural network (Jaobs et al.,1991). Swithing state-spae models are a natural generalization of hidden Markov models and state-spaemodels in whih the dynamis an transition in a disrete manner from one linear operating regime toanother. There is a large literature on models of this kind in eonometris, signal proessing, and other�elds (Harrison and Stevens, 1976; Chang and Athans, 1978; Hamilton, 1989; Shumway and Sto�er, 1991;1



Bar-Shalom and Li, 1993). Here we extend these models to allow for multiple real-valued state vetors,draw onnetions between these �elds and the relevant literature on neural omputation and probabilistigraphial models, and derive a learning algorithm for all the parameters of the model based on a struturedvariational approximation whih rigorously maximizes a lower bound on the log likelihood.The paper is organized as follows. In the following setion we review the bakground material on state-spae models, hidden Markov models, and hybrids of the two. In setion 3, we desribe the generativemodel|i.e. the probability distribution de�ned over the observation sequenes|for swithing state-spaemodels. In setion 4, we desribe the learning algorithm for swithing state-spae models whih is based ona strutured variational approximation to the EM algorithm. In setion 5 we present simulation results bothin an arti�ial domain, to assess the quality of the approximate inferene method, and in a natural domain.Finally, we onlude with setion 6.2 Bakground2.1 State-spae modelsA state-spae model de�nes a probability density over time series of real-valued observation vetors fYtg byassuming that the observations were generated from a sequene of hidden state vetors fXtg.1 In partiular,the state-spae model spei�es that given the hidden state vetor at one time step the observation vetorat that time step is statistially independent from all other observation vetors, and that the hidden statevetors obey the Markov independene property. The joint probability for the sequenes of states Xt andobservations Yt an therefore be fatored as:P (fXt; Ytg) = P (X1)P (Y1jX1) TYt=2P (XtjXt�1)P (YtjXt); (1)The onditional independenies spei�ed by equation (1) an be expressed graphially in the form of Figure 1.The simplest and most ommonly used models of this kind assume that the transition and output funtionsare linear and time-invariant and the distributions of the state and observation variables are multivariateGaussian. We will use the term state-spae model to refer to this simple form of the model. For suh models,the state transition funtion is Xt = AXt�1 + wt (2)where A is the state transition matrix and wt is zero-mean Gaussian noise in the dynamis, with ovarianematrix Q. P (X1) is assumed to be Gaussian. Equation (2) ensures that if P (Xt�1) is Gaussian, then so isP (Xt). The output funtion is Yt = CXt + vt (3)where C is the output matrix and vt is zero-mean Gaussian output noise with ovariane matrix R; P (YtjXt)is therefore also Gaussian:P (YtjXt) = (2�)�D=2jRj�1=2 exp��12 (Yt � CXt)0R�1 (Yt � CXt)� ; (4)where D is the dimensionality of the Y vetors.Often, the observation vetor an be divided into input (or preditor) variables and output (or response)variables. To model the input{output behavior of suh a system|i.e. the onditional probability of outputsequenes given input sequenes|the linear Gaussian SSM an be modi�ed to have a state-transition funtionXt = AXt�1 +BUt + wt; (5)where Ut is the input observation vetor and B is the (�xed) input matrix.21A table desribing the variables and the notation used throughout the paper is provided in Appendix A.2One an also de�ne the state suh that Xt+1 = AXt +BUt + wt.2
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YTFigure 1: A direted ayli graph (DAG) speifying onditional independene relations for a state-spaemodel. Eah node is onditionally independent from its non-desendents given its parents: The output Yt isonditionally independent from all other variables given the state Xt; and Xt is onditionally independentfrom X1; : : : ; Xt�2 given Xt�1. In this �gure and the following �gures, shaded nodes represent observedvariables and unshaded nodes represent hidden variables.The problem of inferene or state estimation for a state-spae model with known parameters onsists ofestimating the posterior probabilities of the hidden variables given a sequene of observed variables. Sinethe loal likelihood funtions for the observations are Gaussian and the priors for the hidden states areGaussian, the resulting posterior is also Gaussian. Three speial ases of the inferene problem are oftenonsidered: �ltering, smoothing, and predition (Anderson and Moore, 1979; Goodwin and Sin, 1984). Thegoal of �ltering is to ompute the probability of the urrent hidden state Xt given the sequene of inputsand outputs up to time t|P (XtjfY gt1; fUgt1).3 The reursive algorithm used to perform this omputation isknown as the Kalman �lter (Kalman and Buy, 1961). The goal of smoothing is to ompute the probabilityof Xt given the sequene of inputs and outputs up to time T , where T > t. The Kalman �lter is used in theforward diretion to ompute the probability of Xt given fY gt1 and fUgt1. A similar set of bakward reursionsfrom T to t omplete the omputation by aounting for the observations after time t (Rauh, 1963). We willrefer to the ombined forward and bakward reursions for smoothing as the Kalman smoothing reursions(also known as the RTS or Rauh-Tung-Streibel smoother). Finally, the goal of predition is to omputethe probability of future states and observations given observations upto time t. Given P (XtjfY gt1; fUgt1)omputed as before, the model is simulated in the forward diretion using equations (2) (or (5) if there areinputs) and (3) to ompute the probability density of the state or output at future time t+ � .The problem of learning the parameters of a state-spae model is known in engineering as the systemidenti�ation problem, and in its most general form assumes aess only to sequenes of input and outputobservations. We fous on maximum likelihood learning, in whih a single (loally optimal) value of theparameters is estimated, rather than Bayesian approahes whih treat the parameters as random variablesand ompute or approximate the posterior distribution of the parameters given the data. One an alsodistinguish between on-line and o�-line approahes to learning. On-line reursive algorithms, favored inreal-time adaptive ontrol appliations, an be obtained by omputing the gradient or the seond derivativesof the log likelihood (Ljung and S�oderstr�om, 1983). Similar gradient-based methods an be obtained for o�-line methods. An alternative method for o�-line learning makes use of the Expetation Maximization (EM)algorithm (Dempster et al., 1977). This proedure iterates between an E-step that �xes the urrent pa-rameters and omputes posterior probabilities over the hidden states given the observations, and an M-stepthat maximizes the expeted log likelihood of the parameters using the posterior distribution omputed inthe E-step. For linear Gaussian state-spae models, the E-step is exatly the Kalman smoothing problemas de�ned above, and the M-step simpli�es to a linear regression problem (Shumway and Sto�er, 1982;Digalakis et al., 1993). Details on the EM algorithm for state-spae models an be found in Ghahramaniand Hinton (1996b), as well as in the original Shumway and Sto�er (1982) paper.2.2 Hidden Markov modelsHidden Markov models also de�ne probability distributions over sequenes of observations fYtg. The distri-bution over sequenes is obtained by speifying a distribution over observations at eah time step t given adisrete hidden state St, and the probability of transitioning from one hidden state to another. Using theMarkov property, the joint probability for the sequenes of states St and observations Yt, an be fatored in3The notation fY gt1 is short-hand for the sequene Y1; : : : ; Yt.3



