
CLUSTERING PROTEIN SEQUENCE AND STRUCTURESPACE WITH INFINITE GAUSSIAN MIXTURE MODELSA. DUBEY, S. HWANG, C. RANGELKe
k Graduate Institute, 535 Watson Drive,Claremont CA 91711, USAC.E. RASMUSSENMax Plan
k Institute for Biologi
al Cyberneti
s, Spemann Strasse 3872076 Tuebingen, GermanyZ. GHAHRAMANIGatsby Computational Neuros
ien
e Unit, University College London,17 Queen Square, London, WC1N 3AR, UKD.L.WILDKe
k Graduate Institute, 535 Watson Drive,Claremont CA 91711, USAAbstra
tWe des
ribe a novel approa
h to the problem of automati
ally 
lus-tering protein sequen
es and dis
overing protein families, subfamilieset
., based on the theory of in�nite Gaussian mixtures models. Thismethod allows the data itself to di
tate how many mixture 
omponentsare required to model it, and provides a measure of the probability thattwo proteins belong to the same 
luster. We illustrate our methods withappli
ation to three data sets: globin sequen
es, globin sequen
es withknown three-dimensional stru
tures and G-protein 
oupled re
eptor se-quen
es. The 
onsisten
y of the 
lusters indi
ate that our method isprodu
ing biologi
ally meaningful results, whi
h provide a very good in-di
ation of the underlying families and subfamilies. With the in
lusion ofse
ondary stru
ture and residue solvent a

essibility information, we ob-tain a 
lassi�
ation of sequen
es of known stru
ture whi
h both re
e
tsand extends their SCOP 
lassi�
ations.1 Introdu
tionThe 
lustering of protein sequen
es into families and superfamilies is a
ommon approa
h for both 
omparative genomi
s and the predi
tion ofprotein fun
tion. With the advent of stru
tural genomi
s proje
ts, the
lustering of protein sequen
es with those of known stru
ture has alsobeen proposed as a method of target sele
tion for stru
ture determina-tion. Newly determined protein stru
tures must then be 
lassi�ed, both1



to assess their novelty, and in the 
ase of proteins of unknown fun
tion,as a �rst step in fun
tional annotation.Most methods for 
lustering protein sequen
es begin with an all-against-all pairwise similarity sear
h and use the pairwise s
ore as a mea-sure of similarity of the two sequen
es. A variety of approa
hes have beendes
ribed to 
onstru
t 
lusters from these s
ores: GENERAGE 1 usesre
ursive single linkage hiera
hi
al 
lustering, and PROTOMAP 2 
on-stru
ts hierar
hi
al 
lusters in a similar manner but using the means ofall pairwise s
ores. SYSTERS3 uses heuristi
s derived from set-theoreti

