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Abstract

The problem of approximating a probability distribution occurs frequently in many areas of applied
mathematics, including statistics, communication theory, machine learning, and the theoretical analysis
of complex systems such as neural networks. Saul and Jordan (1996) have recently proposed a powerful
method for efficiently approximating probability distributions known as structured variational approx-
imations. In structured variational approximations, exact algorithms for probability computation on
tractable substructures are combined with variational methods to handle the interactions between the
substructures which make the system as a whole intractable. In this note, I present a mathematical result
which can simplify the derivation of structured variational approximations in the exponential family of
distributions.

1 Introduction

Belief networks provide a well-understood graphical framework for expressing the interactions between ran-
dom variables. Such networks have proven useful for modeling the causal structure of complex systems of
interacting variables, such as diseases and symptoms in a medical diagnosis problem. They also provide
an elegant framework for understanding the relation between neural network learning algorithms and more
traditional statistical models. Finally, some would argue that belief networks themselves are an appealing
model of neural computation and perceptual inference in humans.

One of the essential attributes of a belief network is that it defines a graphical structure within which
to do Bayesian inference in a probabilistically consistent manner. The graphical structure specifies a set of
conditional independences between the variables in the network. These independences can be exploited to
derive recursive algorithms for inferring the conditional probabilities of any set of variables given any other
set of variables. However, for general belief networks with arbitrary connectivity and nonlinear interactions,
the problem of exact inference is computationally intractable (Cooper, 1990). Therefore, in practice this
intractability must be circumvented by making use of approximate algorithms for inference. Two such
classes of algorithms are Markov chain Monte Carlo methods and variational approximations, both of which
were developed in large part by statistical physicists modeling systems of many interacting particles.! In
this paper we present a simple mathematical result concerning variational approximations and discuss its
applicability to the practical problem of deriving learning algorithms.

2 Structured Variational Approximations

Consider the belief network shown in Figure 1a, where the shaded node corresponds to an observed variables
V' and the unshaded nodes correspond to hidden variables S. The presence of directed edges in the belief
network expresses a set of conditional independence relations between the variables: namely, that the variable

LA review of Markov Chain Monte Carlo methods is provided by Neal (1993); mean field methods in physics, which are a
class of variational approximation, are discussed in Parisi (1988).
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Figure 1: A belief network and two approximations.

associated with each node is conditionally independent of the variables associated with that node’s non-
descendants given its parents. Using these independence relations, the joint probability of S and V' can be
written as

P(S1,...,Sn,V) = P(S1)P(S2|S1) ... P(Sx|Sn_1)P(V|S1, ..., SN). (1)

To illustrate the intractability of inference in this network, consider the problem of computing the conditional
probability distribution of one of the hidden variables, say S;, given the observed variable. There are at
least two reasons one may want to compute this distribution. First, S; may be the variable of interest in
an inference problem, for example, for medical diagnosis, which justifies marginalizing over the other hidden
variables. Second, to estimate the parameters of the belief network using the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) it is necessary to compute conditional probabilities of subsets of the
hidden variables given the observed variables.

To compute this conditional probability distribution we need to sum (or integrate) over all the possible
values of the hidden variables we are not directly interested in:

P(Si[V) = Y P(Si,...,Sn|V) (2)
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For binary S; variables, for example, this summation includes 2V terms. Without additional constraints,
there is no way of making use of the factorization in (1) to simplify this computation.

