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Abstract

We describe a novel approach to the problem of automatically clus-
tering protein sequences and discovering protein families, subfamilies
etc., based on the theory of infinite Gaussian mixtures models. This
method allows the data itself to dictate how many mixture components
are required to model it, and provides a measure of the probability that
two proteins belong to the same cluster. We illustrate our methods with
application to three data sets: globin sequences, globin sequences with
known three-dimensional structures and G-protein coupled receptor se-
quences. The consistency of the clusters indicate that our method is
producing biologically meaningful results, which provide a very good in-
dication of the underlying families and subfamilies. With the inclusion of
secondary structure and residue solvent accessibility information, we ob-
tain a classification of sequences of known structure which both reflects
and extends their SCOP classifications.

1 Introduction

The clustering of protein sequences into families and superfamilies is a
common approach for both comparative genomics and the prediction of
protein function. With the advent of structural genomics projects, the
clustering of protein sequences with those of known structure has also
been proposed as a method of target selection for structure determina-
tion. Newly determined protein structures must then be classified, both
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to assess their novelty, and in the case of proteins of unknown function,
as a first step in functional annotation.

Most methods for clustering protein sequences begin with an all-
against-all pairwise similarity search and use the pairwise score as a mea-
sure of similarity of the two sequences. A variety of approaches have been
described to construct clusters from these scores: GENERAGE ! uses
recursive single linkage hierachical clustering, and PROTOMAP ? con-
structs hierarchical clusters in a similar manner but using the means of
all pairwise scores. SYSTERS? uses heuristics derived from set-theoretic
considerations to obtain a set of disjoint clusters. Abascal and Valencia
* describe a method for clustering protein families which uses the Ncut
algorithm derived from graph theory. All these methods rely on the set-
ting of some score theshold to distinguish members of a particular cluster
from non-members, making the determination of the number of clusters
arbitrary and subjective. Approaches based on single linkage hierarchical
clustering can give results which are highly dependent on small changes
to the data (such as adding or removing a single sequence). Moreover,
non-probabilistic approaches do not provide a measure of uncertainty
about the clustering, make it difficult to compute the predictive quality
of the clustering and to make comparisons between clusterings based on
different model assumptions (e.g. numbers of clusters, shapes of clus-
ters, etc). Krogh et al. ® provided an alternative probabilistic approach
which used hidden Markov models (HMMs) to cluster protein sequences
from the globin family into subfamilies. They fit a mixture of HMMs
(which is itself a special kind of HMM) using maximum likelihood meth-
ods. The results of these experiments were promising for this particular
example, yielding clusters that correspond to known globin subfamilies.
Little work has followed up on this area. Methods for automatically
clustering sequences into hypothesized classes will be increasingly useful
as amounts of sequence and structural data continue to grow.

An important issue that must be addressed in any clustering method
is the question of how many clusters to use. Bayesian statistics can pro-
vide a solution to model selection questions of this kind (e.g%"). Within
the Bayesian framework, an elegant alternative approach is to assume
that the data was in fact generated from an infinite number of Gaussian
clusters. Any actual clusters in the protein sequence data will surely
not be Gaussian distributed®. Infinite mixtures are a sensible way to
capture the fact that we don’t really believe that protein sequence data
is well modeled by a finite number of Gaussians. An infinite Gaussian
mixture model can readily model a finite number of non-Gaussian clus-
ters. Finally, in an infinite Gaussian mixture model there is no need to

“We discuss below how one can derive vectorial representations of sequences so that
questions about Gaussianity are well-defined.
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make arbitrary choices about how many clusters there are in the data;
nevertheless, after modeling one can ask questions such as how probable
it is that two protein sequences or structures belong to the same cluster?

We describe a novel approach to the problem of automatically clus-
tering protein sequences and discovering protein families, subfamilies
etc. based on the theory of infinite mixtures *. This theory is based
on the observation that the mathematical limit of an infinite number of
components in an ordinary finite mixture model (i.e. clustering model)
corresponds to a Dirichlet process prior >'®®. Such a Dirichlet process
prior allows the data itself to dictate how many mixture components are
required to model it. That is, a diverse family may require several compo-
nents whereas a simpler family may require only one. Although in theory
the infinite mixture has an infinite number of parameters, surprisingly,
it is possible to sample from these infinite mixture models efficiently
since only the parameters of a few of the models need to be represented.
The theory of infinite mixture models is laid out by Rasmusser®, who
showed that the procedure works effectively with mixtures of Gaussians.
It has since been applied to the clustering of gene expression profiles by

. . 11
Medvedovic and Sivaganesan .

2 Infinite Gaussian Mixture Models

One commonly used computational method of non-hierarchical cluster-
ing based on measuring Euclidean distance between feature vectors is
given by the k-means algorithm. However, the k-means algorithm is
inadequate for describing clusters of unequal size or shape. A gener-
alization of k-means can be derived from the theory of maximum like-
lihood estimation of Gaussian mixture models®. In a Gaussian mix-
ture model, the data (e.g. features of protein sequences or gene expres-
sion profiles which can be arranged into p-dimensional vectors y) is as-
sumed to have been generated from a finite number (k) of Gaussians,
P(y) = Zle ¢; Pj(y) where ¢; is the mixing proportion for cluster
j (fraction of population belonging to cluster j; Zi ¢; =1, ¢; > 0)
and Pj(y) is a multivariate Gaussian distribution with mean y; and co-
variance matrix ;. The clusters can be found by fitting the maximum
likelihood Gaussian mixture model as a function of the set of parameters
0 = {¢;,1;,;}_, using the EM algorithm '>. Euclidean distance cor-
responds to assuming that the 3; are all equal multiples of the identity
matrix.