onsiderations to obtain a set of disjoint 
lusters. Abas
al and Valen
ia4 des
ribe a method for 
lustering protein families whi
h uses the N
utalgorithm derived from graph theory. All these methods rely on the set-ting of some s
ore theshold to distinguish members of a parti
ular 
lusterfrom non-members, making the determination of the number of 
lustersarbitrary and subje
tive. Approa
hes based on single linkage hierar
hi
al
lustering 
an give results whi
h are highly dependent on small 
hangesto the data (su
h as adding or removing a single sequen
e). Moreover,non-probabilisti
 approa
hes do not provide a measure of un
ertaintyabout the 
lustering, make it diÆ
ult to 
ompute the predi
tive qualityof the 
lustering and to make 
omparisons between 
lusterings based ondi�erent model assumptions (e.g. numbers of 
lusters, shapes of 
lus-ters, et
). Krogh et al. 5 provided an alternative probabilisti
 approa
hwhi
h used hidden Markov models (HMMs) to 
luster protein sequen
esfrom the globin family into subfamilies. They �t a mixture of HMMs(whi
h is itself a spe
ial kind of HMM) using maximum likelihood meth-ods. The results of these experiments were promising for this parti
ularexample, yielding 
lusters that 
orrespond to known globin subfamilies.Little work has followed up on this area. Methods for automati
ally
lustering sequen
es into hypothesized 
lasses will be in
reasingly usefulas amounts of sequen
e and stru
tural data 
ontinue to grow.An important issue that must be addressed in any 
lustering methodis the question of how many 
lusters to use. Bayesian statisti
s 
an pro-vide a solution to model sele
tion questions of this kind (e.g.6;7). Withinthe Bayesian framework, an elegant alternative approa
h is to assumethat the data was in fa
t generated from an in�nite number of Gaussian
lusters. Any a
tual 
lusters in the protein sequen
e data will surelynot be Gaussian distributeda. In�nite mixtures are a sensible way to
apture the fa
t that we don't really believe that protein sequen
e datais well modeled by a �nite number of Gaussians. An in�nite Gaussianmixture model 
an readily model a �nite number of non-Gaussian 
lus-ters. Finally, in an in�nite Gaussian mixture model there is no need toaWe dis
uss below how one 
an derive ve
torial representations of sequen
es so thatquestions about Gaussianity are well-de�ned.2



make arbitrary 
hoi
es about how many 
lusters there are in the data;nevertheless, after modeling one 
an ask questions su
h as how probableit is that two protein sequen
es or stru
tures belong to the same 
luster?We des
ribe a novel approa
h to the problem of automati
ally 
lus-tering protein sequen
es and dis
overing protein families, subfamilieset
. based on the theory of in�nite mixtures 8. This theory is basedon the observation that the mathemati
al limit of an in�nite number of
omponents in an ordinary �nite mixture model (i.e. 
lustering model)
orresponds to a Diri
hlet pro
ess prior 9;10;8. Su
h a Diri
hlet pro
essprior allows the data itself to di
tate how many mixture 
omponents arerequired to model it. That is, a diverse family may require several 
ompo-nents whereas a simpler family may require only one. Although in theorythe in�nite mixture has an in�nite number of parameters, surprisingly,it is possible to sample from these in�nite mixture models eÆ
ientlysin
e only the parameters of a few of the models need to be represented.The theory of in�nite mixture models is laid out by Rasmussen8, whoshowed that the pro
edure works e�e
tively with mixtures of Gaussians.It has sin
e been applied to the 
lustering of gene expression pro�les byMedvedovi
 and Sivaganesan 11.2 In�nite Gaussian Mixture ModelsOne 
ommonly used 
omputational method of non-hierar
hi
al 
luster-ing based on measuring Eu
lidean distan
e between feature ve
tors isgiven by the k-means algorithm. However, the k-means algorithm isinadequate for des
ribing 
lusters of unequal size or shape. A gener-alization of k-means 
an be derived from the theory of maximum like-lihood estimation of Gaussian mixture models12. In a Gaussian mix-ture model, the data (e.g. features of protein sequen
es or gene expres-sion pro�les whi
h 
an be arranged into p-dimensional ve
tors y) is as-sumed to have been generated from a �nite number (k) of Gaussians,P (y) = Pkj=1 �jPj(y) where �j is the mixing proportion for 
lusterj (fra
tion of population belonging to 
luster j; Pj �j = 1; �j � 0)and Pj(y) is a multivariate Gaussian distribution with mean �j and 
o-varian
e matrix �j . The 
lusters 
an be found by �tting the maximumlikelihood Gaussian mixture model as a fun
tion of the set of parameters� = f�j ; �j ;�jgkj=1 using the EM algorithm 12. Eu
lidean distan
e 
or-responds to assuming that the �j are all equal multiples of the identitymatrix.Starting from a �nite mixture model (2), we de�ne a prior overthe mixing proportion parameters �. The natural 
onjugate prior formixing proportions is the symmetri
 Diri
hlet distribution: P (�j�) =�(�)�(�=k)k Qkj=1 ��=k�1j where � 
ontrols the distribution of the prior weight3



