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tThe problem of approximating a probability distribution o

urs frequently in many areas of appliedmathemati
s, in
luding statisti
s, 
ommuni
ation theory, ma
hine learning, and the theoreti
al analysisof 
omplex systems su
h as neural networks. Saul and Jordan (1996) have re
ently proposed a powerfulmethod for eÆ
iently approximating probability distributions known as stru
tured variational approx-imations. In stru
tured variational approximations, exa
t algorithms for probability 
omputation ontra
table substru
tures are 
ombined with variational methods to handle the intera
tions between thesubstru
tures whi
h make the system as a whole intra
table. In this note, I present a mathemati
al resultwhi
h 
an simplify the derivation of stru
tured variational approximations in the exponential family ofdistributions.1 Introdu
tionBelief networks provide a well-understood graphi
al framework for expressing the intera
tions between ran-dom variables. Su
h networks have proven useful for modeling the 
ausal stru
ture of 
omplex systems ofintera
ting variables, su
h as diseases and symptoms in a medi
al diagnosis problem. They also providean elegant framework for understanding the relation between neural network learning algorithms and moretraditional statisti
al models. Finally, some would argue that belief networks themselves are an appealingmodel of neural 
omputation and per
eptual inferen
e in humans.One of the essential attributes of a belief network is that it de�nes a graphi
al stru
ture within whi
hto do Bayesian inferen
e in a probabilisti
ally 
onsistent manner. The graphi
al stru
ture spe
i�es a set of
onditional independen
es between the variables in the network. These independen
es 
an be exploited toderive re
ursive algorithms for inferring the 
onditional probabilities of any set of variables given any otherset of variables. However, for general belief networks with arbitrary 
onne
tivity and nonlinear intera
tions,the problem of exa
t inferen
e is 
omputationally intra
table (Cooper, 1990). Therefore, in pra
ti
e thisintra
tability must be 
ir
umvented by making use of approximate algorithms for inferen
e. Two su
h
lasses of algorithms are Markov 
hain Monte Carlo methods and variational approximations, both of whi
hwere developed in large part by statisti
al physi
ists modeling systems of many intera
ting parti
les.1 Inthis paper we present a simple mathemati
al result 
on
erning variational approximations and dis
uss itsappli
ability to the pra
ti
al problem of deriving learning algorithms.2 Stru
tured Variational ApproximationsConsider the belief network shown in Figure 1a, where the shaded node 
orresponds to an observed variablesV and the unshaded nodes 
orrespond to hidden variables S. The presen
e of dire
ted edges in the beliefnetwork expresses a set of 
onditional independen
e relations between the variables: namely, that the variable1A review of Markov Chain Monte Carlo methods is provided by Neal (1993); mean �eld methods in physi
s, whi
h are a
lass of variational approximation, are dis
ussed in Parisi (1988).1



S1 S2 S3 SN

V

S1 S2 S3 SN

V

S1 S2 S3 SN

V V V VFigure 1: A belief network and two approximations.asso
iated with ea
h node is 
onditionally independent of the variables asso
iated with that node's non-des
endants given its parents. Using these independen
e relations, the joint probability of S and V 
an bewritten as P (S1; : : : ; SN ; V ) = P (S1)P (S2jS1) : : : P (SN jSN�1)P (V jS1; : : : ; SN): (1)To illustrate the intra
tability of inferen
e in this network, 
onsider the problem of 
omputing the 
onditionalprobability distribution of one of the hidden variables, say S1, given the observed variable. There are atleast two reasons one may want to 
ompute this distribution. First, S1 may be the variable of interest inan inferen
e problem, for example, for medi
al diagnosis, whi
h justi�es marginalizing over the other hiddenvariables. Se
ond, to estimate the parameters of the belief network using the Expe
tation-Maximization(EM) algorithm (Dempster et al., 1977) it is ne
essary to 
ompute 
onditional probabilities of subsets of thehidden variables given the observed variables.To 
ompute this 
onditional probability distribution we need to sum (or integrate) over all the possiblevalues of the hidden variables we are not dire
tly interested in:P (S1jV ) = XS2;:::;SN P (S1; : : : ; SN jV ) (2)= PS2;:::;SN P (S1; : : : ; SN ; V )PS1;:::;SN P (S1; : : : ; SN ; V ) : (3)For binary Si variables, for example, this summation in
ludes 2N terms. Without additional 
onstraints,there is no way of making use of the fa
torization in (1) to simplify this 
omputation.To over
ome this 
omputational 
ost one 
an approximate the 
onditional distribution over the hiddenvariables by a simpler, tra
table distribution. For example,Q(S1; : : : ; SN jV ) = Q(S1jV ) : : : Q(SN jV )assumes that given V , all the Si are independent (Figure 1b). This 
omplete fa
torization is the assumptionused in simple mean �eld approximations in statisti
al me
hani
s. Asso
iated with the approximatingdistribution Q is a ve
tor of variational parameters 
, whi
h 
an be optimized so as to make Q(SjV ) assimilar as possible to P (SjV ). A standard measure of similarity between two probability distributions is the2



