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tWe introdu
e a new statisti
al model for time series whi
h iteratively segments data into regimes withapproximately linear dynami
s and learns the parameters of ea
h of these linear regimes. This model
ombines and generalizes two of the most widely used sto
hasti
 time series models|hidden Markovmodels and linear dynami
al systems|and is 
losely related to models that are widely used in the 
on-trol and e
onometri
s literatures. It 
an also be derived by extending the mixture of experts neuralnetwork (Ja
obs et al., 1991) to its fully dynami
al version, in whi
h both expert and gating networksare re
urrent. Inferring the posterior probabilities of the hidden states of this model is 
omputationallyintra
table, and therefore the exa
t Expe
tation Maximization (EM) algorithm 
annot be applied. How-ever, we present a variational approximation that maximizes a lower bound on the log likelihood andmakes use of both the forward{ba
kward re
ursions for hidden Markov models and the Kalman �lterre
ursions for linear dynami
al systems. We tested the algorithm both on arti�
ial data sets and on anatural data set of respiration for
e from a patient with sleep apnea. The results suggest that variationalapproximations are a viable method for inferen
e and learning in swit
hing state-spa
e models.1 Introdu
tionMost 
ommonly used probabilisti
 models of time series are des
endants of either hidden Markov models(HMM) or sto
hasti
 linear dynami
al systems, also known as state-spa
e models (SSM). Hidden Markovmodels represent information about the past of a sequen
e through a single dis
rete random variable{thehidden state. The prior probability distribution of this state is derived from the previous hidden state using asto
hasti
 transition matrix. Knowing the state at any time makes the past, present and future observationsstatisti
ally independent. This is the Markov independen
e property that gives the model its name.State-spa
e models represent information about the past through a real-valued hidden state ve
tor. Again,
onditioned on this state ve
tor, the past, present, and future observations are statisti
ally independent. Thedependen
y between the present state ve
tor and the previous state ve
tor is spe
i�ed through the dynami
equations of the system and the noise model. When these equations are linear and the noise model isGaussian, the state-spa
e model is also known as a linear dynami
al system or Kalman �lter model.Unfortunately, most real-world pro
esses 
annot be 
hara
terized by either purely dis
rete or purelylinear{Gaussian dynami
s. For example, an industrial plant may have multiple dis
rete modes of behavior,ea
h of whi
h has approximately linear dynami
s. Similarly, the pixel intensities in an image of a translatingobje
t vary a

ording to approximately linear dynami
s for subpixel translations, but as the image movesover a larger range the dynami
s 
hange signi�
antly and nonlinearly.This paper addresses models of dynami
al phenomena whi
h are 
hara
terized by a 
ombination ofdis
rete and 
ontinuous dynami
s. We introdu
e a probabilisti
 model 
alled the swit
hing state-spa
e modelinspired by the divide-and-
onquer prin
iple underlying the mixture of experts neural network (Ja
obs et al.,1991). Swit
hing state-spa
e models are a natural generalization of hidden Markov models and state-spa
emodels in whi
h the dynami
s 
an transition in a dis
rete manner from one linear operating regime toanother. There is a large literature on models of this kind in e
onometri
s, signal pro
essing, and other�elds (Harrison and Stevens, 1976; Chang and Athans, 1978; Hamilton, 1989; Shumway and Sto�er, 1991;1



Bar-Shalom and Li, 1993). Here we extend these models to allow for multiple real-valued state ve
tors,draw 
onne
tions between these �elds and the relevant literature on neural 
omputation and probabilisti
graphi
al models, and derive a learning algorithm for all the parameters of the model based on a stru
turedvariational approximation whi
h rigorously maximizes a lower bound on the log likelihood.The paper is organized as follows. In the following se
tion we review the ba
kground material on state-spa
e models, hidden Markov models, and hybrids of the two. In se
tion 3, we des
ribe the generativemodel|i.e. the probability distribution de�ned over the observation sequen
es|for swit
hing state-spa
emodels. In se
tion 4, we des
ribe the learning algorithm for swit
hing state-spa
e models whi
h is based ona stru
tured variational approximation to the EM algorithm. In se
tion 5 we present simulation results bothin an arti�
ial domain, to assess the quality of the approximate inferen
e method, and in a natural domain.Finally, we 
on
lude with se
tion 6.2 Ba
kground2.1 State-spa
e modelsA state-spa
e model de�nes a probability density over time series of real-valued observation ve
tors fYtg byassuming that the observations were generated from a sequen
e of hidden state ve
tors fXtg.1 In parti
ular,the state-spa
e model spe
i�es that given the hidden state ve
tor at one time step the observation ve
torat that time step is statisti
ally independent from all other observation ve
tors, and that the hidden stateve
tors obey the Markov independen
e property. The joint probability for the sequen
es of states Xt andobservations Yt 
an therefore be fa
tored as:P (fXt; Ytg) = P (X1)P (Y1jX1) TYt=2P (XtjXt�1)P (YtjXt); (1)The 
onditional independen
ies spe
i�ed by equation (1) 
an be expressed graphi
ally in the form of Figure 1.The simplest and most 
ommonly used models of this kind assume that the transition and output fun
tionsare linear and time-invariant and the distributions of the state and observation variables are multivariateGaussian. We will use the term state-spa
e model to refer to this simple form of the model. For su
h models,the state transition fun
tion is Xt = AXt�1 + wt (2)where A is the state transition matrix and wt is zero-mean Gaussian noise in the dynami
s, with 
ovarian
ematrix Q. P (X1) is assumed to be Gaussian. Equation (2) ensures that if P (Xt�1) is Gaussian, then so isP (Xt). The output fun
tion is Yt = CXt + vt (3)where C is the output matrix and vt is zero-mean Gaussian output noise with 
ovarian
e matrix R; P (YtjXt)is therefore also Gaussian:P (YtjXt) = (2�)�D=2jRj�1=2 exp��12 (Yt � CXt)0R�1 (Yt � CXt)� ; (4)where D is the dimensionality of the Y ve
tors.Often, the observation ve
tor 
an be divided into input (or predi
tor) variables and output (or response)variables. To model the input{output behavior of su
h a system|i.e. the 
onditional probability of outputsequen
es given input sequen
es|the linear Gaussian SSM 
an be modi�ed to have a state-transition fun
tionXt = AXt�1 +BUt + wt; (5)where Ut is the input observation ve
tor and B is the (�xed) input matrix.21A table des
ribing the variables and the notation used throughout the paper is provided in Appendix A.2One 
an also de�ne the state su
h that Xt+1 = AXt +BUt + wt.2
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ted a
y
li
 graph (DAG) spe
ifying 
onditional independen
e relations for a state-spa
emodel. Ea
h node is 
onditionally independent from its non-des
endents given its parents: The output Yt is
onditionally independent from all other variables given the state Xt; and Xt is 
onditionally independentfrom X1; : : : ; Xt�2 given Xt�1. In this �gure and the following �gures, shaded nodes represent observedvariables and unshaded nodes represent hidden variables.The problem of inferen
e or state estimation for a state-spa
e model with known parameters 
onsists ofestimating the posterior probabilities of the hidden variables given a sequen
e of observed variables. Sin
ethe lo
al likelihood fun
tions for the observations are Gaussian and the priors for the hidden states areGaussian, the resulting posterior is also Gaussian. Three spe
ial 
ases of the inferen
e problem are often
onsidered: �ltering, smoothing, and predi
tion (Anderson and Moore, 1979; Goodwin and Sin, 1984). Thegoal of �ltering is to 
ompute the probability of the 
urrent hidden state Xt given the sequen
e of inputsand outputs up to time t|P (XtjfY gt1; fUgt1).3 The re
ursive algorithm used to perform this 
omputation isknown as the Kalman �lter (Kalman and Bu
y, 1961). The goal of smoothing is to 
ompute the probabilityof Xt given the sequen
e of inputs and outputs up to time T , where T > t. The Kalman �lter is used in theforward dire
tion to 
ompute the probability of Xt given fY gt1 and fUgt1. A similar set of ba
kward re
ursionsfrom T to t 
omplete the 
omputation by a