exatly the same manner as equation (1), with St taking the plae of Xt:P (fSt; Ytg) = P (S1)P (Y1jS1) TYt=2P (StjSt�1)P (YtjSt): (6)Similarly, the onditional independenies in an HMM an be expressed graphially in the same form asFigure 1. The state is represented by a single multinomial variable that an take one of K disrete values,St 2 f1; : : : ;Kg. The state transition probabilities, P (StjSt�1), are spei�ed by a K �K transition matrix.If the observables are disrete symbols taking on one of L values, the observation probabilities P (YtjSt)an be fully spei�ed as a K � L observation matrix. For a ontinuous observation vetor, P (YtjSt) an bemodeled in many di�erent forms, suh as a Gaussian, mixture of Gaussians, or a neural network. HMMshave been applied extensively to problems in speeh reognition (Juang and Rabiner, 1991), omputationalbiology (Baldi et al., 1994), and fault detetion (Smyth, 1994).Given an HMM with known parameters and a sequene of observations, two algorithms are ommonlyused to solve two di�erent forms of the inferene problem (Rabiner and Juang, 1986). The �rst omputesthe posterior probabilities of the hidden states using a reursive algorithm known as the forward{bakwardalgorithm. The omputations in the forward pass are exatly analogous to the Kalman �lter for SSMs,while the omputations in the bakward pass are analogous to the bakward pass of the Kalman smoothingequations. As noted by Bridle (personal ommuniation, 1985) and Smyth, Hekerman and Jordan (1997),the forward{bakward algorithm is a speial ase of exat inferene algorithms for more general graphialprobabilisti models (Lauritzen and Spiegelhalter, 1988; Pearl, 1988). The same observation holds true forthe Kalman smoothing reursions. The other inferene problem ommonly posed for HMMs is to ompute thesingle most likely sequene of hidden states. The solution to this problem is given by the Viterbi algorithm,whih also onsists of a forward and bakward pass through the model.To learn maximum likelihood parameters for an HMM given sequenes of observations, one an use thewell-known Baum-Welh algorithm (Baum et al., 1970). This algorithm is a speial ase of EM that uses theforward{bakward algorithm to infer the posterior probabilities of the hidden states in the E-step. The M-step uses expeted ounts of transitions and observations to re-estimate the transition and output matries(or linear regression equations in the ase where the observations are Gaussian distributed). Like state-spae models, HMMs an be augmented to allow for input variables, suh that they model the onditionaldistribution of sequenes of output observations given sequenes of inputs (Caiatore and Nowlan, 1994;Bengio and Frasoni, 1995; Meila and Jordan, 1996).2.3 HybridsA burgeoning literature on models whih ombine the disrete transition struture of HMMs with the lineardynamis of SSMs has developed in �elds ranging from eonometris to ontrol engineering, (Harrison andStevens, 1976; Chang and Athans, 1978; Hamilton, 1989; Shumway and Sto�er, 1991; Bar-Shalom and Li,1993; Deng, 1993; Kadirkamanathan and Kadirkamanathan, 1996; Chaer et al., 1997). These models areknown alternately as hybrid models, state-spae models with swithing, and jump-linear systems. We brieyreview some of this literature, inluding some related neural network models.4Shortly after Kalman and Buy solved the problem of state estimation for linear Gaussian state-spaemodels attention turned to the analogous problem for swithing models (Akerson and Fu, 1970). Changand Athans (1978) derive the equations for omputing the onditional mean and variane of the state whenthe parameters of a linear state-spae model swith aording to arbitrary and Markovian dynamis. Theprior and transition probabilities of the swithing proess are assumed to be known. They note that forM models (sets of parameters) and an observation length T , the exat onditional distribution of the stateis a Gaussian mixture with MT omponents. The onditional mean and variane, whih require far lessomputation, are therefore only summary statistis.Shumway and Sto�er (1991) onsider the problem of learning the parameters of state-spae modelswith a single real-valued hidden state vetor and swithing output matries. The probability of hoosing a4A review of how state-spae models and HMMs are related to simpler statistial models suh as PCA, fator analysis, mixtureof Gaussians, vetor quantization and independent omponents analysis (ICA) an be found in Roweis and Ghahramani (1999).4
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Figure 2: Direted ayli graphs speifying onditional independene relations for various swithing state-spae models. (a) Shumway and Sto�er (1991): the output matrix (C in equation (3)) swithes independentlybetween a �xed number of hoies at eah time step. Its setting is represented by the disrete hidden variableSt; (b) Bar-Shalom and Li (1993): both the output equation and the dynami equation an swith and theswithes are Markov; () Kim (1994); (d) Fraser and Dimitriadis (1993): outputs and states are observed.Here we have shown a simple ase where the output depends diretly on the urrent state, previous stateand previous output.partiular output matrix is a pre-spei�ed time-varying funtion, independent of previous hoies (Figure 2a).A pseudo-EM algorithm is derived in whih the E-step, whih in its exat form would require omputing aGaussian mixture with MT omponents, is approximated by a single Gaussian at eah time step.Bar-Shalom and Li (1993; setions 11.6) review models in whih both the state dynamis and the outputmatries swith, and where the swithing follows Markovian dynamis (Figure 2b). They present severaldi�erent methods for approximately solving the state-estimation problem in swithing models (they do notdisuss parameter estimation for suh models). These methods, whih are referred to as generalized pseudo-Bayesian (GPB) and interating multiple models (IMM), are all based on the idea of ollapsing into oneGaussian the mixture of M Gaussians whih results from onsidering all the settings of the swith stateat a given time step. This avoids the exponential growth of mixture omponents at the ost of providingan approximate solution. More sophistiated but omputationally expensive methods that ollapse M2Gaussians intoM Gaussians are also derived. Kim (1994) derives a similar approximation for a losely relatedmodel whih also inludes observed input variables (Figure 2). Furthermore, Kim disusses parameterestimation for this model, although without making referene to the EM algorithm. Other authors haveused Markov hain Monte Carlo methods for state and parameter estimation in swithing models (Carterand Kohn, 1994; Athaide, 1995) and in other related dynami probabilisti networks (Dean and Kanazawa,1989; Kanazawa et al., 1995).Hamilton (1989; 1994, setion 22.4) desribes a lass of swithing models in whih the real-valued obser-vation at time t, Yt, depends both on the observations at times t�1 to t�r and on the disrete states at timet to t� r. More preisely, Yt is Gaussian with mean that is a linear funtion of Yt�1; : : : ; Yt�r and of binaryindiator variables for the disrete states, St; : : : ; St�r. The system an therefore be seen as an (r + 1)thorder hidden Markov model driving an rth order auto-regressive proess, and are tratable for small r and5