Kullba
k-Leibler divergen
e (or 
ross-entropy):KL(QkP ) =XS Q(SjV ) log Q(SjV )P (SjV ) : (4)Note that theKL-divergen
e is asymmetri
 in its two arguments; we fo
us on the above form of the divergen
efor two reasons. First, it involves averages with respe
t to the tra
table, Q, distribution. Se
ond, minimizingthis form of the KL-divergen
e 
orresponds to maximizing a lower bound on the log likelihood, a sensible
riterion for a learning algorithm (Neal and Hinton, 1998). The minimum of the KL-divergen
e is obtainedby taking the partial derivatives of KL(QkP ) with respe
t to the elements of 
, whi
h generally results ina set of �xed-point equations whi
h 
an be solved iteratively.A stru
tured variational approximation is simply an approximation in whi
h the hidden variables are not
ompletely fa
torized, but rather they are related in a stru
tured manner (Saul and Jordan, 1996). Thebelief network 
orresponding to this approximation would therefore 
ontain some edges between the hiddenvariables. For example, a stru
tured variational approximation to (1) 
ould beQ(S1; : : : ; SN ; V ) = Q(S1)Q(S2jS1) : : : Q(SN jSN�1) � 1ZQ(V jS1) : : : Q(V jSN ): (5)The terms Q(S1)Q(S2jS1 : : :Q(SN jSN�1) retain the Markov 
hain stru
ture 
onne
ting the hidden variablesin (1); however, the rest of the terms repla
e the Nth-order intera
tion between the hidden variables and theobserved variable by N se
ond-order intera
tions. The 
onstant Z normalizes the produ
t of these se
ond-order intera
tions so as to de�ne a valid 
onditional probability of V given S1 to SN . A belief networkrepresenting this approximating distribution is shown in Figure 1
, whi
h 
an be re
ognized as the beliefnetwork 
orresponding to a hidden Markov model (Smyth et al., 1997). However, it is a 
urious hiddenMarkov model in whi
h a single observed variable has been repli
ated N times and pla
ed at all of thevisible (shaded) nodes. Regardless of the nature of these visible nodes, a fast re
ursive algorithm exists|the forward-ba
kward algorithm{for 
al
ulating the posterior probabilities of the hidden variables given thevisible variables.2It now remains how to �nd parameters for Q that minimize (4). The result we present here 
an be usedto easily determine the �xed point equations for the minimum of (4).3 ResultsTheorem 1: Exponential Families For any distribution P (S) de�ned over a set of variables S = fSi :i 2 I = f1; : : :Ngg, where H(S) is de�ned so thatP (S) = 1Z expf�H(S)g;and any approximating distribution in the exponential family parametrized by 
,Q(S) = exp8<: KXj=1 fj(S)�j(
) + �(
) + f0(S)9=; (6)= 1ZQ expf�HQ(S)g; (7)where HQ(S) = �PJj=0 fj(S)�j(
), �0(
) = 1 and ZQ = expf��(
)g =PS expf�HQ(S)g, the Kullba
k-Leibler divergen
e KL(QkP ) 
an be minimized by iteratively solving�hHQi�hfj(S)i = �hHi�hfj(S)i (8)2Another issue in an approximation like this one is that, while the posterior probabilities of the hidden variables might beeasy to 
ompute, the likelihood Q(V ) might still be intra
table. In this 
ase, 
omputing Q(V ) still involves summing over allthe 2N states of the hidden variables. However, for inferen
e, Q(V ) need not be 
omputed, and during learning the algorithmwill still maximize a lower bound on the likelihood, P (V ). 3