ounting for the observations after time t (Rau
h, 1963). We willrefer to the 
ombined forward and ba
kward re
ursions for smoothing as the Kalman smoothing re
ursions(also known as the RTS or Rau
h-Tung-Streibel smoother). Finally, the goal of predi
tion is to 
omputethe probability of future states and observations given observations upto time t. Given P (XtjfY gt1; fUgt1)
omputed as before, the model is simulated in the forward dire
tion using equations (2) (or (5) if there areinputs) and (3) to 
ompute the probability density of the state or output at future time t+ � .The problem of learning the parameters of a state-spa
e model is known in engineering as the systemidenti�
ation problem, and in its most general form assumes a

ess only to sequen
es of input and outputobservations. We fo
us on maximum likelihood learning, in whi
h a single (lo
ally optimal) value of theparameters is estimated, rather than Bayesian approa
hes whi
h treat the parameters as random variablesand 
ompute or approximate the posterior distribution of the parameters given the data. One 
an alsodistinguish between on-line and o�-line approa
hes to learning. On-line re
ursive algorithms, favored inreal-time adaptive 
ontrol appli
ations, 
an be obtained by 
omputing the gradient or the se
ond derivativesof the log likelihood (Ljung and S�oderstr�om, 1983). Similar gradient-based methods 
an be obtained for o�-line methods. An alternative method for o�-line learning makes use of the Expe
tation Maximization (EM)algorithm (Dempster et al., 1977). This pro
edure iterates between an E-step that �xes the 
urrent pa-rameters and 
omputes posterior probabilities over the hidden states given the observations, and an M-stepthat maximizes the expe
ted log likelihood of the parameters using the posterior distribution 
omputed inthe E-step. For linear Gaussian state-spa
e models, the E-step is exa
tly the Kalman smoothing problemas de�ned above, and the M-step simpli�es to a linear regression problem (Shumway and Sto�er, 1982;Digalakis et al., 1993). Details on the EM algorithm for state-spa
e models 
an be found in Ghahramaniand Hinton (1996b), as well as in the original Shumway and Sto�er (1982) paper.2.2 Hidden Markov modelsHidden Markov models also de�ne probability distributions over sequen
es of observations fYtg. The distri-bution over sequen
es is obtained by spe
ifying a distribution over observations at ea
h time step t given adis
rete hidden state St, and the probability of transitioning from one hidden state to another. Using theMarkov property, the joint probability for the sequen
es of states St and observations Yt, 
an be fa
tored in3The notation fY gt1 is short-hand for the sequen
e Y1; : : : ; Yt.3



exa
tly the same manner as equation (1), with St taking the pla
e of Xt:P (fSt; Ytg) = P (S1)P (Y1jS1) TYt=2P (StjSt�1)P (YtjSt): (6)Similarly, the 
onditional independen
ies in an HMM 
an be expressed graphi
ally in the same form asFigure 1. The state is represented by a single multinomial variable that 
an take one of K dis
rete values,St 2 f1; : : : ;Kg. The state transition probabilities, P (StjSt�1), are spe
i�ed by a K �K transition matrix.If the observables are dis
rete symbols taking on one of L values, the observation probabilities P (YtjSt)
an be fully spe
i�ed as a K � L observation matrix. For a 
ontinuous observation ve
tor, P (YtjSt) 
an bemodeled in many di�erent forms, su
h as a Gaussian, mixture of Gaussians, or a neural network. HMMshave been applied extensively to problems in spee
h re
ognition (Juang and Rabiner, 1991), 
omputationalbiology (Baldi et al., 1994), and fault dete
tion (Smyth, 1994).Given an HMM with known parameters and a sequen
e of observations, two algorithms are 
ommonlyused to solve two di�erent forms of the inferen
e problem (Rabiner and Juang, 1986). The �rst 
omputesthe posterior probabilities of the hidden states using a re
ursive algorithm known as the forward{ba
kwardalgorithm. The 
omputations in the forward pass are exa
tly analogous to the Kalman �lter for SSMs,while the 
omputations in the ba
kward pass are analogous to the ba
kward pass of the Kalman smoothingequations. As noted by Bridle (personal 
ommuni
ation, 1985) and Smyth, He
kerman and Jordan (1997),the forward{ba
kward algorithm is a spe
ial 
ase of exa
t inferen
e algorithms for more general graphi
alprobabilisti
 models (Lauritzen and Spiegelhalter, 1988; Pearl, 1988). The same observation holds true forthe Kalman smoothing re
ursions. The other inferen
e problem 
ommonly posed for HMMs is to 
ompute thesingle most likely sequen
e of hidden states. The solution to this problem is given by the Viterbi algorithm,whi
h also 
onsists of a forward and ba
kward pass through the model.To learn maximum likelihood parameters for an HMM given sequen
es of observations, one 
an use thewell-known Baum-Wel
h algorithm (Baum et al., 1970). This algorithm is a spe
ial 
ase of EM that uses theforward{ba
kward algorithm to infer the posterior probabilities of the hidden states in the E-step. The M-step uses expe
ted 
ounts of transitions and observations to re-estimate the transition and output matri
es(or linear regression equations in the 
ase where the observations are Gaussian distributed). Like state-spa
e models, HMMs 
an be augmented to allow for input variables, su
h that they model the 
onditionaldistribution of sequen
es of output observations given sequen
es of inputs (Ca

iatore and Nowlan, 1994;Bengio and Fras
oni, 1995; Meila and Jordan, 1996).2.3 HybridsA burgeoning literature on models whi
h 
ombine the dis
rete transition stru
ture of HMMs with the lineardynami
s of SSMs has developed in �elds ranging from e
onometri
s to 
ontrol engineering, (Harrison andStevens, 1976; Chang and Athans, 1978; Hamilton, 1989; Shumway and Sto�er, 1991; Bar-Shalom and Li,1993; Deng, 1993; Kadirkamanathan and Kadirkamanathan, 1996; Chaer et al., 1997). These models areknown alternately as hybrid models, state-spa
e models with swit
hing, and jump-linear systems. We brie
yreview some of this literature, in
luding some related neural network models.4Shortly after Kalman and Bu
y solved the problem of state estimation for linear Gaussian state-spa
emodels attention turned to the analogous problem for swit
hing models (A
kerson and Fu, 1970). Changand Athans (1978) derive the equations for 
omputing the 
onditional mean and varian
e of the state whenthe parameters of a linear state-spa
e model swit
h a