number of disrete states in S.Hamilton's models are losely related to Hidden Filter HMM (HFHMM; Fraser and Dimitriadis 1993).HFHMMs have both disrete and real-valued states. However, the real-valued states are assumed to beeither observed or a known, deterministi funtion of the past observations (i.e. an embedding). The outputsdepend on the states and previous outputs, and the form of this dependene an swith randomly (Figure 2d).Beause at any time step the only hidden variable is the swith state, St, exat inferene in this model anbe arried out tratably. The resulting algorithm is a variant of the forward{bakward proedure for HMMs.Kehagias and Petridis (1997) and Pawelzik et al. (1996) present other variants of this model.Elliott et al. (1995; setion 12.5) present an inferene algorithm for hybrid (Markov swithing) systemsfor whih there is a separate observable from whih the swith state an be estimated. The true swith states,St, are represented as unit vetors in <M and the estimated swith state is a vetor in the unit square withelements orresponding to the estimated probability of being in eah swith state. The real-valued state,Xt, is approximated as a Gaussian given the estimated swith state by forming a linear ombination of thetransition and observation matries for the di�erent SSMs weighted by the estimated swith state. Eliott etal. also derive ontrol equations for suh hybrid systems and disuss appliations of the hange-of-measureswhitening proedure to a large family of models.With regard to the literature on neural omputation, the model presented in this paper is a generalizationboth of the mixture of experts neural network (Jaobs et al., 1991; Jordan and Jaobs, 1994) and the relatedmixture of fator analyzers (Hinton et al., 1996; Ghahramani and Hinton, 1996b). Previous dynamialgeneralizations of the mixture of experts arhiteture onsider the ase in whih the gating network hasMarkovian dynamis (Caiatore and Nowlan, 1994; Kadirkamanathan and Kadirkamanathan, 1996; Meilaand Jordan, 1996). One limitation of this generalization is that the entire past sequene is summarizedin the value of a single disrete variable (the gating ativation), whih for a system with M experts anonvey on average at most logM bits of information about the past. In the models we onsider in thispaper both the experts and the gating network have Markovian dynamis. The past is therefore summarizedby a state omposed of the ross-produt of the disrete variable and the ombined real-valued state-spaeof all the experts. This provides a muh wider information hannel from the past. One advantage of thisrepresentation is that the real-valued state an ontain omponential struture. Thus, attributes suh as theposition, orientation, and sale of an objet in an image, whih are most naturally enoded as independentreal-valued variables, an be aommodated in the state without the exponential growth required of adisretized HMM-like representation.It is important to plae the work in this paper in the ontext of the literature we have just reviewed.The hybrid models, state-spae with swithing and jump-linear systems we have desribed all assume thatthere is a single real-valued state vetor. The model onsidered in this paper generalizes this to multiplereal-valued state vetors.5 Unlike the models desribed in Hamilton (1994), Fraser and Dimitradis (1993)and the urrent dynamial extensions of mixtures of experts, in the model we present the real-valued statevetors are hidden. The inferene algorithm we derive, whih is based on making a strutured variationalapproximation, is entirely novel in the ontext of swithing state-spae models. Spei�ally, our method isunlike all the approximate methods we have reviewed in that it is not based on �tting a single Gaussian to amixture of Gaussians by omputing the mean and ovariane of the mixture.6 We derive a learning algorithmfor all of the parameters of the model, inluding the Markov swithing parameters. This algorithm maximizesa lower bound on the log likelihood of the data, rather than a heuristially motivated approximation to thelikelihood. The algorithm has a simple and intuitive avor: It deouples into forward-bakward reursionson a hidden Markov model, and Kalman smoothing reursions on eah state-spae model. The states of theHMM determine the soft assignment of eah observation to a state-spae model; the predition errors of thestate-spae models determine the observation probabilities for the HMM.5Note that the state vetors ould be onatenated into one large state vetor with fatorized (blok-diagonal) transitionmatries (f. fatorial hidden Markov model; Ghahramani and Jordan, 1997). However, this obsures the deoupled strutureof the model.6Both lasses of methods an be seen as minimizing Kullbak-Liebler (KL) divergenes. However, the KL divergene isasymmetrial, and whereas the variational methods minimize it in one diretion the methods that merge Gaussians minimizeit in the other diretion. We will return to this point in setion 4.2.6
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Figure 3: a) Graphial model representation for swithing state-spae models. St is the disrete swithvariable and X(m)t are the real-valued state vetors. b) Swithing state-spae model depited as a general-ization of the mixture of experts. The light arrows orrespond to the onnetions in a mixture of experts.In a swithing state-spae model, the states of the experts and of the gating network also depend on theirprevious states (dark arrows).3 The Generative ModelIn swithing state-spae models, the sequene of observations fYtg is modeled by speifying a probabilistirelation between the observations and a hidden state spae omprising M real-valued state vetors, X(m)t ,and one disrete state vetor St. The disrete state, St, is modeled as a multinomial variable that an takeon M values: St 2 f1; : : : ;Mg; for reasons that will beome obvious we refer to it as the swith variable.The joint probability of observations and hidden states an be fatored asP (fSt; X(1)t ; : : : ; X(M)t ; Ytg) = P (S1) TYt=2P (StjSt�1) � MYm=1P (X(m)1 ) TYt=2P (X(m)t jX(m)t�1 )� TYt=1P (YtjX(1)t ; : : : ; X(M)t ; St); (7)whih orresponds graphially to the onditional independenies represented by Figure 3. Conditioned on asetting of the swith state, St = m, the observable is multivariate Gaussian with output equation given bystate-spae model m. Notie that m is used as both an index for the real-valued state variables, and as avalue for the swith state. The probability of the observation vetor Yt is thereforeP (YtjX(1)t ; : : : ; X(M)t ; St = m) = (2�)�D2 jRj� 12 exp��12 �Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t �� (8)where D is the dimension of the observation vetor, R is the observation noise ovariane matrix, and C(m) isthe output matrix for state-spae model m (f. equation (4) for a single linear-Gaussian state-spae model).Eah real-valued state vetor evolves aording to the linear Gaussian dynamis of a state-spae model withdi�ering initial state, transition matrix, and state noise (equation (2)). For simpliity we will assume thatall state vetors have idential dimensionality; the generalization of the algorithms we present to modelswith di�erent size state-spaes is immediate. The swith state itself evolves aording to the disrete Markovtransition struture spei�ed by the initial state probabilities P (S1) and the M �M state transition matrixP (StjSt�1).An exat analogy an be made to the \mixture of experts" arhiteture for modular learning in neuralnetworks (�gure 3b; Jaobs et al, 1991). Eah state spae model is a linear expert with Gaussian output noisemodel and linear-Gaussian dynamis. The swith state \gates" the outputs of the M state-spae models,and therefore plays the role of a gating network with Markovian dynamis.There are many possible extensions of the model above and we shall onsider three obvious and straight-forward ones: 7