for all j = 0; : : : J , where h�i denotes expe
tation over the approximating distribution Q.Proof. We start from the de�nition of the KL-divergen
eKL(QkP ) = XS Q(S) log Q(S)P (S) (9)= hHi � hHQi+ logZ � logZQ: (10)Expanding the four terms using the 
hain rule and the de�nitions of the relevant quantities we obtain�hHi�
 = Xj �hHi�hfj(S)i �hfj(S)i�
 (11)�hHQi�
 = � ��
XS Xj fj(S)�j(
)Q(S) (12)= � ��
Xj �j(
)XS fj(S)Q(S) (13)= �Xj ��j(
)�
 hfj(S)i �Xj �j(
)�hfj(S)i�
 (14)� logZ�
 = 0 (15)� logZQ�
 = 1ZQ ��
XS exp8<:Xj fj(S)�j(
)9=; (16)= Xj ��j(
)�
 hfj(S)i (17)Combining terms we obtain �KL�
 =Xj ��j(
) + �hHi�hfj(S)i� �hfj(S)i�
 : (18)Using �j(
) = � �hHQi�hfj(S)i we get that the zeros of the system of equations de�ned by (8) are also zeros of thesystem of equations de�ned by (18). QEDCorollary. If HQ(S) is an mth-order polynomial in S,HQ(S) =Xi12I 
i1Si1 + Xi1;i22I 
i1;i2Si1Si2 : : :+ Xi1;:::im2I 
i1;:::imSi1 : : : Sim ;then the variational �xed point equations set the 
oeÆ
ients of HQ equal to the 
orresponding derivativesof hHi. 
i1 = �hHi�hSi1i (19)
i1;i2 = �hHi�hSi1Si2i (20)...
i1;:::im = �hHi�hSi1 : : : Simi ; (21)Remark 1. The exponential family of distributions in
ludes many models of interest, e.g., Boltzmannma
hines, graphi
al Gaussian models, hidden Markov models, de
ision trees with multinomial variables.4



However, it does not in
lude mixture models (unless the mixture 
omponent is expli
itly represented by ahidden random variable) or sigmoid belief networks, for example.Remark 2. Expressing hHi in terms of the hfj(S)i may sometimes be diÆ
ult.Theorem 2: Further Fa
torizations IfP (S; V ) = 1ZYi f(Ci)where Ci are (possibly overlapping) subsets of variables Ci � fS; V g andQ(S) =Yj Qj(Kj)where Kj are (non-overlapping) subsets of variables Kj � fSg, then �nding a variational approximation thatmaximizes F1(Q) =Xs Q(S) log P (S; V )Q(S)is equivalent to maximizing F2( ~Q) =Xs ~Q(S) log P (S; V )~Q(S)where ~Q(S) = 1~ZYi;j ~Qij(Cij)where Cij = Ci \Kj .Proof. Writing out the variational lower bound:F1 =XS Yj Qj(Kj)[Xi fi(Ci)� logZP �Xj logQj(Kj)℄taking partial derivatives with respe
t to one of the distributions:�F1�Qj(Kj = k) = XSnKj Yj0 6=jQj0(Kj0)Xi fi(Ci)� logQj(Kj = k)� 1 + �jwhere �j is a Lagrange multiplier ensuring that Qj sums to one. De�nefij(Cij) � XSnKj Yj0 6=jQj0(Kj0 )fi(Ci)then �F1�Qj(Kj = k) = Xi:Ci\Kj 6=; fij(Cij) + 
onst� logQj(Kj = k)Solving we get: Qj(Kj) = 1ZYi Qij(Cij)whi
h is the same solution we would have gotten had we maximized F2 w.r.t. ~Q. QED.
5



4 Dis
ussionSeveral points are important to make. First, this result is espe
ially useful if both P (S) and Q(S) 
an bede�ned as ploynomials in S. In this 
ase, the �xed point equations 
an be obtained almost by inspe
tion,simply by equating terms with 
orrespondings powers of S. Se
ond, there may be multiple parametrizationsof the approximating distribution in terms of polynomials in S. For example, while the result is expressedfor a model in whi
h there are intera
tions of every order up to the mth, su
h models 
an be written interms of only mth order intera
tions by subsuming the e�e
t of lower order parameters into the higherorder parameters. Finally, this result is meant as a pra
ti
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