ording to arbitrary and Markovian dynami
s. Theprior and transition probabilities of the swit
hing pro
ess are assumed to be known. They note that forM models (sets of parameters) and an observation length T , the exa
t 
onditional distribution of the stateis a Gaussian mixture with MT 
omponents. The 
onditional mean and varian
e, whi
h require far less
omputation, are therefore only summary statisti
s.Shumway and Sto�er (1991) 
onsider the problem of learning the parameters of state-spa
e modelswith a single real-valued hidden state ve
tor and swit
hing output matri
es. The probability of 
hoosing a4A review of how state-spa
e models and HMMs are related to simpler statisti
al models su
h as PCA, fa
tor analysis, mixtureof Gaussians, ve
tor quantization and independent 
omponents analysis (ICA) 
an be found in Roweis and Ghahramani (1999).4
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Figure 2: Dire
ted a
y
li
 graphs spe
ifying 
onditional independen
e relations for various swit
hing state-spa
e models. (a) Shumway and Sto�er (1991): the output matrix (C in equation (3)) swit
hes independentlybetween a �xed number of 
hoi
es at ea
h time step. Its setting is represented by the dis
rete hidden variableSt; (b) Bar-Shalom and Li (1993): both the output equation and the dynami
 equation 
an swit
h and theswit
hes are Markov; (
) Kim (1994); (d) Fraser and Dimitriadis (1993): outputs and states are observed.Here we have shown a simple 
ase where the output depends dire
tly on the 
urrent state, previous stateand previous output.parti
ular output matrix is a pre-spe
i�ed time-varying fun
tion, independent of previous 
hoi
es (Figure 2a).A pseudo-EM algorithm is derived in whi
h the E-step, whi
h in its exa
t form would require 
omputing aGaussian mixture with MT 
omponents, is approximated by a single Gaussian at ea
h time step.Bar-Shalom and Li (1993; se
tions 11.6) review models in whi
h both the state dynami
s and the outputmatri
es swit
h, and where the swit
hing follows Markovian dynami
s (Figure 2b). They present severaldi�erent methods for approximately solving the state-estimation problem in swit
hing models (they do notdis
uss parameter estimation for su
h models). These methods, whi
h are referred to as generalized pseudo-Bayesian (GPB) and intera
ting multiple models (IMM), are all based on the idea of 
ollapsing into oneGaussian the mixture of M Gaussians whi
h results from 
onsidering all the settings of the swit
h stateat a given time step. This avoids the exponential growth of mixture 
omponents at the 
ost of providingan approximate solution. More sophisti
ated but 
omputationally expensive methods that 
ollapse M2Gaussians intoM Gaussians are also derived. Kim (1994) derives a similar approximation for a 
losely relatedmodel whi
h also in
ludes observed input variables (Figure 2
). Furthermore, Kim dis
usses parameterestimation for this model, although without making referen
e to the EM algorithm. Other authors haveused Markov 
hain Monte Carlo methods for state and parameter estimation in swit
hing models (Carterand Kohn, 1994; Athaide, 1995) and in other related dynami
 probabilisti
 networks (Dean and Kanazawa,1989; Kanazawa et al., 1995).Hamilton (1989; 1994, se
tion 22.4) des
ribes a 
lass of swit
hing models in whi
h the real-valued obser-vation at time t, Yt, depends both on the observations at times t�1 to t�r and on the dis
rete states at timet to t� r. More pre
isely, Yt is Gaussian with mean that is a linear fun
tion of Yt�1; : : : ; Yt�r and of binaryindi
ator variables for the dis
rete states, St; : : : ; St�r. The system 
an therefore be seen as an (r + 1)thorder hidden Markov model driving an rth order auto-regressive pro
ess, and are tra
table for small r and5



number of dis
rete states in S.Hamilton's models are 
losely related to Hidden Filter HMM (HFHMM; Fraser and Dimitriadis 1993).HFHMMs have both dis
rete and real-valued states. However, the real-valued states are assumed to beeither observed or a known, deterministi
 fun
tion of the past observations (i.e. an embedding). The outputsdepend on the states and previous outputs, and the form of this dependen
e 
an swit
h randomly (Figure 2d).Be
ause at any time step the only hidden variable is the swit
h state, St, exa
t inferen
e in this model 
anbe 
arried out tra
tably. The resulting algorithm is a variant of the forward{ba
kward pro
edure for HMMs.Kehagias and Petridis (1997) and Pawelzik et al. (1996) present other variants of this model.Elliott et al. (1995; se
tion 12.5) present an inferen
e algorithm for hybrid (Markov swit
hing) systemsfor whi
h there is a separate observable from whi
h the swit
h state 
an be estimated. The true swit
h states,St, are represented as unit ve
tors in <M and the estimated swit
h state is a ve
tor in the unit square withelements 
orresponding to the estimated probability of being in ea
h swit
h state. The real-valued state,Xt, is approximated as a Gaussian given the estimated swit
h state by forming a linear 
ombination of thetransition and observation matri
es for the di�erent SSMs weighted by the estimated swit
h state. Eliott etal. also derive 
ontrol equations for su
h hybrid systems and dis
uss appli
ations of the 
hange-of-measureswhitening pro
edure to a large family of models.With regard to the literature on neural 
omputation, the model presented in this paper is a generalizationboth of the mixture of experts neural network (Ja
obs et al., 1991; Jordan and Ja
obs, 1994) and the relatedmixture of fa
tor analyzers (Hinton et al., 1996; Ghahramani and Hinton, 1996b). Previous dynami
algeneralizations of the mixture of experts ar
hite
ture 
onsider the 
ase in whi
h the gating network hasMarkovian dynami
s (Ca

iatore and Nowlan, 1994; Kadirkamanathan and Kadirkamanathan, 1996; Meilaand Jordan, 1996). One limitation of this generalization is that the entire past sequen
e is summarizedin the value of a single dis
rete variable (the gating a
tivation), whi
h for a system with M experts 
an
onvey on average at most logM bits of information about the past. In the models we 
onsider in thispaper both the experts and the gating network have Markovian dynami
s. The past is therefore summarizedby a state 
omposed of the 
ross-produ
t of the dis
rete variable and the 
ombined real-valued state-spa
eof all the experts. This provides a mu
h wider information 
hannel from the past. One advantage of thisrepresentation is that the real-valued state 
an 
ontain 
omponential stru
ture. Thus, attributes su
h as theposition, orientation, and s
ale of an obje
t in an image, whi
h are most naturally en
oded as independentreal-valued variables, 
an be a

ommodated in the state without the exponential growth required of adis
retized HMM-like representation.It is important to pla
e the work in this paper in the 
ontext of the literature we have just reviewed.The hybrid models, state-spa
e with swit
hing and jump-linear systems we have des
ribed all assume thatthere is a single real-valued state ve
tor. The model 
onsidered in this paper generalizes this to multiplereal-valued state ve
tors.5 Unlike the models des
ribed in Hamilton (1994), Fraser and Dimitradis (1993)and the 
urrent dynami
al extensions of mixtures of experts, in the model we present the real-valued stateve
tors are hidden. The inferen
e algorithm we derive, whi
h is based on making a stru
tured variationalapproximation, is entirely novel in the 
ontext of swit
hing state-spa
e models. Spe
i�
ally, our method isunlike all the approximate methods we have reviewed in that it is not based on �tting a single Gaussian to amixture of Gaussians by 
omputing the mean and 
ovarian
e of the mixture.6 We derive a learning algorithmfor all of the parameters of the model, in
luding the Markov swit
hing parameters. This algorithm maximizesa lower bound on the log likelihood of the data, rather than a heuristi
ally motivated approximation to thelikelihood. The algorithm has a simple and intuitive 
avor: It de
ouples into forward-ba
kward re
ursionson a hidden Markov model, and Kalman smoothing re
ursions on ea
h state-spa
e model. The states of theHMM determine the soft assignment of ea
h observation to a state-spa
e model; the predi
tion errors of thestate-spa
e models determine the observation probabilities for the HMM.5Note that the state ve
tors 
ould be 
on
atenated into one large state ve
tor with fa
torized (blo
k-diagonal) transitionmatri
es (
f. fa
torial hidden Markov model; Ghahramani and Jordan, 1997). However, this obs
ures the de
oupled stru
tureof the model.6Both 
lasses of methods 
an be seen as minimizing Kullba
k-Liebler (KL) divergen
es. However, the KL divergen
e isasymmetri
al, and whereas the variational methods minimize it in one dire
tion the methods that merge Gaussians minimizeit in the other dire
tion. We will return to this point in se
tion 4.2.6
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Figure 3: a) Graphi
al model representation for swit
hing state-spa
e models. St is the dis
rete swit
hvariable and X(m)t are the real-valued state ve
tors. b) Swit
hing state-spa
e model depi
ted as a general-ization of the mixture of experts. The light arrows 
orrespond to the 
onne
tions in a mixture of experts.In a swit
hing state-spa
e model, the states of the experts and of the gating network also depend on theirprevious states (dark arrows).3 The Generative ModelIn swit
hing state-spa
e models, the sequen
e of observations fYtg is modeled by spe
ifying a probabilisti
relation between the observations and a hidden state spa
e 
omprising M real-valued state ve
tors, X(m)t ,and one dis
rete state ve
tor St. The dis
rete state, St, is modeled as a multinomial variable that 
an takeon M values: St 2 f1; : : : ;Mg; for reasons that will be
ome obvious we refer to it as the swit
h variable.The joint probability of observations and hidden states 
an be fa
tored asP (fSt; X(1)t ; : : : ; X(M)t ; Ytg) = P (S1) TYt=2P (StjSt�1) � MYm=1P (X(m)1 ) TYt=2P (X(m)t jX(m)t�1 )� TYt=1P (YtjX(1)t ; : : : ; X(M)t ; St); (7)whi
h 
orresponds graphi
ally to the 
onditional independen
ies represented by Figure 3. Conditioned on asetting of the swit
h state, St = m, the observable is multivariate Gaussian with output equation given bystate-spa
e model m. Noti
e that m is used as both an index for the real-valued state variables, and as avalue for the swit
h state. The probability of the observation ve
tor Yt is thereforeP (YtjX(1)t ; : : : ; X(M)t ; St = m) = (2�)�D2 jRj� 12 exp��12 �Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t �� (8)where D is the dimension of the observation ve
tor, R is the observation noise 
ovarian
e matrix, and C(m) isthe output matrix for state-spa
e model m (
f. equation (4) for a single linear-Gaussian state-spa
e model).Ea
h real-valued state ve
tor evolves a