(Ex1) Di�ering output ovarianes, R(m), for eah state-spae model;(Ex2) Di�ering output means, �(m)Y , for eah state-spae model, suh that eah model is allowed toapture observations in a di�erent operating range;(Ex3) Conditioning on a sequene of observed input vetors, fUtg.4 LearningAn eÆient learning algorithm for the parameters of a swithing state-spae model an be derived by gen-eralizing the Expetation Maximization (EM) algorithm (Baum et al., 1970; Dempster et al., 1977). EMalternates between optimizing a distribution over the hidden states (the E-step) and optimizing the pa-rameters given the distribution over hidden states (the M-step). Any distribution over the hidden states,Q(fSt; Xtg), where Xt = [X(1)t ; : : :X(M)t ℄ is the ombined state of the state-spae models, an be used tode�ne a lower bound, B, on the log probability of the observed data:logP (fYtgj�) = logXfStg Z P (fSt; Xt; Ytgj�) dfXtg (9)= logXfStg Z Q(fSt; Xtg) �P (fSt; Xt; Ytgj�)Q(fSt; Xtg) � dfXtg (10)� XfStg Z Q(fSt; Xtg) log �P (fSt; Xt; Ytgj�)Q(fSt; Xtg) � dfXtg = B(Q; �); (11)where � denotes the parameters of the model and we have made use of Jensen's inequality (Cover andThomas, 1991) to establish (11). Both steps of EM inrease the lower bound on the log probability of theobserved data. The E-step holds the parameters �xed and sets Q to be the posterior distribution over thehidden states given the parameters, Q(fSt; Xtg) = P (fSt; XtgjfYtg; �): (12)This maximizes B with respet to the distribution, turning the lower bound into an equality, whih anbe easily seen by substitution. The M-step holds the distribution �xed and omputes the parameters thatmaximize B for that distribution. Sine B = logP (fYtgj�) at the start of the M-step, and sine the E-stepdoes not a�et logP , the two steps ombined an never derease logP . Given the hange in the parametersprodued by the M-step, the distribution produed by the previous E-step is typially no longer optimal, sothe whole proedure must be iterated.Unfortunately, the exat E-step for swithing state-spae models is intratable. Like the related hybridmodels desribed in setion 2.3, the posterior probability of the real-valued states is a Gaussian mixture withMT terms. This an be seen by using the semantis of direted graphs, in partiular the d-separation riterion(Pearl, 1988), whih implies that the hidden state variables in Figure 3, while marginally independent, beomeonditionally dependent given the observation sequene. This indued dependeny e�etively ouples all ofthe real-valued hidden state variables to the disrete swith variable, as a onsequene of whih the exatposteriors beome Gaussian mixtures with an exponential number of terms.7In order to derive an eÆient learning algorithm for this system, we relax the EM algorithm by ap-proximating the posterior probability of the hidden states. The basi idea is that, sine expetations withrespet to P are intratable, rather than setting Q(fSt; Xtg) = P (fSt; XtgjfYtg) in the E-step, a tratabledistribution Q is used to approximate P . This results in an EM learning algorithm whih maximizes a lowerbound on the log likelihood. The di�erene between the bound B and the log likelihood is given by theKullbak-Liebler (KL) divergene between Q and P (Cover and Thomas, 1991):KL(QkP ) = XfStg Z Q(fSt; Xtg) log � Q(fSt; Xtg)P (fSt; XtgjfYtg)� dfXtg: (13)7The intratability of the E-step or smoothing problem in the simpler single-state swithing model has been noted byAkerson and Fu (1970), Chang and Athans (1978), Bar-Shalom and Li (1993), and others .8



Sine the omplexity of exat inferene in the approximation given by Q is determined by its onditionalindependene relations, not by its parameters, we an hoose Q to have a tratable struture|a graphialrepresentation whih eliminates some of the dependenies in P . Given this struture, the parameters of Qare varied to obtain the tightest possible bound by minimizing (13). Therefore, the algorithm alternatesbetween optimizing the parameters of the distribution Q to minimize (13) (the E-step) and optimizing theparameters of P given the distribution over the hidden states (the M-step). Like in exat EM, both stepsinrease the lower bound B on the log likelihood, however equality is not reahed in the E-step.We will refer to the general strategy of using a parameterized approximating distribution as a variationalapproximation and refer to the free parameters of the distribution as variational parameters. A ompletelyfatorized approximation is often used in statistial physis, where it provides the basis for simple yetpowerful mean �eld approximations to statistial mehanial systems (Parisi, 1988). Theoretial argumentsmotivating approximate E-steps are presented in Neal and Hinton (1998; originally in a tehnial reportin 1993). Saul and Jordan (1996) showed that approximate E-steps ould be used to maximize a lowerbound on the log likelihood, and proposed the powerful tehnique of strutured variational approximationsto intratable probabilisti networks. The key insight of Saul and Jordan's work, whih the present papermakes use of, is that by judiious use of an approximation Q, exat inferene algorithms an be used on thetratable substrutures in an intratable network. A general tutorial on variational approximations an befound in Jordan et al. (1998).The parameters of the swithing state-spae model are � = fA(m), C(m); Q(m); �(m)X1 ; Q(m)1 ; R;�; �g,where A(m) is the state dynamis matrix for model m, C(m) is its output matrix, Q(m) is its state noiseovariane, �(m)X1 is the mean of the initial state, Q(m)1 is the ovariane of the initial state, R is the (tied)output noise ovariane, � = P (S1) is the prior for the disrete Markov proess, and � = P (StjSt�1) is thedisrete transition matrix. Extensions (Ex1){(Ex3) an be readily implemented by substituting R(m) for R,adding means �(m)Y and input matries B(m).While there are many possible approximations to the posterior distribution of the hidden variables thatone ould use for learning and inferene in swithing state-spae models, we fous on the following:Q(fSt; Xtg) = 1ZQ " (S1) TYt=2 (St�1; St)# MYm=1 (X(m)1 ) TYt=2 (X(m)t�1 ; X(m)t ); (14)where the  are unnormalized probabilities, whih we will all potential funtions and de�ne soon, and ZQis a normalization onstant ensuring that Q integrates to one. Although Q has been written in terms ofpotential funtions rather than onditional probabilities, it orresponds to the simple graphial model shownin Figure 4. The terms involving the swith variables St de�ne a disrete Markov hain and the termsinvolving the state vetors X(m)t de�ne M unoupled state-spae models. Like in mean �eld approximationswe have approximated the stohastially oupled system by removing some of the ouplings of the originalsystem. Spei�ally, we have removed the stohasti oupling between the hains that results from the fatthat the observation at time t depends on all the hidden variables at time t. However, we retain the ouplingbetween the hidden variables at suessive time steps sine these ouplings an be handled exatly using theforward{bakward and Kalman smoothing reursions. This approximation is therefore strutured, in thesense that not all variables are unoupled.The disrete swithing proess is de�ned by (S1 = m) = P (S1 = m) q(m)1 (15) (St�1; St = m) = P (St = mjSt�1) q(m)t ; (16)where the q(m)t are variational parameters of the Q distribution. These parameters sale the probabilities ofeah of the states of the swith variable at eah time step, so that q(m)t plays exatly the same role as theobservation probability P (YtjSt = m) would play in a regular hidden Markov model. We will soon see thatminimizing KL(QkP ) results in an equation for q(m)t whih supports this intuition.The unoupled state-spae models in the approximation Q are also de�ned by potential funtions whihare related to probabilities in the original system. These potentials are the prior and transition probabilities9