To overcome this computational cost one can approximate the conditional distribution over the hidden
variables by a simpler, tractable distribution. For example,

assumes that given V, all the S; are independent (Figure 1b). This complete factorization is the assumption
used in simple mean field approximations in statistical mechanics. Associated with the approximating
distribution @ is a vector of wvariational parameters -y, which can be optimized so as to make Q(S|V) as
similar as possible to P(S|V'). A standard measure of similarity between two probability distributions is the



Kullback-Leibler divergence (or cross-entropy):

KLQIP) = 3 Q(SIV)log %. (4)
S

Note that the K L-divergence is asymmetric in its two arguments; we focus on the above form of the divergence
for two reasons. First, it involves averages with respect to the tractable, @, distribution. Second, minimizing
this form of the K L-divergence corresponds to maximizing a lower bound on the log likelihood, a sensible
criterion for a learning algorithm (Neal and Hinton, 1998). The minimum of the K L-divergence is obtained
by taking the partial derivatives of K L(Q| P) with respect to the elements of v, which generally results in
a set of fixed-point equations which can be solved iteratively.

A structured variational approzimation is simply an approximation in which the hidden variables are not
completely factorized, but rather they are related in a structured manner (Saul and Jordan, 1996). The
belief network corresponding to this approximation would therefore contain some edges between the hidden
variables. For example, a structured variational approximation to (1) could be

QS 5n, V) = Q(51)Q(S52/51) .. Q(SN|Sn-1) - %Q(Vlsl)---Q(V\SN)- (5)

The terms Q(S1)Q(S2]S1 ... Q(Sn|Sn—1) retain the Markov chain structure connecting the hidden variables

in (1); however, the rest of the terms replace the N order interaction between the hidden variables and the
observed variable by IV second-order interactions. The constant Z normalizes the product of these second-
order interactions so as to define a valid conditional probability of V' given S; to Sy. A belief network
representing this approximating distribution is shown in Figure 1c¢, which can be recognized as the belief
network corresponding to a hidden Markov model (Smyth et al., 1997). However, it is a curious hidden
Markov model in which a single observed variable has been replicated N times and placed at all of the
visible (shaded) nodes. Regardless of the nature of these visible nodes, a fast recursive algorithm exists
the forward-backward algorithm for calculating the posterior probabilities of the hidden variables given the
visible variables.?

It now remains how to find parameters for () that minimize (4). The result we present here can be used
to easily determine the fixed point equations for the minimum of (4).

3 Results

Theorem 1: Exponential Families For any distribution P(S) defined over a set of variables S = {S; :

i€l =A{1,...N}}, where H(S) is defined so that
1
P(S) =  exp~H(S)),

and any approximating distribution in the exponential family parametrized by v,

K
QS) = exp{ 3 1S+ B0 + fo(S) (6)
- Z—lQexp{—HQ(m (7)

where Hg(S) = — Z;:o [i(S)a;(v), ao(y) =1 and Zg = exp{—B(7)} = D_gexp{—Hq(S)}, the Kullback-
Leibler divergence KL(Q||P) can be minimized by iteratively solving

O(Hg) _ _0(H) .
a(f;(8))  9(f;(9))

2 Another issue in an approximation like this one is that, while the posterior probabilities of the hidden variables might be
easy to compute, the likelihood Q(V) might still be intractable. In this case, computing Q(V') still involves summing over all
the 2V states of the hidden variables. However, for inference, Q(V') need not be computed, and during learning the algorithm
will still maximize a lower bound on the likelihood, P(V).




for all 5 =0,...J, where (-) denotes expectation over the approximating distribution Q.

Proof. We start from the definition of the K L-divergence

KLQIP) = SQ()os g paL ©
= (H) — (Hg) +log Z — log Zg. (10)
Expanding the four terms using the chain rule and the definitions of the relevant quantities we obtain
oH) H 3F5(S))
W B Z o f] oy )
ta - L ;;msmmwm (12)
= ST am L HEQE) (13)
j s
B dos(1) e ere (i)
= CE ) - e =g (1)
dlogZ
5 -0 (15)
dlogZg 1 0
B = Z_Qa_’y geXP{;fJ(S)aJ(V)} (16)
_ Z 5% ) (17)
Combining terms we obtain
OKL ~~[ .. OH) 19(;(S)
T = w5y | A5 1

Using a;(v) = — B?YI(QS% we get that the zeros of the system of equations defined by (8) are also zeros of the

system of equations defined by (18). QED
Corollary. If Hg(S) is an m*-order polynomial in S,

= Z Yiy Siy + Z Yiy in Siz Sig - - + Z Virreim iz -+ Sins

i1el i1,i0 €1 i1, dm €I

then the variational fixed point equations set the coefficients of Hg equal to the corresponding derivatives

of (H).