ording to the linear Gaussian dynami
s of a state-spa
e model withdi�ering initial state, transition matrix, and state noise (equation (2)). For simpli
ity we will assume thatall state ve
tors have identi
al dimensionality; the generalization of the algorithms we present to modelswith di�erent size state-spa
es is immediate. The swit
h state itself evolves a

ording to the dis
rete Markovtransition stru
ture spe
i�ed by the initial state probabilities P (S1) and the M �M state transition matrixP (StjSt�1).An exa
t analogy 
an be made to the \mixture of experts" ar
hite
ture for modular learning in neuralnetworks (�gure 3b; Ja
obs et al, 1991). Ea
h state spa
e model is a linear expert with Gaussian output noisemodel and linear-Gaussian dynami
s. The swit
h state \gates" the outputs of the M state-spa
e models,and therefore plays the role of a gating network with Markovian dynami
s.There are many possible extensions of the model above and we shall 
onsider three obvious and straight-forward ones: 7



(Ex1) Di�ering output 
ovarian
es, R(m), for ea
h state-spa
e model;(Ex2) Di�ering output means, �(m)Y , for ea
h state-spa
e model, su
h that ea
h model is allowed to
apture observations in a di�erent operating range;(Ex3) Conditioning on a sequen
e of observed input ve
tors, fUtg.4 LearningAn eÆ
ient learning algorithm for the parameters of a swit
hing state-spa
e model 
an be derived by gen-eralizing the Expe
tation Maximization (EM) algorithm (Baum et al., 1970; Dempster et al., 1977). EMalternates between optimizing a distribution over the hidden states (the E-step) and optimizing the pa-rameters given the distribution over hidden states (the M-step). Any distribution over the hidden states,Q(fSt; Xtg), where Xt = [X(1)t ; : : :X(M)t ℄ is the 
ombined state of the state-spa
e models, 
an be used tode�ne a lower bound, B, on the log probability of the observed data:logP (fYtgj�) = logXfStg Z P (fSt; Xt; Ytgj�) dfXtg (9)= logXfStg Z Q(fSt; Xtg) �P (fSt; Xt; Ytgj�)Q(fSt; Xtg) � dfXtg (10)� XfStg Z Q(fSt; Xtg) log �P (fSt; Xt; Ytgj�)Q(fSt; Xtg) � dfXtg = B(Q; �); (11)where � denotes the parameters of the model and we have made use of Jensen's inequality (Cover andThomas, 1991) to establish (11). Both steps of EM in
rease the lower bound on the log probability of theobserved data. The E-step holds the parameters �xed and sets Q to be the posterior distribution over thehidden states given the parameters, Q(fSt; Xtg) = P (fSt; XtgjfYtg; �): (12)This maximizes B with respe
t to the distribution, turning the lower bound into an equality, whi
h 
anbe easily seen by substitution. The M-step holds the distribution �xed and 
omputes the parameters thatmaximize B for that distribution. Sin
e B = logP (fYtgj�) at the start of the M-step, and sin
e the E-stepdoes not a�e
t logP , the two steps 
ombined 
an never de
rease logP . Given the 
hange in the parametersprodu
ed by the M-step, the distribution produ
ed by the previous E-step is typi
ally no longer optimal, sothe whole pro
edure must be iterated.Unfortunately, the exa
t E-step for swit
hing state-spa
e models is intra
table. Like the related hybridmodels des
ribed in se
tion 2.3, the posterior probability of the real-valued states is a Gaussian mixture withMT terms. This 
an be seen by using the semanti
s of dire
ted graphs, in parti
ular the d-separation 
riterion(Pearl, 1988), whi
h implies that the hidden state variables in Figure 3, while marginally independent, be
ome
onditionally dependent given the observation sequen
e. This indu
ed dependen
y e�e
tively 
ouples all ofthe real-valued hidden state variables to the dis
rete swit
h variable, as a 
onsequen
e of whi
h the exa
tposteriors be
ome Gaussian mixtures with an exponential number of terms.7In order to derive an eÆ
ient learning algorithm for this system, we relax the EM algorithm by ap-proximating the posterior probability of the hidden states. The basi
 idea is that, sin
e expe
tations withrespe
t to P are intra
table, rather than setting Q(fSt; Xtg) = P (fSt; XtgjfYtg) in the E-step, a tra
tabledistribution Q is used to approximate P . This results in an EM learning algorithm whi
h maximizes a lowerbound on the log likelihood. The di�eren
e between the bound B and the log likelihood is given by theKullba
k-Liebler (KL) divergen
e between Q and P (Cover and Thomas, 1991):KL(QkP ) = XfStg Z Q(fSt; Xtg) log � Q(fSt; Xtg)P (fSt; XtgjfYtg)� dfXtg: (13)7The intra
tability of the E-step or smoothing problem in the simpler single-state swit
hing model has been noted byA
kerson and Fu (1970), Chang and Athans (1978), Bar-Shalom and Li (1993), and others .8



Sin
e the 
omplexity of exa
t inferen
e in the approximation given by Q is determined by its 
onditionalindependen
e relations, not by its parameters, we 
an 
hoose Q to have a tra
table stru
ture|a graphi
alrepresentation whi
h eliminates some of the dependen
ies in P . Given this stru
ture, the parameters of Qare varied to obtain the tightest possible bound by minimizing (13). Therefore, the algorithm alternatesbetween optimizing the parameters of the distribution Q to minimize (13) (the E-step) and optimizing theparameters of P given the distribution over the hidden states (the M-step). Like in exa
t EM, both stepsin
rease the lower bound B on the log likelihood, however equality is not rea
hed in the E-step.We will refer to the general strategy of using a parameterized approximating distribution as a variationalapproximation and refer to the free parameters of the distribution as variational parameters. A 
ompletelyfa
torized approximation is often used in statisti
al physi
s, where it provides the basis for simple yetpowerful mean �eld approximations to statisti
al me
hani
al systems (Parisi, 1988). Theoreti
al argumentsmotivating approximate E-steps are presented in Neal and Hinton (1998; originally in a te
hni
al reportin 1993). Saul and Jordan (1996) showed that approximate E-steps 
ould be used to maximize a lowerbound on the log likelihood, and proposed the powerful te
hnique of stru
tured variational approximationsto intra
table probabilisti
 networks. The key insight of Saul and Jordan's work, whi
h the present papermakes use of, is that by judi
ious use of an approximation Q, exa
t inferen
e algorithms 
an be used on thetra
table substru
tures in an intra
table network. A general tutorial on variational approximations 
an befound in Jordan et al. (1998).The parameters of the swit
hing state-spa
e model are � = fA(m), C(m); Q(m); �(m)X1 ; Q(m)1 ; R;�; �g,where A(m) is the state dynami
s matrix for model m, C(m) is its output matrix, Q(m) is its state noise
ovarian
e, �(m)X1 is the mean of the initial state, Q(m)1 is the 
ovarian
e of the initial state, R is the (tied)output noise 
ovarian
e, � = P (S1) is the prior for the dis
rete Markov pro
ess, and � = P (StjSt�1) is thedis
rete transition matrix. Extensions (Ex1){(Ex3) 
an be readily implemented by substituting R(m) for R,adding means �(m)Y and input matri
es B(m).While there are many possible approximations to the posterior distribution of the hidden variables thatone 
ould use for learning and inferen
e in swit
hing state-spa
e models, we fo
us on the following:Q(fSt; Xtg) = 1ZQ " (S1) TYt=2 (St�1; St)# MYm=1 (X(m)1 ) TYt=2 (X(m)t�1 ; X(m)t ); (14)where the  are unnormalized probabilities, whi
h we will 
all potential fun
tions and de�ne soon, and ZQis a normalization 
onstant ensuring that Q integrates to one. Although Q has been written in terms ofpotential fun
tions rather than 
onditional probabilities, it 
orresponds to the simple graphi
al model shownin Figure 4. The terms involving the swit
h variables St de�ne a dis
rete Markov 
hain and the termsinvolving the state ve
tors X(m)t de�ne M un
oupled state-spa
e models. Like in mean �eld approximationswe have approximated the sto
hasti
ally 
oupled system by removing some of the 
ouplings of the originalsystem. Spe
i�
ally, we have removed the sto
hasti
 