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Figure 4: Graphial model representation for the strutured variational approximation to the posteriordistribution of the hidden states of a swithing state-spae model.for X(m) multiplied by a fator that hanges these potentials to try to aount for the data: (X(m)1 ) = P (X(m)1 ) hP (Y1jX(m)1 ; S1 = m)ih(m)1 (17) (X(m)t�1 ; X(m)t ) = P (X(m)t jX(m)t�1 ) hP (YtjX(m)t ; St = m)ih(m)t (18)where the h(m)t are variational parameters of Q. The vetor ht plays a role very similar to the swith variableSt. Eah omponent h(m)t an range between 0 and 1. When h(m)t = 0 the posterior probability of X(m)t underQ does not depend on the observation at time Yt. When h(m)t = 1, the posterior probability of X(m)t underQ inludes a term whih assumes that state-spae model m generated Yt. We all h(m)t the responsibilityassigned to state-spae model m for the observation vetor Yt. The di�erene between h(m)t and S(m)t is thath(m)t is a deterministi parameter, while S(m)t is a stohasti random variable.To maximize the lower bound on the log likelihood, KL(QkP ) is minimized with respet to the variationalparameters h(m)t and q(m)t separately for eah sequene of observations. Using the de�nition of P for theswithing state-spae model (equation (7) and (8)) and the approximating distribution Q, the minimum ofKL satis�es the following �xed point equations for the variational parameters (see Appendix B):h(m)t = Q(St = m) (19)q(m)t = exp��12 ��Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t ��� (20)where h�i denotes expetation over the Q distribution. Intuitively, the responsibility, h(m)t is equal to theprobability under Q that state-spae model m generated observation vetor Yt, and q(m)t is an unnormalizedGaussian funtion of the expeted squared error if state-spae model m generated Yt.To ompute h(m)t it is neessary to sum Q over all the S� variables not inluding St. This an be doneeÆiently using the forward{bakward algorithm on the swith state variables, with q(m)t playing exatlythe same role as an observation probability assoiated with eah setting of the swith variable. Sine q(m)t isrelated to the predition error of model m on data Yt, this has the intuitive interpretation that the swithstate assoiated with models with smaller expeted predition error on a partiular observation will befavored at that time step. However, the forward{bakward algorithm ensures that the �nal responsibilitiesfor the models are obtained after onsidering the entire sequene of observations.To ompute q(m)t it is neessary to alulate the expetations of X(m)t and X(m)t X(m)t 0 under Q. We seethis by expanding equation (20):q(m)t = exp��12Y 0tR�1Yt + Y 0tR�1C(m) hX(m)t i � 12 tr hC(m)0R�1C(m) hX(m)t X(m)t 0ii� ; (21)10



Initialize parameters of the model.Repeat until bound on log likelihood has onverged:E step Repeat until onvergene of KL(QkP ):E.1 Compute q(m)t from the predition error of state-spae model m onobservation YtE.2 Compute h(m)t using the forward-bakward algorithm on the HMM, withobservation probabilities q(m)tE.3 For m = 1 to MRun Kalman smoothing reursions, using the data weighted by h(m)tM stepM.1 Re-estimate parameters for eah state-spae model using the dataweighted by h(m)tM.2 Re-estimate parameters for the swithing proess using Baum-Welhupdate equations.Figure 5: Learning algorithm for swithing state-spae models.where tr is the matrix trae operator and we have used tr(AB) = tr(BA). The expetations of X(m)t andX(m)t X(m)t 0 an be omputed eÆiently using the Kalman smoothing algorithm on eah state-spae model,where for modelm at time t, the data is weighted by the responsibilities h(m)t .8 Sine the h parameters dependon the q parameters, and vie-versa, the whole proess has to be iterated, where eah iteration involves allsto the forward{bakward and Kalman smoothing algorithms. One the iterations have onverged, the E-stepoutputs the expeted values of the hidden variables under the �nal Q.The M-step omputes the model parameters that optimize the expetation of the log likelihood (equa-tion (34) in Appendix B), whih is a funtion of the expetations of the hidden variables. For swithingSSMs, all the parameter re-estimates an be omputed analytially. For example, taking derivatives of theexpetation of (34) with respet to C(m) and setting to zero we getĈ(m) =  TXt=1hS(m)t i YthX(m)t 0i! TXt=1hS(m)t i hX(m)t X(m)0t i!�1 (22)whih is a weighted version of the re-estimation equations for SSMs. Similarly, the re-estimation equationsfor the swith proess are analogous to the Baum-Welh update rules for HMMs. The learning algorithmfor swithing state-spae models using the above strutured variational approximation is summarized inFigure 5.4.1 Deterministi AnnealingThe KL divergene minimized in the E step of the variational EM algorithm an have multiple minimain general. One way to visualize these minima is to onsider the spae of all possible segmentations ofan observation sequene of length T , where by segmentation we mean a disrete partition of the sequenebetween the state spae models. If there are M SSMs, then there are MT possible segmentations of the8Weighting the data by h(m)t is equivalent to running the Kalman smoother on the unweighted data using a time-varyingobservation noise ovariane matrix R(m)t = R=h(m)t . 11



sequene. Given one suh segmentation, inferring the optimal distribution for the real-valued states of theSSMs is a onvex optimization problem, sine these real-valued states are onditionally Gaussian. So thediÆulty in the KL minimization lies in trying to �nd the best (soft) partition of the data.Like in other ombinatorial optimization problems, the possibility of getting trapped in loal minima anbe redued by gradually annealing the ost funtion. We an employ a deterministi variant of the annealingidea by making the following simple modi�ations to the variational �xed point equations (19) and (20):h(m)t = 1T Q(St = m) (23)q(m)t = exp�� 12T ��Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t ��� : (24)Here T is a temperature parameter, whih is initialized to a large value and gradually redued to 1. The aboveequations maximize a modi�ed form of the bound B in (11), where the entropy of Q has been multiplied byT (Ueda and Nakano, 1995).4.2 Merging GaussiansAlmost all the approximate inferene methods that are desribed in the literature for swithing state-spaemodels are based on the idea of merging, at eah time step, a mixture ofM Gaussians into one Gaussian. Themerged