assigned to ea
h 
luster, and � is the gamma fun
tion.We then expli
itly in
lude indi
ator variables 
i for ea
h data point(i.e. protein sequen
e) whi
h 
an take on integer values 
i = j, j 2f1; : : : ; kg, 
orresponding to the hypothesis that data point i belongsto 
luster j. Under the mixture model, by de�nition, the prior proba-bility is proportional to the mixing proportion: P (
i = jj�) = �j . Akey observation is that we 
an 
ompute the 
onditional probability ofone indi
ator variable given the setting of all the other indi
ator vari-ables after integrating over all possible settings of the mixing proportionparameters:P (
i = jj
�i; �)=Z P (
i = jj
�i; �)P (�j
�i; �) d�= n�i;j + �=kn� 1 + � (1)where 
�i is the setting of all indi
ator variables ex
ept the ith, n isthe total number of data points, and n�i;j is the number of data pointsbelonging to 
lass j not in
luding i. By Bayes rule,P (�j
�i; �) = P (�j�)=P (
�ij�)Ỳ6=i P (
`j�) (2)whi
h is also a Diri
hlet distribution, making it possible to perform theabove integral analyti
ally. We now 
an take the limit of k going toin�nity, obtaining a Diri
hlet Pro
ess with di�ering 
onditional proba-bilities for 
lusters with and without data: for 
lusters where n�i;j > 0:p(
i = jj
�i; �) = n�i;jn�1+� , for all other 
lusters 
ombined: p(
i 6=
i0 for all i0 6= ij
�i; �) = �n�1+� . This shows that the probabilitesare proportional to the o

upation numbers, n�i;j . Using these 
on-ditional probabilities one 
an Gibbs sample from the indi
ator variableseÆ
iently, even though the model has in�nitely many Gaussian 
lusters.Having integrated out the mixing proportions one 
an also Gibbs sam-ple from all of the remaining parameters of the model, i.e. f�;�gj . Thedetails of these pro
edures 
an be found in Rasmussen (2000)8 .We have used in�nite Gaussian mixtures to model protein sequen
edata with the intention of answering queries of the kind: what is theprobability that two proteins belong to the same 
luster? Unlike pre-vious methods based on a single 
lustering of the data, this approa
h
omputes this probability while taking into a

ount all sour
es of modelun
ertainty (in
luding number of 
lusters and lo
ation of 
lusters). Weuse the probability pij that two proteins i and j belong to the same 
lus-ter in the in�nite mixture model as a measure of the similarity of theseprotein sequen
es. Conversely 1 � pij de�nes a dissimilarity measurewhi
h for the purposes of visualization 
an be input to one of the stan-dard linkage algorithms used for hierar
hi
al 
lustering (see Figure 3).4



We illustrate our methods with appli
ation to three data sets: globin se-quen
es, globin sequen
es with known three-dimensional stru
tures andG-protein 
oupled re
eptor sequen
es.3 MethodsTo be able to 
luster protein sequen
es, we need to be able to obtain ave
tor representation of the protein in a suitable metri
 spa
e. We usethe Fisher s
ore ve
tor respresentation des
ribed by Jaakkola et al 13,whi
h provides an appropriate measure of similarity between sequen
es.The Fisher s
ore ve
tor for a parti
ular protein X is obtained by eval-uating the derivative of the log-likelihood with respe
t to a ve
tor ofparameters (�) of a hidden Markov model (HMM) trained on the set ofprotein sequen
es: UX = r� log P (Xj�). Ea
h 
omponent of the ve
torUX is the derivative of the log-likelihood for the sequen
e X with respe
tto a parti
ular parameter (the emission probabilities of the HMM).In the work des
ribed below, we �rst train an HMM on the set ofprotein sequen
es of interest and then 
al
ulate a Fisher s
ore ve
tor asdes
ribed above. In the 
ase of sequen
es of known stru
ture, we usethe Bayesian network model of Raval et al. 14, whi
h 
an be thought ofas an extension of a hidden Markov model to in
orporate multiple ob-servations of primary sequen
e, se
ondary stru
ture and residue solventa