oupling between the 
hains that results from the fa
tthat the observation at time t depends on all the hidden variables at time t. However, we retain the 
ouplingbetween the hidden variables at su

essive time steps sin
e these 
ouplings 
an be handled exa
tly using theforward{ba
kward and Kalman smoothing re
ursions. This approximation is therefore stru
tured, in thesense that not all variables are un
oupled.The dis
rete swit
hing pro
ess is de�ned by (S1 = m) = P (S1 = m) q(m)1 (15) (St�1; St = m) = P (St = mjSt�1) q(m)t ; (16)where the q(m)t are variational parameters of the Q distribution. These parameters s
ale the probabilities ofea
h of the states of the swit
h variable at ea
h time step, so that q(m)t plays exa
tly the same role as theobservation probability P (YtjSt = m) would play in a regular hidden Markov model. We will soon see thatminimizing KL(QkP ) results in an equation for q(m)t whi
h supports this intuition.The un
oupled state-spa
e models in the approximation Q are also de�ned by potential fun
tions whi
hare related to probabilities in the original system. These potentials are the prior and transition probabilities9
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Figure 4: Graphi
al model representation for the stru
tured variational approximation to the posteriordistribution of the hidden states of a swit
hing state-spa
e model.for X(m) multiplied by a fa
tor that 
hanges these potentials to try to a

ount for the data: (X(m)1 ) = P (X(m)1 ) hP (Y1jX(m)1 ; S1 = m)ih(m)1 (17) (X(m)t�1 ; X(m)t ) = P (X(m)t jX(m)t�1 ) hP (YtjX(m)t ; St = m)ih(m)t (18)where the h(m)t are variational parameters of Q. The ve
tor ht plays a role very similar to the swit
h variableSt. Ea
h 
omponent h(m)t 
an range between 0 and 1. When h(m)t = 0 the posterior probability of X(m)t underQ does not depend on the observation at time Yt. When h(m)t = 1, the posterior probability of X(m)t underQ in
ludes a term whi
h assumes that state-spa
e model m generated Yt. We 
all h(m)t the responsibilityassigned to state-spa
e model m for the observation ve
tor Yt. The di�eren
e between h(m)t and S(m)t is thath(m)t is a deterministi
 parameter, while S(m)t is a sto
hasti
 random variable.To maximize the lower bound on the log likelihood, KL(QkP ) is minimized with respe
t to the variationalparameters h(m)t and q(m)t separately for ea
h sequen
e of observations. Using the de�nition of P for theswit
hing state-spa
e model (equation (7) and (8)) and the approximating distribution Q, the minimum ofKL satis�es the following �xed point equations for the variational parameters (see Appendix B):h(m)t = Q(St = m) (19)q(m)t = exp��12 ��Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t ��� (20)where h�i denotes expe
tation over the Q distribution. Intuitively, the responsibility, h(m)t is equal to theprobability under Q that state-spa
e model m generated observation ve
tor Yt, and q(m)t is an unnormalizedGaussian fun
tion of the expe
ted squared error if state-spa
e model m generated Yt.To 
ompute h(m)t it is ne
essary to sum Q over all the S� variables not in
luding St. This 
an be doneeÆ
iently using the forward{ba
kward algorithm on the swit
h state variables, with q(m)t playing exa
tlythe same role as an observation probability asso
iated with ea
h setting of the swit
h variable. Sin
e q(m)t isrelated to the predi
tion error of model m on data Yt, this has the intuitive interpretation that the swit
hstate asso
iated with models with smaller expe
ted predi
tion error on a parti
ular observation will befavored at that time step. However, the forward{ba
kward algorithm ensures that the �nal responsibilitiesfor the models are obtained after 
onsidering the entire sequen
e of observations.To 
ompute q(m)t it is ne
essary to 
al
ulate the expe
tations of X(m)t and X(m)t X(m)t 0 under Q. We seethis by expanding equation (20):q(m)t = exp��12Y 0tR�1Yt + Y 0tR�1C(m) hX(m)t i � 12 tr hC(m)0R�1C(m) hX(m)t X(m)t 0ii� ; (21)10



Initialize parameters of the model.Repeat until bound on log likelihood has 
onverged:E step Repeat until 
onvergen
e of KL(QkP ):E.1 Compute q(m)t from the predi
tion error of state-spa
e model m onobservation YtE.2 Compute h(m)t using the forward-ba
kward algorithm on the HMM, withobservation probabilities q(m)tE.3 For m = 1 to MRun Kalman smoothing re
ursions, using the data weighted by h(m)tM stepM.1 Re-estimate parameters for ea
h state-spa
e model using the dataweighted by h(m)tM.2 Re-estimate parameters for the swit
hing pro
ess using Baum-Wel
hupdate equations.Figure 5: Learning algorithm for swit
hing state-spa
e models.where tr is the matrix tra
e operator and we have used tr(AB) = tr(BA). The expe
tations of X(m)t andX(m)t X(m)t 0 
an be 
omputed eÆ
iently using the Kalman smoothing algorithm on ea
h state-spa
e model,where for modelm at time t, the data is weighted by the responsibilities h(m)t .8 Sin
e the h parameters dependon the q parameters, and vi
e-versa, the whole pro
ess has to be iterated, where ea
h iteration involves 
allsto the forward{ba
kward and Kalman smoothing algorithms. On
e the iterations have 
onverged, the E-stepoutputs the expe
ted values of the hidden variables under the �nal Q.The M-step 
omputes the model parameters that optimize the expe
tation of the log likelihood (equa-tion (34) in Appendix B), whi
h is a fun
tion of the expe
tations of the hidden variables. For swit
hingSSMs, all the parameter re-estimates 
an be 
omputed analyti
ally. For example, taking derivatives of theexpe
tation of (34) with respe
t to C(m) and setting to zero we getĈ(m) =  TXt=1hS(m)t i YthX(m)t 0i! TXt=1hS(m)t i hX(m)t X(m)0t i!�1 (22)whi
h is a weighted version of the re-estimation equations for SSMs. Similarly, the re-estimation equationsfor the swit
h pro
ess are analogous to the Baum-Wel
h update rules for HMMs. The learning algorithmfor swit
hing state-spa
e models using the above stru
tured variational approximation is summarized inFigure 5.4.1 Deterministi
 AnnealingThe KL divergen
e minimized in the E step of the variational EM algorithm 
an have multiple minimain general. One way to visualize these minima is to 
onsider the spa
e of all possible segmentations ofan observation sequen
e of length T , where by segmentation we mean a dis
rete partition of the sequen
ebetween the state spa
e models. If there are M SSMs, then there are MT possible segmentations of the8Weighting the data by h(m)t is equivalent to running the Kalman smoother on the unweighted data using a time-varyingobservation noise 
ovarian
e matrix R(m)t = R=h(m)t . 11