Gaussian is obtained simply by setting its mean and ovariane equal to the mean and ovariane ofthe mixture. Here we briey desribe, as an alternative to the variational approximation methods we havederived, how this more traditional Gaussian merging proedure an be applied to the model we have de�ned.In the swithing state-spae models desribed in setion 3 there are M di�erent SSMs, with possiblydi�erent state-spae dimensionalities, so it would be inappropriate to merge their states into one Gaussian.However, it is still possibly to apply a Gaussian merging tehnique by onsidering eah SSM separately. Ineah SSM, m, the hidden state density produes at eah time step a mixture of two Gaussians|one forthe ase St = m and one for St 6= m. We merge these two Gaussians, weighted the urrent estimates ofP (St = mjY1; : : : Yt) and 1� P (St = mjY1; : : : Yt), respetively. This merged Gaussian is used to obtain theGaussian prior for X(m)t+1 for the next time step. We implemented a forward-pass version of this approximateinferene sheme, whih is analogous to the IMM proedure desribed in Bar-Shalom and Li (1993).This proedure �nds at eah time step the \best" Gaussian �t to the urrent mixture of Gaussiansfor eah SSM. If we denote the approximating Gaussian by Q and the mixture being approximated by P ,\best" is de�ned here as minimizing KL(PkQ). Furthermore, Gaussian merging tehniques are greedy inthat the \best" Gaussian is omputed at every time step and used immediately for the next time step. For aGaussian Q, KL(PkQ) has no loal minima, and it is very easy to �nd the optimal Q by omputing the �rsttwo moments of P . Inauraies in this greedy proedure arise beause the estimates of P (StjY1; : : : ; Yt) arebased on this single merged Gaussian and not on the real mixture.In ontrast, variational methods seek to minimize KL(QkP ), whih an have many loal minima. More-over, these methods are not greedy in the same sense: they iterate forward and bakward in time untilobtaining a loally optimal Q.5 Simulations5.1 Experiment 1: Variational Segmentation and Deterministi AnnealingThe goal of this experiment was to assess the quality of solutions found by the variational inferene algorithm,and the e�et of using deterministi annealing on these solutions. We generated 200 sequenes of length 200from a simple model whih swithed between two SSMs. These SSMs and the swithing proess were de�nedby: X(1)t = 0:99 X(1)t�1 + w(1)t w(1)t � N (0; 1) (25)X(2)t = 0:9 X(2)t�1 + w(2)t w(2)t � N (0; 10) (26)Yt = X(m)t + vt vt � N (0; 0:1) (27)12



Figure 6: Five data sequenes of length 200, with their true segmentations below them. In the segmentations,swith states 1 and 2 are represented with dark and light dots, respetively. Notie that it is diÆult toorretly segment the sequenes based only on knowing the dynamis of the two proesses.where the swith state m was hosen using priors �(1) = �(2) = 1=2 and transition probabilities �11 = �22 =0:95; �12 = �21 = 0:05. Five sequenes from this data set are shown in in Figure 6, along with the truestate of the swith variable.We ompared three di�erent inferene algorithms: variational inferene, variational inferene with de-terministi annealing (setion 4.1), and inferene by Gaussian merging (setion 4.2). For eah sequene, weinitialized the variational inferene algorithms with equal responsibilities for the two SSMs and ran them for12 iterations. The non-annealed inferene algorithm ran at a �xed temperature of T = 1; while the annealedalgorithm was initialized to a temperature of T = 100 whih deayed down to 1 over the 12 iterations, usingthe deay funtion Ti+1 = 12Ti + 12 . To eliminate the e�et of model inauraies we gave all three inferenealgorithms the true parameters of the generative model.The segmentations found by the non-annealed variational inferene algorithm showed little similarity tothe true segmentations of the data (Figure 7). Furthermore, the non-annealed algorithm generally underes-timated the number of swithes, often onverging on solutions with no swithes at all. Both the annealedvariational algorithm and the Gaussian merging method found segmentations that were more similar to thetrue segmentations of the data. Comparing perent orret segmentations, we see that annealing substan-tially improves the variational inferene method, and that the Gaussian merging and annealed variationalmethods perform omparably (Figure 8). The average performane of the annealed variational method isonly about 1.3% better than Gaussian merging.5.2 Experiment 2: Modelling respiration in a patient with sleep apneaSwithing state-spae models should prove useful in modelling time series whih have dynamis haraterizedby several di�erent regimes. To illustrate this point we examined a physiologial data set from a patienttentatively diagnosed with sleep apnea, whih is a medial ondition in whih patients intermittently stopbreathing during sleep. The data was obtained from the repository of time series data sets assoiated withSanta Fe Time Series Analysis and Predition Competition (Weigend and Gershenfeld, 1993) and is desribed
13
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Figure 7: For ten di�erent sequenes of length 200, segmentations are shown as sequenes of light and darkdots orresponding to the two SSMs generating this data. The rows are the segmentations found usingthe variational method with no annealing (N), the variational method with deterministi annealing (A), theGaussian merging method (M), and the true segmentation (T). All three inferene algorithms give real-valuedh(m)t ; hard segmentations were obtained by thresholding the �nal h(m)t values at 0.5. The �rst �ve sequenesare the ones shown in Figure 6.in detail in Rigney et al. (1993).9 The respiration pattern in sleep apnea is haraterized by at least tworegimes|no breathing and gasping breathing indued by a reex arousal. Furthermore, in this patient therealso seem to be periods of normal rhythmi breathing (Figure 9).We trained swithing state-spae models, varying the random seed, the number of omponents in themixture (M = 2 to 5), and the dimensionality of the state spae in eah omponent (K = 1 to 10), on a dataset onsisting of 1000 onseutive measurements of the hest volume. As ontrols we also trained simplestate-spae models (i.e. M = 1) varying the dimension of the state-spae from K = 1 to 10, and simplehidden Markov models (i.e. K = 0) varying the number of disrete hidden states from M = 2 to M = 50.Simulations were run until onvergene or for 200 iterations, whihever ame �rst; onvergene was assessedby measuring the hange in likelihood (or bound on the likelihood) over onseutive steps of EM.The likelihood of the simple SSMs and the HMMs was alulated on a test set onsisting of 1000 onseu-9The data is available on the web at http://www.s.olorado.edu/ �andreas/ Time-Series/ SantaFe.html#setB. We usedsamples 6201{7200 for training and 5201-6200 for testing. 14
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Figure 9: Chest volume (respiration fore) of a patient with sleep apnea during two non-ontinuous timesegments of the same night (measurements sampled at 2 Hz). (a) Training data. Apnea is haraterizedby extended periods of small variability in hest volume, followed by bursts (gasping). Here we see suhbehaviour around t = 250, followed by normal rhythmi breathing. (b) Test data. In this segment we �ndseveral instanes of apnea and an approximately rhythmi region. (The thik lines at the bottom of eahplot are explained in the main text.)