__0(H)
Viryiz = 305555 (20)
_ O(H)
Yiy,.odim = m; (21)

Remark 1. The exponential family of distributions includes many models of interest, e.g., Boltzmann
machines, graphical Gaussian models, hidden Markov models, decision trees with multinomial variables.



However, it does not include mixture models (unless the mixture component is explicitly represented by a
hidden random variable) or sigmoid belief networks, for example.
Remark 2. Expressing (H) in terms of the (f;(S)) may sometimes be difficult.

Theorem 2: Further Factorizations If
1
Ps,v) =5[] £(C)
where C; are (possibly overlapping) subsets of variables C; C {S,V} and

Q(S) = H Q;(K;)

where K; are (non-overlapping) subsets of variables K; C {S}, then finding a variational approzimation that
mazrimizes

P(S,V
FI(@) = 2 Q(8) log 5
18 equivalent to maximizing
A\ S P(S7V)
Q) = ;Q(S) log 0(9)

where

where Cy; = C; N Kj.

Proof. Writing out the variational lower bound:
P =Y TI QKN fi(Ci) —log Zp — Y log Q;(K;)]
s i j
taking partial derivatives with respect to one of the distributions:
oF,
o e = = 2o 1 QK Y fi(Ci) ~log QI = k) — 1+,
0Q;(K; = k) oy -
S\K; j'#j i
where A; is a Lagrange multiplier ensuring that ¢); sums to one. Define
Fi(Ci) = Y [ @i () f:(C)
S\K; j'#ij

then
o0F;

m: Z fij(Cij) + const —log Q;(K; = k)

i:OiﬁK]qé@
Solving we get:

Q;(Kj) = % H Qi (Cij)

which is the same solution we would have gotten had we maximized F5 w.r.t. Q. QED.



4 Discussion

Several points are important to make. First, this result is especially useful if both P(S) and Q(S) can be
defined as ploynomials in S. In this case, the fixed point equations can be obtained almost by inspection,
simply by equating terms with correspondings powers of S. Second, there may be multiple parametrizations
of the approximating distribution in terms of polynomials in S. For example, while the result is expressed
for a model in which there are interactions of every order up to the mt", such models can be written in
terms of only m'" order interactions by subsuming the effect of lower order parameters into the higher
order parameters. Finally, this result is meant as a practical tool. More laborious alternative derivations of
variational approximations are also generally possible.

References

Cooper, G. F. (1990). The computational complexity of probabilistic inference using Bayesian belief networks.
Artificial Intelligence, 42(2-3):393 405.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the EM
algorithm. J. Royal Statistical Society Series B, 39:1 38.

Neal, R. M. (1993). Probabilistic inference using Markov chain monte carlo methods. Technical Report
CRG-TR-93-1, Department of Computer Science, University of Toronto.

Neal, R. M. and Hinton, G. E. (1998). A new view of the EM algorithm that justifies incremental, sparse,
and other variants. In Jordan, M. 1., editor, Learning in Graphical Models. Kluwer Academic Press.

Parisi, G. (1988). Statistical Field Theory. Addison-Wesley, Redwood City, CA.

Saul, L. and Jordan, M. 1. (1996). Exploiting tractable substructures in Intractable networks. In Touretzky,
D., Mozer, M., and Hasselmo, M., editors, Advances in Neural Information Processing Systems 8. MIT
Press.

Smyth, P., Heckerman, D., and Jordan, M. 1. (1997). Probabilistic independence networks for hidden Markov
probability models. Neural Computation, 9:227 269.