sequen
e. Given one su
h segmentation, inferring the optimal distribution for the real-valued states of theSSMs is a 
onvex optimization problem, sin
e these real-valued states are 
onditionally Gaussian. So thediÆ
ulty in the KL minimization lies in trying to �nd the best (soft) partition of the data.Like in other 
ombinatorial optimization problems, the possibility of getting trapped in lo
al minima 
anbe redu
ed by gradually annealing the 
ost fun
tion. We 
an employ a deterministi
 variant of the annealingidea by making the following simple modi�
ations to the variational �xed point equations (19) and (20):h(m)t = 1T Q(St = m) (23)q(m)t = exp�� 12T ��Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t ��� : (24)Here T is a temperature parameter, whi
h is initialized to a large value and gradually redu
ed to 1. The aboveequations maximize a modi�ed form of the bound B in (11), where the entropy of Q has been multiplied byT (Ueda and Nakano, 1995).4.2 Merging GaussiansAlmost all the approximate inferen
e methods that are des
ribed in the literature for swit
hing state-spa
emodels are based on the idea of merging, at ea
h time step, a mixture ofM Gaussians into one Gaussian. Themerged Gaussian is obtained simply by setting its mean and 
ovarian
e equal to the mean and 
ovarian
e ofthe mixture. Here we brie
y des
ribe, as an alternative to the variational approximation methods we havederived, how this more traditional Gaussian merging pro
edure 
an be applied to the model we have de�ned.In the swit
hing state-spa
e models des
ribed in se
tion 3 there are M di�erent SSMs, with possiblydi�erent state-spa
e dimensionalities, so it would be inappropriate to merge their states into one Gaussian.However, it is still possibly to apply a Gaussian merging te
hnique by 
onsidering ea
h SSM separately. Inea
h SSM, m, the hidden state density produ
es at ea
h time step a mixture of two Gaussians|one forthe 
ase St = m and one for St 6= m. We merge these two Gaussians, weighted the 
urrent estimates ofP (St = mjY1; : : : Yt) and 1� P (St = mjY1; : : : Yt), respe
tively. This merged Gaussian is used to obtain theGaussian prior for X(m)t+1 for the next time step. We implemented a forward-pass version of this approximateinferen
e s
heme, whi
h is analogous to the IMM pro
edure des
ribed in Bar-Shalom and Li (1993).This pro
edure �nds at ea
h time step the \best" Gaussian �t to the 
urrent mixture of Gaussiansfor ea
h SSM. If we denote the approximating Gaussian by Q and the mixture being approximated by P ,\best" is de�ned here as minimizing KL(PkQ). Furthermore, Gaussian merging te
hniques are greedy inthat the \best" Gaussian is 
omputed at every time step and used immediately for the next time step. For aGaussian Q, KL(PkQ) has no lo
al minima, and it is very easy to �nd the optimal Q by 
omputing the �rsttwo moments of P . Ina

ura
ies in this greedy pro
edure arise be
ause the estimates of P (StjY1; : : : ; Yt) arebased on this single merged Gaussian and not on the real mixture.In 
ontrast, variational methods seek to minimize KL(QkP ), whi
h 
an have many lo
al minima. More-over, these methods are not greedy in the same sense: they iterate forward and ba
kward in time untilobtaining a lo
ally optimal Q.5 Simulations5.1 Experiment 1: Variational Segmentation and Deterministi
 AnnealingThe goal of this experiment was to assess the quality of solutions found by the variational inferen
e algorithm,and the e�e
t of using deterministi
 annealing on these solutions. We generated 200 sequen
es of length 200from a simple model whi
h swit
hed between two SSMs. These SSMs and the swit
hing pro
ess were de�nedby: X(1)t = 0:99 X(1)t�1 + w(1)t w(1)t � N (0; 1) (25)X(2)t = 0:9 X(2)t�1 + w(2)t w(2)t � N (0; 10) (26)Yt = X(m)t + vt vt � N (0; 0:1) (27)12



Figure 6: Five data sequen
es of length 200, with their true segmentations below them. In the segmentations,swit
h states 1 and 2 are represented with dark and light dots, respe
tively. Noti
e that it is diÆ
ult to
orre
tly segment the sequen
es based only on knowing the dynami
s of the two pro
esses.where the swit
h state m was 
hosen using priors �(1) = �(2) = 1=2 and transition probabilities �11 = �22 =0:95; �12 = �21 = 0:05. Five sequen
es from this data set are shown in in Figure 6, along with the truestate of the swit
h variable.We 
ompared three di�erent inferen
e algorithms: variational inferen
e, variational inferen
e with de-terministi
 annealing (se
tion 4.1), and inferen
e by Gaussian merging (se
tion 4.2). For ea
h sequen
e, weinitialized the variational inferen
e algorithms with equal responsibilities for the two SSMs and ran them for12 iterations. The non-annealed inferen
e algorithm ran at a �xed temperature of T = 1; while the annealedalgorithm was initialized to a temperature of T = 100 whi
h de
ayed down to 1 over the 12 iterations, usingthe de
ay fun
tion Ti+1 = 12Ti + 12 . To eliminate the e�e
t of model ina