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Figure 10: Log likelihood (nats per observation) on the test data from a total of almost 400 runs of simplestate-spae models, swithing state-spae models with di�ering numbers of omponents, and hidden Markovmodels.
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Figure 11: Learning urves for a state spae model (K = 4) and a swithing state-spae model (M = 2;K =2).tive measurements of the hest volume. For the swithing SSMs the likelihood is intratable so we alulatedthe lower bound on the likelihood, B. The simple SSMs modeled the data very poorly for K = 1, and theperformane was at for values of K = 2 to 10 (Figure 10a). The large majority of runs of the swithingstate-spae model resulted in models with higher likelihood than those of the simple SMMs (Figure 10b-e).One onsistent exeption should be noted: for values of M = 2 and K = 6 to 10, the swithing SSM per-formed almost identially to the simple SSM. Exploratory experiments suggest that in these ases a singleomponent takes responsibility for all the data, so the model has M = 1 e�etively. This may be a loalminimum problem or a result of poor initialization heuristis. Looking at the learning urves for simple andswithing state spae models it is easy to see that there are plateaus at the solutions found by the simpleone-omponent SSMs whih the swithing SSM an get aught in (Figure 11).The likelihoods for hidden Markov models with around M = 15 were omparable to those of the bestswithing state-spae models (Figure 10f). So purely in terms of oding eÆieny, swithing SSMs have littleadvantage over HMMs on this data.However, it is useful to ontrast the solutions learned by HMMs with the solutions learned by theswithing SSMs. The thik dots at the bottom of the Figures 9a and b show the responsibility assigned toone of two omponents in a fairly typial swithing SSM with M = 2 omponents of state size K = 2. Thisomponent has learly speialized to modeling the data during periods of apnea, while the other omponentmodels the gasps and periods of rhythmi breathing. These two swithing omponents provide a muh moreintuitive model of the data than the 10-20 disrete omponents needed in an HMM with omparable odingeÆieny.106 DisussionThe main onlusion we an draw from the �rst series of experiments is that even when given the orretmodel parameters, the problem of segmenting a swithing time series into its omponents is diÆult. Thereare ombinatorially many alternatives to be onsidered, and the energy surfae su�ers from many loalminima, so loal optimization approahes like the variational method we used are limited by the quality ofthe initial onditions. Deterministi annealing an be thought of as a sophistiated initialization proedurefor the hidden states: the �nal solution at eah temperature provides the initial onditions at the next. Wefound that annealing substatially improved the quality of the segmentations found.The �rst experiment also indiates that the muh simpler Gaussian merging method performs omparablyto annealed variational inferene. The Gaussian merging methods have the advantage that at eah time stepthe ost funtion minimized has no loal minima. This may aount for how well they perform relativeto the non-annealed variational method. On the other hand, the variational methods have the advantage10By using further assumptions to onstrain the model, suh as ontinuity of the real-valued hidden state at swith times, itshould be possible to obtain even better performane on this data.18



that they iteratively improve their approximation to the posterior, and they de�ne a lower bound on thelikelihood. Our results suggest that it may be very fruitful to use the Gaussian merging method to initializethe variational inferene proedure. Furthermore, it is possible to derive variational approximations forother swithing models desribed in the literature, and a ombination of Gaussian merging and variationalapproximation may provide a fast and robust method for learning and inferene in those models.The seond series of experiments suggests that on a real data set believed to have swithing dynamis,the swithing state-spae model an indeed unover multiple regimes. When it aptures these regimes, itgeneralizes to the test set muh better than the simple linear dynamial model. Similar oding eÆieny anbe obtained by using hidden Markov models, whih due to the disrete nature of the state spae an modelnonlinear dynamis. However, in doing so, the hidden Markov models had to use 10-20 disrete states, whihmakes their solutions less interpretable.Variational approximations provide a very powerful tool for inferene and learning in omplex probabilistimodels. We have seen that when applied to the swithing state-spae model they an inorporate withina single framework well-known exat inferene methods like Kalman smoothing and the forward-bakwardalgorithm. Variational methods an be applied to many of the other lasses of intratable swithing modelsdesribed in setion 2.3. However, training more omplex models also makes apparent the importane ofgood methods for model seletion and initialization.To summarize, swithing state-spae models are a dynamial generalization of mixture of experts neuralnetworks, are losely related to well-known models in eonometris and ontrol, and ombine the representa-tions underlying hidden Markov models and linear dynamial systems. For domains in whih we have somea priori belief that there are multiple, approximately linear dynamial regimes, swithing state spae modelsprovide a natural modeling tool. Variational approximations provide a method to overome the single mostdiÆult problem in learning swithing SSMs, whih is that the inferene step is intratable. Deterministiannealing further improves on the solutions found by the variational method.