essibility, 
al
ulated from the three-dimensional 
oordinates by theDSSP method of Kabs
h and Sander 15. For all data sets the dimension-ality of the Fisher s
ore ve
tor was then redu
ed by prin
ipal 
omponentsanalysis and we used this redu
ed dimension ve
tor as the y ve
tor inputinto the in�nite Gaussian mixture model. We used the �rst 10 prin
ipal
omponents, whi
h 
aptured most of the varian
e in the UX ve
tors.The mixture model was initialized with all data belonging to a singleGaussian, and a large number of Gibbs sampling sweeps are performed,updating all variables and parameters, i.e. ff�j ;�jg; f
ig; �g, in turn bysampling from the 
onditional distributions derived in the previous se
-tions and des
ribed in more detail in Rasmussen (2000)8. We typi
allyrun the 
hain for 110,000 iterations, dis
arding the initial 11,000 stepsas \burn-in" and keeping every 1000th step after that, generating 100roughly independent samples from the posterior distribution.4 Results4.1 Globin Sequen
esThe mixture of HMMs method of Krogh et al 5 dis
overed 7 
lusters ina set of 628 globin sequen
es, 
orresponding to:5



1. Class 1 233 sequen
es: prin
ipally all �, a few � ( an �-type 
hainof mammalian embryoni
 hemoglobin), �=�0 (the 
ounterpart ofthe � 
hain in major early embryoni
 hemoglobin P), and � � 1
hains (early erythro
yte �-like).2. Class 2 232 sequen
es: almost all �, a few Æ (�-like), � (�-typefound in early embryos), 
 (
omprises fetal hemoglobin F in 
ombi-nation with two � 
hains), � (major early embryoni
 �-type 
hain)and � 
hains (embryoni
 �-type 
hain).3. Class 3 71 myoglobins.4. Class 4 58 sequen
es. The 13 highest s
oring in this 
luster wereleghemoglobins. This 
lass 
ontained a variety of sequen
es in
lud-ing 3 non-globins in the original data set.5. Class 5 19 sequen
es. Midge globins.6. Class 6 8 sequen
es. Globins from agnatha (jawless �sh).7. Class 7 7 sequen
es. varied.Our results, using an updated version of the same data set (630globin sequen
es, distributed with the HMMER2 software pa
kage) isshown in Figure 1. In this plot we show the number of times, out of100 samples, that the indi
ator variables for two sequen
es were equal.As shown above, this may be interpreted as the probability pij thattwo proteins i and j belong to the same 
luster. It is evident thatour model has dis
overed a larger number of 
lusters that the methodof Krogh et al.5. The granularity of this 
lustering is determined bythe data and not by some user-de�ned threshold. Large solid blo
ks of
olor along the diagonal 
orrespond to homogeneous 
lusters. Note thatin our method, sequen
es may belong to more than one 
luster witha de�ned probability: o�-diagonal elements indi
ate '
ross-
lustering'.For 
omparison, we also 
lustered the sequen
es using BLASTCLUST,whi
h 
lusters the sequen
es a

ording to a sequen
e identity thresholdand a single linkage algorithm. With a 90% sequen
e identity thresh-old, 261 
lusters were obtained. The �rst large homogeneous 
lusterin Figure 1 (bottom right hand 
orner) 
omprises 37 hemoglobin � se-quen
es plus two Æ sequen
es (HBD COLPO and HBD PANTR) (Figure1). Although a number of these sequen
es are 
ontained within the same
luster in the BLASTCLUST output, indi
ating that they have > 90%sequen
e identity, we note that the 
lusters are by no means identi
al.The BLASTCLUST 
luster 
ontaining many of these hemoglobin � se-quen
es also 
ontains 8 hemoglobin Æ sequen
es and one Hemoglobin�-2 
hain (HBB2 PANLE). Figure 1 indi
ates that all sequen
es withinthis 
luster also '
ross-
luster' with another group of � sequen
es with aprobability of around 20-30%. The next 
luster from the bottom right6