ura
ies we gave all three inferen
ealgorithms the true parameters of the generative model.The segmentations found by the non-annealed variational inferen
e algorithm showed little similarity tothe true segmentations of the data (Figure 7). Furthermore, the non-annealed algorithm generally underes-timated the number of swit
hes, often 
onverging on solutions with no swit
hes at all. Both the annealedvariational algorithm and the Gaussian merging method found segmentations that were more similar to thetrue segmentations of the data. Comparing per
ent 
orre
t segmentations, we see that annealing substan-tially improves the variational inferen
e method, and that the Gaussian merging and annealed variationalmethods perform 
omparably (Figure 8). The average performan
e of the annealed variational method isonly about 1.3% better than Gaussian merging.5.2 Experiment 2: Modelling respiration in a patient with sleep apneaSwit
hing state-spa
e models should prove useful in modelling time series whi
h have dynami
s 
hara
terizedby several di�erent regimes. To illustrate this point we examined a physiologi
al data set from a patienttentatively diagnosed with sleep apnea, whi
h is a medi
al 
ondition in whi
h patients intermittently stopbreathing during sleep. The data was obtained from the repository of time series data sets asso
iated withSanta Fe Time Series Analysis and Predi
tion Competition (Weigend and Gershenfeld, 1993) and is des
ribed
13
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Figure 7: For ten di�erent sequen
es of length 200, segmentations are shown as sequen
es of light and darkdots 
orresponding to the two SSMs generating this data. The rows are the segmentations found usingthe variational method with no annealing (N), the variational method with deterministi
 annealing (A), theGaussian merging method (M), and the true segmentation (T). All three inferen
e algorithms give real-valuedh(m)t ; hard segmentations were obtained by thresholding the �nal h(m)t values at 0.5. The �rst �ve sequen
esare the ones shown in Figure 6.in detail in Rigney et al. (1993).9 The respiration pattern in sleep apnea is 
hara
terized by at least tworegimes|no breathing and gasping breathing indu
ed by a re
ex arousal. Furthermore, in this patient therealso seem to be periods of normal rhythmi
 breathing (Figure 9).We trained swit
hing state-spa
e models, varying the random seed, the number of 
omponents in themixture (M = 2 to 5), and the dimensionality of the state spa
e in ea
h 
omponent (K = 1 to 10), on a dataset 
onsisting of 1000 
onse
utive measurements of the 
hest volume. As 
ontrols we also trained simplestate-spa
e models (i.e. M = 1) varying the dimension of the state-spa
e from K = 1 to 10, and simplehidden Markov models (i.e. K = 0) varying the number of dis
rete hidden states from M = 2 to M = 50.Simulations were run until 
onvergen
e or for 200 iterations, whi
hever 
ame �rst; 
onvergen
e was assessedby measuring the 
hange in likelihood (or bound on the likelihood) over 
onse
utive steps of EM.The likelihood of the simple SSMs and the HMMs was 
al
ulated on a test set 
onsisting of 1000 
onse
u-9The data is available on the web at http://www.
s.
olorado.edu/ �andreas/ Time-Series/ SantaFe.html#setB. We usedsamples 6201{7200 for training and 5201-6200 for testing. 14
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ent 
orre
t segmentations: (a) 
ontrol, using randon segmentation; (b) varia-tional inferen
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ent
orre
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omputed by 
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Figure 9: Chest volume (respiration for
e) of a patient with sleep apnea during two non-
ontinuous timesegments of the same night (measurements sampled at 2 Hz). (a) Training data. Apnea is 
hara
terizedby extended periods of small variability in 
hest volume, followed by bursts (gasping). Here we see su
hbehaviour around t = 250, followed by normal rhythmi
 breathing. (b) Test data. In this segment we �ndseveral instan
es of apnea and an approximately rhythmi
 region. (The thi
k lines at the bottom of ea
hplot are explained in the main text.)
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Figure 10: Log likelihood (nats per observation) on the test data from a total of almost 400 runs of simplestate-spa
e models, swit
hing state-spa
e models with di�ering numbers of 
omponents, and hidden Markovmodels.
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Figure 11: Learning 
urves for a state spa
e model (K = 4) and a swit
hing state-spa
e model (M = 2;K =2).tive measurements of the 
hest volume. For the swit
hing SSMs the likelihood is intra
table so we 
al
ulatedthe lower bound on the likelihood, B. The simple SSMs modeled the data very poorly for K = 1, and theperforman
e was 
at for values of K = 2 to 10 (Figure 10a). The large majority of runs of the swit
hingstate-spa
e model resulted in models with higher likelihood than those of the simple SMMs (Figure 10b-e).One 
onsistent ex
eption should be noted: for values of M = 2 and K = 6 to 10, the swit
hing SSM per-formed almost identi
ally to the simple SSM. Exploratory experiments suggest that in these 
ases a single
omponent takes responsibility for all the data, so the model has M = 1 e�e
tively. This may be a lo
alminimum problem or a result of poor initialization heuristi
s. Looking at the learning 
urves for simple andswit
hing state spa
e models it is easy to see that there are plateaus at the solutions found by the simpleone-
omponent SSMs whi
h the swit
hing SSM 
an get 
aught in (Figure 11).The likelihoods for hidden Markov models with around M = 15 were 
omparable to those of the bestswit
hing state-spa
e models (Figure 10f). So purely in terms of 
oding eÆ
ien
y, swit
hing SSMs have littleadvantage over HMMs on this data.However, it is useful to 
ontrast the solutions learned by HMMs with the solutions learned by theswit
hing SSMs. The thi
k dots at the bottom of the Figures 9a and b show the responsibility assigned toone of two 
omponents in a fairly typi
al swit
hing SSM with M = 2 
omponents of state size K = 2. This
omponent has 
learly spe
ialized to modeling the data during periods of apnea, while the other 
omponentmodels the gasps and periods of rhythmi
 breathing. These two swit
hing 
omponents provide a mu
h moreintuitive model of the data than the 10-20 dis
rete 
omponents needed in an HMM with 
omparable 
odingeÆ
ien
y.106 Dis
ussionThe main 
on
lusion we 
an draw from the �rst series of experiments is that even when given the 
orre
tmodel parameters, the problem of segmenting a swit
hing time series into its 
omponents is diÆ
ult. Thereare 
ombinatorially many alternatives to be 
onsidered, and the energy surfa
e su�ers from many lo
alminima, so lo
al optimization approa
hes like the variational method we used are limited by the quality ofthe initial 
onditions. Deterministi
 annealing 
an be thought of as a sophisti
ated initialization pro
edurefor the hidden states: the �nal solution at ea
h temperature provides the initial 
onditions at the next. Wefound that annealing substatially improved the quality of the segmentations found.The �rst experiment also indi
ates that the mu
h simpler Gaussian merging method performs 
omparablyto annealed variational inferen
e. The Gaussian merging methods have the advantage that at ea
h time stepthe 
ost fun
tion minimized has no lo
al minima. This may a

ount for how well they perform relativeto the non-annealed variational method. On the other hand, the variational methods have the advantage10By using further assumptions to 
onstrain the model, su
h as 
ontinuity of the real-valued hidden state at swit
h times, itshould be possible to obtain even better performan
e on this data.18