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A NotationSymbol Size DesriptionvariablesYt D � 1 observation vetor at time tfYtg D � T sequene of observation vetors [Y1; Y2; : : : YT ℄X(m)t K � 1 state vetor of state-spae model (SSM) m at time tXt KM � 1 entire real-valued hidden state at time t: Xt = [X(1)t ; : : : ; X(M)t ℄St M � 1 swith state variable (represented either as disrete variable takingon values in f1; : : :Mg, or as an M � 1 vetor St = [S(1)t ; : : : S(M)t ℄0where S(m)t 2 f0; 1g)model parametersA(m) K �K state dynamis matrix for SSM mC(m) D �K output matrix for SSM mQ(m) K �K state noise ovariane matrix for SSM m�(m)X1 K � 1 initial state mean for SSM mQ(m)1 K �K initial state noise ovariane matrix for SSM mR D �D output noise ovariane matrix� M � 1 initial state probabilities for swith state� M �M state transition matrix for swith statevariational parametersh(m)t 1� 1 responsibility of SSM m for Ytq(m)t 1� 1 related to expeted squared error if SSM m generated YtmisellaneousX 0 matrix transpose of XjX j matrix determinant of XhXi expeted value of X under the Q distributiondimensionsD size of observation vetorT length of a sequene of observation vetorsM number of state-spae modelsK size of state vetor in eah state-spae model
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B Derivation of the variational �xed-point equationsIn this appendix we derive the variational �xed-point equations used in the learning algorithm for swith-ing state spae models. The plan is the following. First we write out the probability density P de�nedby a swithing state spae model. For onveniene we will express this probability density in the log do-main, through its assoiated energy funtion or hamiltonian, H . The probability density is related to thehamiltonian through the usual Boltzmann distribution (at a temperature of 1),P (�) = 1Z expf�H(�)g;where Z is a normalization onstant required suh that P (�) integrates to unity. Expressing the probabilitiesin the log domain does not a�et the resulting algorithm. We then similarly express the approximatingdistribution Q through its hamiltonianHQ. Finally, we obtain the variational �xed point equations by settingto zero the derivatives of the KL divergene between Q and P with respet to the variational parameters ofQ. The joint probability of observations and hidden states in a swithing state-spae model is (equation (7))P (fSt; Xt; Ytg) = "P (S1) TYt=2P (StjSt�1)# MYm=1"P (X(m)1 ) TYt=2P (X(m)t jX(m)t�1 )# TYt=1P (YtjXt; St): (28)We proeed to disset this expression into its onstituent parts. The initial probability of the swith variableat time t = 1 is given by P (S1) = MYm=1(�(m))S(m)1 ; (29)where S1 is represented by an M � 1 vetor [S(1)1 : : : S(M)1 ℄ where S(m)1 = 1 if the swith state is in state m,and 0 otherwise. The probability of transitioning from a swith state at time t� 1 to a swith state at timet is given by P (StjSt�1) = MYm=1 MYn=1(�(m;n))S(m)t S(n)t�1 : (30)The initial distribution for the hidden state variable in state-spae model m is Gaussian with mean �(m)X1 andovariane matrix Q(m)1 :P (X(m)1 ) = (2�)�K=2jQ(m)1 j�1=2 exp��12 �X1 � �(m)X1 �0 (Q(m)1 )�1 �X1 � �(m)X1 �� : (31)The probability distribution of the state in state-spae model m at time t given the state at time t � 1 isGaussian with mean A(m)X(m)t�1 and ovariane matrix Q(m):P (X(m)t jX(m)t�1 ) = (2�)�K=2jQ(m)j�1=2 exp��12 �X(m)t �A(m)X(m)t�1�0 (Q(m))�1 �X(m)t �A(m)X(m)t�1�� :(32)Finally, using (8) we an write:P (YtjXt; St) = MYm=1 �(2�)�D=2jRj�1=2 exp��12 �Yt � C(m)X(m)t �0 R�1 �Yt � C(m)X(m)t ���S(m)t (33)sine the terms with exponent equal to 0 vanish in the produt.Combining (28)-(33) and taking the negative of the logarithm, we obtain the hamiltonian of a swithingstate-spae model (ignoring onstants):H = 12 MXm=1 log jQ(m)1 j+ 12 MXm=1�X(m)1 � �(m)X1 �0 (Q(m)1 )�1 �X(m)1 � �(m)X1 �21



+ (T � 1)2 MXm=1 log jQ(m)j+ 12 MXm=1 TXt=2 �X(m)t �A(m)X(m)t�1�0 (Q(m))�1 �X(m)t �A(m)X(m)t�1�+ T2 log jRj+ 12 MXm=1 TXt=1 S(m)t �Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t �� MXm=1S(m)1 log�(m) � TXt=2 MXm=1 MXn=1S(m)t S(n)t�1 log�(m;n): (34)The hamiltonian for the approximating distribution an be analogously derived from the de�nition of Q(equation (14)):Q(fSt; Xtg) = 1ZQ " (S1) TYt=2 (St�1; St)# MYm=1 (X(m)1 ) TYt=2 (X(m)t�1 ; X(m)t ): (35)The potentials for the initial swith state and swith state transitions are (S1) = MYm=1(�(m)q(m)1 )S(m)1 (36) (St�1; St) = MYm=1 MYn=1��(m;n)q(m)t �S(m)t S(n)t�1 (37)The potential for the initial state of state-spae model m is (X(m)1 ) = P (X(m)1 ) hP (Y1jX(m)1 ; S1 = m)ih(m)1 (38)and the potential for the state at time t given the state at time t� 1 is (X(m)t�1 ; X(m)t ) = P (X(m)t jX(m)t�1 ) hP (YtjX(m)t ; St = m)ih(m)t : (39)The hamiltonian for Q is obtained by ombining these terms and taking the negative logarithm:HQ = 12 MXm=1 log jQ(m)1 j+ 12 MXm=1�X(m)1 � �(m)X1 �0 (Q(m)1 )�1 �X(m)1 � �(m)X1 �+ (T � 1)2 MXm=1 log jQ(m)j+ 12 MXm=1 TXt=2 �X(m)t �A(m)X(m)t�1�0 (Q(m))�1 �X(m)t �A(m)X(m)t�1�+ T2 MXm=1 log jRj+ 12 MXm=1 TXt=1 h(m)t �Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t �� MXm=1S(m)1 log�(m) � TXt=2 MXm=1 MXn=1S(m)t S(n)t�1 log�(m;n) � TXt=1 MXm=1S(m)t log q(m)t : (40)Comparing HQ with H we see that the interation between the S(m)t and the X(m)t variables has beeneliminated, while introduing two sets of variational parameters: the responsibilities h(m)t and the bias termson the disrete Markov hain, q(m)t . In order to obtain the approximation Q whih maximizes the lowerbound on the log likelihood, we minimize the KL divergene KL(QkP ) as a funtion of these variationalparameters KL(QkP ) = XfStg Z Q(fSt; Xtg) log Q(fSt; Xtg)P (fSt; XtgjfYtg)dfXtg (41)= hH �HQi � logZQ + logZ; (42)22
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