(Figure 1) 
ontains all � sequen
es and 
ross 
lusters with another groupof � sequen
es with a probability of around 40-50%. Although a detailedanalysis of these results is beyond the s
ope of this paper, we identifyat least 11 distin
t � and 13 distin
t � 
lusters (plus some additionalsmaller ones). Although some of the variant sequen
es 
luster with �and � sequen
es, we identify a number of 
lusters 
omposed only ofvariant sequen
es: 3 
lusters 
omprising only 
, � and � sequen
es, one
luster of Æ and one 
luster of � sequen
es. We identify 3 distin
t 
lustersof leghemoglobins and 1 
luster of midge hemoglobins (6 sequen
es), asmall 
luster of �sh hemoglobins and a small 
luster 
omprising 
lamand earthworm sequen
es. Myoglobins, whi
h Krogh et al (1994) foundin one 
luster, form 10 distin
t 
lusters, mainly 
omprising proteins fromrelated spe
ies. BLASTCLUST groups these into 6 
lusters plus 9 single-tons at a 90% identity theshold. We identify only 11 singletons (proteinswhi
h never 
luster with another), none of whi
h are myoglobins.
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Figure 1: Clustering of the 630 globin sequen
es. The gray s
ale indi
ates the number oftimes, out of 100 samples, that the indi
ator variables for two sequen
es were equal, or theprobability that two sequen
es belong to the same 
lusterThese results indi
ate that our method is 
apable of produ
ing bio-logi
ally meaningful results and 
orre
tly 
lassi�es the main globin sub-families. In addition, it provides a �ner level of 
lustering within thesesubfamilies than either the use of BLAST alignments and sequen
e iden-tity or the method of Krogh et al.54.2 Globin Sequen
es of Known Stru
tureFor this experiment we obtained globin sequen
es from the Stru
uralClassi�
ation of Proteins (SCOP) database 16 using the ASTRAL re-7



sour
e b. Sequen
es with > 95% sequen
e identity were ex
luded, leav-ing 91 proteins. A

ording to the SCOP 
lassi�
ation, these 
onprisedrepresentatives of 4 globin stru
tural subfamilies (a.1.1.1: trun
atedhemoglobins (4 sequen
es) , a.1.1.2: gly
era globins, myoglobins, hemoglobinI, 
avohemoglobins, leghemoglobins, hemoglobin � and � 
hains, a.1.1.3:phy
o
yanins, allophy
o
yanins, phy
oerythrins and a.1.1.4: nerve tis-sue mini-hemoglobin (1 sequen
e) ). The sequen
es were 
lustered usingfeature ve
tors derived from two models: a sequen
e-only HMM and aBayesian net model (stru
tural HMM). The results are shown in Figure2 and Figure 3.The results from the sequen
e only 
lustering (Figure 2 left) show asimilar pattern to those obtained with the 630 globin sequen
es. Fairlyhomogeneous 
lusters are mainly 
omposed of related sequen
es, eg: �hemoglobin 
hains, � hemoglobin 
hains, myoglobins, phy
o
yanin a andb, phy
oerythrin and b and allophy
o
yanin a and b 
hains (whi
h allform separate 
lusters). Gly
era globins forms a separate 
luster, asdo leghemoglobins. Three or four heterogeneous (loosely asso
iated)
lusters are observed, whi
h in
lude trun
ated hemoglobins, hemoglobinI's, dehaloperoxidase et
.The results from the model whi
h in
ludes se
ondary stru
ture andresidue a