that they iteratively improve their approximation to the posterior, and they de�ne a lower bound on thelikelihood. Our results suggest that it may be very fruitful to use the Gaussian merging method to initializethe variational inferen
e pro
edure. Furthermore, it is possible to derive variational approximations forother swit
hing models des
ribed in the literature, and a 
ombination of Gaussian merging and variationalapproximation may provide a fast and robust method for learning and inferen
e in those models.The se
ond series of experiments suggests that on a real data set believed to have swit
hing dynami
s,the swit
hing state-spa
e model 
an indeed un
over multiple regimes. When it 
aptures these regimes, itgeneralizes to the test set mu
h better than the simple linear dynami
al model. Similar 
oding eÆ
ien
y 
anbe obtained by using hidden Markov models, whi
h due to the dis
rete nature of the state spa
e 
an modelnonlinear dynami
s. However, in doing so, the hidden Markov models had to use 10-20 dis
rete states, whi
hmakes their solutions less interpretable.Variational approximations provide a very powerful tool for inferen
e and learning in 
omplex probabilisti
models. We have seen that when applied to the swit
hing state-spa
e model they 
an in
orporate withina single framework well-known exa
t inferen
e methods like Kalman smoothing and the forward-ba
kwardalgorithm. Variational methods 
an be applied to many of the other 
lasses of intra
table swit
hing modelsdes
ribed in se
tion 2.3. However, training more 
omplex models also makes apparent the importan
e ofgood methods for model sele
tion and initialization.To summarize, swit
hing state-spa
e models are a dynami
al generalization of mixture of experts neuralnetworks, are 
losely related to well-known models in e
onometri
s and 
ontrol, and 
ombine the representa-tions underlying hidden Markov models and linear dynami
al systems. For domains in whi
h we have somea priori belief that there are multiple, approximately linear dynami
al regimes, swit
hing state spa
e modelsprovide a natural modeling tool. Variational approximations provide a method to over
ome the single mostdiÆ
ult problem in learning swit
hing SSMs, whi
h is that the inferen
e step is intra
table. Deterministi
annealing further improves on the solutions found by the variational method.
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A NotationSymbol Size Des
riptionvariablesYt D � 1 observation ve
tor at time tfYtg D � T sequen
e of observation ve
tors [Y1; Y2; : : : YT ℄X(m)t K � 1 state ve
tor of state-spa
e model (SSM) m at time tXt KM � 1 entire real-valued hidden state at time t: Xt = [X(1)t ; : : : ; X(M)t ℄St M � 1 swit
h state variable (represented either as dis
rete variable takingon values in f1; : : :Mg, or as an M � 1 ve
tor St = [S(1)t ; : : : S(M)t ℄0where S(m)t 2 f0; 1g)model parametersA(m) K �K state dynami
s matrix for SSM mC(m) D �K output matrix for SSM mQ(m) K �K state noise 
ovarian
e matrix for SSM m�(m)X1 K � 1 initial state mean for SSM mQ(m)1 K �K initial state noise 
ovarian
e matrix for SSM mR D �D output noise 
ovarian
e matrix� M � 1 initial state probabilities for swit
h state� M �M state transition matrix for swit
h statevariational parametersh(m)t 1� 1 responsibility of SSM m for Ytq(m)t 1� 1 related to expe
ted squared error if SSM m generated Ytmis
ellaneousX 0 matrix transpose of XjX j matrix determinant of XhXi expe
ted value of X under the Q distributiondimensionsD size of observation ve
torT length of a sequen
e of observation ve
torsM number of state-spa
e modelsK size of state ve
tor in ea
h state-spa
e model
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B Derivation of the variational �xed-point equationsIn this appendix we derive the variational �xed-point equations used in the learning algorithm for swit
h-ing state spa
e models. The plan is the following. First we write out the probability density P de�nedby a swit
hing state spa
e model. For 
onvenien
e we will express this probability density in the log do-main, through its asso
iated energy fun
tion or hamiltonian, H . The probability density is related to thehamiltonian through the usual Boltzmann distribution (at a temperature of 1),P (�) = 1Z expf�H(�)g;where Z is a normalization 
onstant required su
h that P (�) integrates to unity. Expressing the probabilitiesin the log domain does not a�e
t the resulting algorithm. We then similarly express the approximatingdistribution Q through its hamiltonianHQ. Finally, we obtain the variational �xed point equations by settingto zero the derivatives of the KL divergen
e between Q and P with respe
t to the variational parameters ofQ. The joint probability of observations and hidden states in a swit
hing state-spa
e model is (equation (7))P (fSt; Xt; Ytg) = "P (S1) TYt=2P (StjSt�1)# MYm=1"P (X(m)1 ) TYt=2P (X(m)t jX(m)t�1 )# TYt=1P (YtjXt; St): (28)We pro
eed to disse
t this expression into its 
onstituent parts. The initial probability of the swit
h variableat time t = 1 is given by P (S1) = MYm=1(�(m))S(m)1 ; (29)where S1 is represented by an M � 1 ve
tor [S(1)1 : : : S(M)1 ℄ where S(m)1 = 1 if the swit
h state is in state m,and 0 otherwise. The probability of transitioning from a swit
h state at time t� 1 to a swit
h state at timet is given by P (StjSt�1) = MYm=1 MYn=1(�(m;n))S(m)t S(n)t�1 : (30)The initial distribution for the hidden state variable in state-spa
e model m is Gaussian with mean �(m)X1 and
ovarian
e matrix Q(m)1 :P (X(m)1 ) = (2�)�K=2jQ(m)1 j�1=2 exp��12 �X1 � �(m)X1 �0 (Q(m)1 )�1 �X1 � �(m)X1 �� : (31)The probability distribution of the state in state-spa
e model m at time t given the state at time t � 1 isGaussian with mean A(m)X(m)t�1 and 
ovarian
e matrix Q(m):P (X(m)t jX(m)t�1 ) = (2�)�K=2jQ(m)j�1=2 exp��12 �X(m)t �A(m)X(m)t�1�0 (Q(m))�1 �X(m)t �A(m)X(m)t�1�� :(32)Finally, using (8) we 
an write:P (YtjXt; St) = MYm=1 �(2�)�D=2jRj�1=2 exp��12 �Yt � C(m)X(m)t �0 R�1 �Yt � C(m)X(m)t ���S(m)t (33)sin
e the terms with exponent equal to 0 vanish in the produ
t.Combining (28)-(33) and taking the negative of the logarithm, we obtain the hamiltonian of a swit
hingstate-spa
e model (ignoring 
onstants):H = 12 MXm=1 log jQ(m)1 j+ 12 MXm=1�X(m)1 � �(m)X1 �0 (Q(m)1 )�1 �X(m)1 � �(m)X1 �21



+ (T � 1)2 MXm=1 log jQ(m)j+ 12 MXm=1 TXt=2 �X(m)t �A(m)X(m)t�1�0 (Q(m))�1 �X(m)t �A(m)X(m)t�1�+ T2 log jRj+ 12 MXm=1 TXt=1 S(m)t �Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t �� MXm=1S(m)1 log�(m) � TXt=2 MXm=1 MXn=1S(m)t S(n)t�1 log�(m;n): (34)The hamiltonian for the approximating distribution 
an be analogously derived from the de�nition of Q(equation (14)):Q(fSt; Xtg) = 1ZQ " (S1) TYt=2 (St�1; St)# MYm=1 (X(m)1 ) TYt=2 (X(m)t�1 ; X(m)t ): (35)The potentials for the initial swit
h state and swit
h state transitions are (S1) = MYm=1(�(m)q(m)1 )S(m)1 (36) (St�1; St) = MYm=1 MYn=1��(m;n)q(m)t �S(m)t S(n)t�1 (37)The potential for the initial state of state-spa
e model m is (X(m)1 ) = P (X(m)1 ) hP (Y1jX(m)1 ; S1 = m)ih(m)1 (38)and the potential for the state at time t given the state at time t� 1 is (X(m)t�1 ; X(m)t ) = P (X(m)t jX(m)t�1 ) hP (YtjX(m)t ; St = m)ih(m)t : (39)The hamiltonian for Q is obtained by 
ombining these terms and taking the negative logarithm:HQ = 12 MXm=1 log jQ(m)1 j+ 12 MXm=1�X(m)1 � �(m)X1 �0 (Q(m)1 )�1 �X(m)1 � �(m)X1 �+ (T � 1)2 MXm=1 log jQ(m)j+ 12 MXm=1 TXt=2 �X(m)t �A(m)X(m)t�1�0 (Q(m))�1 �X(m)t �A(m)X(m)t�1�+ T2 MXm=1 log jRj+ 12 MXm=1 TXt=1 h(m)t �Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t �� MXm=1S(m)1 log�(m) � TXt=2 MXm=1 MXn=1S(m)t S(n)t�1 log�(m;n) � TXt=1 MXm=1S(m)t log q(m)t : (40)Comparing HQ with H we see that the intera
tion between the S(m)t and the X(m)t variables has beeneliminated, while introdu
ing two sets of variational parameters: the responsibilities h(m)t and the bias termson the dis
rete Markov 
hain, q(m)t . In order to obtain the approximation Q whi
h maximizes the lowerbound on the log likelihood, we minimize the KL divergen
e KL(QkP ) as a fun
tion of these variationalparameters KL(QkP ) = XfStg Z Q(fSt; Xtg) log Q(fSt; Xtg)P (fSt; XtgjfYtg)dfXtg (41)= hH �HQi � logZQ + logZ; (42)22



where h�i denotes expe
tation over the approximating distribution Q and ZQ is the normalization 
onstantfor Q. Both Q and P de�ne distributions in the exponential family. As a 
onsequen
e, the zeros of thederivatives of KL with respe
t to the variational parameters 
an be obtained simply by equating derivativesof hHi and hHQi with respe
t to 
orresponding suÆ
ient statisti
s (Ghahramani, 1997):�hHQ �Hi�hS(m)t i = 0 (43)�hHQ �Hi�hX(m)t i = 0 (44)�hHQ �Hi�hP (m)t i = 0 (45)where P (m)t = hX(m)t X(m)t 0i � hX(m)t ihX(m)t i0 is the 
ovarian
e of X(m)t under Q. Many terms 
an
el whenwe subtra
t the two hamiltoniansHQ�H= MXm=1 TXt=1 12 �h(m)t � S(m)t ��Yt � C(m)X(m)t �0R�1�Yt � C(m)X(m)t �� S(m)t log q(m)t (46)Taking derivatives we obtain�hHQ �Hi�hS(m)t i = � log q(m)t � 12 ��Yt � C(m)X(m)t �0R�1 �Yt � C(m)X(m)t �� (47)�hHQ �Hi�hX(m)t i = ��h(m)t � hS(m)t i��(Yt � C(m)hX(m)t i)0R�1C(m)� (48)�hHQ �Hi�P (m)t = 12 �h(m)t � hS(m)t i��C(m)0R�1C(m)� (49)From (47) we get the �xed-point equation (20) for q(m)t . Both (48) and (49) are satis�ed when h(m)t = hS(m)t i.Using the fa
t that hS(m)t i = Q(St = m) we get (19).Referen
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