essibility information shows fewer 
lusters; 12 in all, plus twosingletons (dehaloperoxidase and pig roundworm hemoglobin, domain 1)(Figure 2 right). Again � and � hemoglobin 
hains form distin
t andfairly homogeneous 
lusters, as do the myoglobins, with the ex
eptionof 1MYT (this is a myoglobin whi
h la
ks the D helix), whi
h 
lustersmore strongly with � hemoglobins, as well as weakly with the myoglobin
luster, and 1MBA (a mollus
 myoglobin), whi
h 
lusters with 
lamhemoglobins and gly
era globins from bloodworms. Phy
o
yanins, allo-phy
o
yanins and phy
oerythrins (whi
h are all 
lassi�ed by SCOP intothe same subfamily a.1.1.3) form two distin
t large joint 
lusters. Withinthese 
lusters one 
an dete
t subfamilies 
orresponding to the allophy
o-
yanins, phy
oerythrins and phy
o
yanins, whi
h 
luster amongst them-selves with a higher probability. Leghemoglobins 
luster strongly witha single non-symbioti
 plant hemoglobin from ri
e, and weakly with a
lam hemoglobin I. Trun
ated hemoglobins, whi
h SCOP 
lassi�es intoa di�erent subfamily (a.1.1.1), form two distin
t 
lusters, and the solemember of subfamily a.1.1.4 (nerve tissue mini-hemoglobin), 
lusterswith 1CH4 (
himeri
 syntheti
 hemoglobin beta-alpha). In 
omparison,13 
lusters are produ
ed with BLASTCLUST only at a 10% sequen
eidentity threshold. These 
omprise a single 
luster for a.1.1.1, nine sep-arate 
lusters for a.1.1.2 (in
luding 4 singletons), a single 
luster fora.1.1.3 and a singleton for a.1.1.4. Our results, whi
h do not require abhttp://astral.stanford.edu 8



prede�ned threshold to be spe
i�ed, provide a re
e
tion the underlyingSCOP 
lassi�
ations but also suggest that a further level of subfamilysubdivision is possible.
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h plot.
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Phycocyanins 
Hemoglobins Myoglobins Hemoglobins Phycoerythrins 

Phycocyanins Figure 3: Dendrogram resresentation of the 
lustering of the 91 SCOP globin sequen
esshown in Figure 2:left, by sequen
e information only; right, with the in
lusion of stru
turalinformation.4.3 G-Coupled Protein Re
eptors (GPCRs)A

ording to the GPCRDB 
lassi�
ation system 17, the G-protein 
ou-pled re
eptor (GPCR) superfamily is 
lassi�ed into 5 major 
lasses: ClassA (related to rhodopsin and adrenergi
 re
eptors), Class B (related to
al
itonin and PTH/PTHrP re
eptors), Class C (related to metatropi
9



re
eptors), Class D (related to pheromone re
eptors) and Class E (re-lated to 
AMP re
eptors). The 
lasses share � 20% sequen
e identityover predi
ted transmembrane heli
es 17. Ea
h 
lass is further dividedinto level 1 subfamilies (eg: Amine, Peptide, Opsin et
. for Class A)and further into Level 2 subfamilies (Mus
arini
, Histamine, Serotoninet
. for the Amine subfamily). A number of putative GPCRs have noidenti�ed natural ligand and are dubbed 'orphan' re
eptors. The se-quen
e diversity of the GPCR 
lasses makes subfamily 
lassi�
ation a
hallenging problem. The problem of re
ognizing GPCR subfamilies is
ompounded by the fa
t that the subfamily 
lassi�
ations in GPCRDBare de�ned 
hemi
ally (that is, a

ording to the di�erential binding ofligands to the re
eptors) and not ne
essarily by either sequen
e similarityor the post ligand-re
eptor binding pathways.A number of other authors have des
ribed 
omputational approa
hesto 
lassifying GPCRs. Kar
hin et al18 trained 2-
lass support ve
tor ma-
hines (SVMs) using Fisher s
ore ve
tors derived from HMMs 13. Joostand Methner19 used a phylogeneti
 tree 
onstru
ted by neighbor joiningwith bootstrapping. Lapinsh et al 20 translated amino a
id sequen
esinto ve
tors based on the physi
o
hemi
al properties of the amino a
idsand used and auto
ross-
ovarian
e transformation followed by prin
ipal
omponents analysis (PCA) to 
lassify GPCRs.For our experiments, sequen
es were obtained from the GPCRDBdatabase 17 
. Be
ause of the smaller number of sequen
es in ClassesB-E, we have fo
ussed our analysis of Class A sequen
es. Our dataset
omprised 946 sequen
es, of whi
h 303 were \orphan" re
eptors, withno family 
lassi�
ation. A portion of the 
lustering results using thein�nite Gaussian mixture model are shown in Figure 4. Be
ause of thesequen
e diversity of this superfamily, a larger number of smaller 
lus-ters are evident around the diagonal than were observed with the globinsequen
es. Most of the homogeneous 
lusters (solid 
olor) 
omprise se-quen
es from the same subfamily (level 3 in the GPCRDB hierar
hy),and appear to be orthologs of the same protein from related spe
ies.Whilst a detailed analysis of these is beyond the s
ope of the present pa-per, as an illustration, we note that the largest 
luster (bottom right hand
orner), 
omprises Rhodopsin (Rhodopsin Vertebrate type 1) sequen
esfrom mammals and reptiles (plus lamprey), whilst the se
ond 
lusteris 
omposed entirely of �sh Rhodopsins. Some unexpe
ted asso
iationsalso appear. Although in some 
ase our results indi
ate assignments for
ertain orphan re
eptors whi
h agree those of the authors 
ited above,in other 
ases our predi
tions are novel. A detailed analysis of these willbe published in an extended version of this paper.
http://www.gp
r.org 10
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Figure 4: Part of the 
lustering of the GPCR Class A sequen
es.5 Dis
ussionThe 
onsisten
y of the 
lusters we obtain with a well annotated super-family of protein sequen
es su
h as the globins gives us 
on�den
e thatour method is produ
ing biologi
ally meaningful results, whi
h providea very good indi
ation of the underlying families and subfamilies. Ho-mogeneous 
lusters tend to 
onsist of orthologs of the same protein andparalogs appear to be separated into distin
t 
lusters. This pattern ap-pears to be repeated in our 
lustering of the GPCR sequen
es, with thepotential of providing fun
tional annotations for 
ertain orphan re
ep-tors. Whilst some of these agree with predi
tions derived from neighbor-joining phylogeneti
 trees and prin
ipal 
omponent analysis, a numberare novel. In all 
ases, our method provides a �ner level of granularitythan the method of Lapinsh et al. 20, 
lustering orphan re
eptors withmembers of parti
ular GPCRDB subfamilies, rather than a broad fam-ily 
lassi�
ation. With the in
lusion of se
ondary stu
ture and residuesolvent a

essibility information in the HMM on whi
h our method isbased, the 
lustering of the SCOP globin sequen
es 
hanges from a largenumber of small 
lusters of fun
tionally related sequen
es to a smallernumber of 
lusters, in whi
h the members of the SCOP globin familiesare 
learly separated. However, on
e again we a
hieve an even �ner levelof 
lassi�
ation, 
learly separating �, � and myoglobins, as well as othermembers of SCOP 
lass a.1.1.2. This suggests that our method also hasthe potential to provide a novel automated method for the stru
tural
lassi�
ation of proteins. In order to a
hieve a large s
ale 
lustering ofsequen
e or stru
ture spa
e we will investigate the use of Fisher s
oresobtained from from a \mixture model" whi
h 
ombines individual mod-11



els for di�erent superfamilies as des
ribed in 14.A
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