Starting from a finite mixture model (2), we define a prior over
the mixing proportion parameters ¢. The natural conjugate prior for
mixing proportions is the symmetric Dirichlet distribution: P(¢|a) =

[(a)

Fa/F Hle ng?/k*] where o controls the distribution of the prior weight
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assigned to each cluster, and I' is the gamma function.

We then explicitly include indicator variables ¢; for each data point
(i.e. protein sequence) which can take on integer values ¢; = j, j €
{1,...,k}, corresponding to the hypothesis that data point i belongs
to cluster j. Under the mixture model, by definition, the prior proba-
bility is proportional to the mixing proportion: P(c; = jl¢) = ¢j. A
key observation is that we can compute the conditional probability of
one indicator variable given the setting of all the other indicator vari-
ables after integrating over all possible settings of the mixing proportion
parameters:

i = Jle—i,a)= ci = jle—; c_j, _7n,i,-+a/k
Ples = lo-s,0) = [ (e = sle-s. )P (dle-s,0) dg= o222

(1)
where c_; is the setting of all indicator variables except the i**  n is
the total number of data points, and n_; ; is the number of data points
belonging to class j not including 7. By Bayes rule,

P(¢le—i,a) = P(¢|a)/P(c—i|a) HP(Czlaﬁ) (2)
1#i

which is also a Dirichlet distribution, making it possible to perform the
above integral analytically. We now can take the limit of k going to
infinity, obtaining a Dirichlet Process with differing conditional proba-
bilities for clusters with and without data: for clusters where n_; ; > 0:
plei = jle—i,a) = nn:ﬁ, for all other clusters combined: p(c; #
¢y for all i # ilc_;,a) = 7+=17a- This shows that the probabilites
are proportional to the occupation numbers, n_; ;. Using these con-
ditional probabilities one can Gibbs sample from the indicator variables
efficiently, even though the model has infinitely many Gaussian clusters.
Having integrated out the mixing proportions one can also Gibbs sam-
ple from all of the remaining parameters of the model, i.e. {u, 3};. The
details of these procedures can be found in Rasmussen (2000).

We have used infinite Gaussian mixtures to model protein sequence
data with the intention of answering queries of the kind: what is the
probability that two proteins belong to the same cluster? Unlike pre-
vious methods based on a single clustering of the data, this approach
computes this probability while taking into account all sources of model
uncertainty (including number of clusters and location of clusters). We
use the probability p;; that two proteins ¢ and j belong to the same clus-
ter in the infinite mixture model as a measure of the similarity of these
protein sequences. Conversely 1 — p;; defines a dissimilarity measure
which for the purposes of visualization can be input to one of the stan-
dard linkage algorithms used for hierarchical clustering (see Figure 3).
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We illustrate our methods with application to three data sets: globin se-
quences, globin sequences with known three-dimensional structures and
G-protein coupled receptor sequences.

3 Methods

To be able to cluster protein sequences, we need to be able to obtain a
vector representation of the protein in a suitable metric space. We use
the Fisher score vector respresentation described by Jaakkola et al **,
which provides an appropriate measure of similarity between sequences.
The Fisher score vector for a particular protein X is obtained by eval-
uating the derivative of the log-likelihood with respect to a vector of
parameters (6) of a hidden Markov model (HMM) trained on the set of
protein sequences: Ux = Vjylog P(X|#). Each component of the vector
Ux is the derivative of the log-likelihood for the sequence X with respect
to a particular parameter (the emission probabilities of the HMM).

In the work described below, we first train an HMM on the set of
protein sequences of interest and then calculate a Fisher score vector as
described above. In the case of sequences of known structure, we use
the Bayesian network model of Raval et al. '*, which can be thought of
as an extension of a hidden Markov model to incorporate multiple ob-
servations of primary sequence, secondary structure and residue solvent
accessibility, calculated from the three-dimensional coordinates by the
DSSP method of Kabsch and Sander '. For all data sets the dimension-
ality of the Fisher score vector was then reduced by principal components
analysis and we used this reduced dimension vector as the y vector input
into the infinite Gaussian mixture model. We used the first 10 principal
components, which captured most of the variance in the Ux vectors.
The mixture model was initialized with all data belonging to a single
Gaussian, and a large number of Gibbs sampling sweeps are performed,
updating all variables and parameters, i.e. {{u;,%;}, {ci}, a}, in turn by
sampling from the conditional distributions derived in the previous sec-
tions and described in more detail in Rasmussen (2000. We typically
run the chain for 110,000 iterations, discarding the initial 11,000 steps
as “burn-in” and keeping every 1000th step after that, generating 100
roughly independent samples from the posterior distribution.

4 Results

4.1 Globin Sequences

The mixture of HMMs method of Krogh et al 5 discovered 7 clusters in
a set of 628 globin sequences, corresponding to:
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1. Class 1 233 sequences: principally all «, a few ¢ ( an a-type chain
of mammalian embryonic hemoglobin), 7r/7rl (the counterpart of
the a chain in major early embryonic hemoglobin P), and 6 — 1
chains (early erythrocyte a-like).

2. Class 2 232 sequences: almost all 8, a few § (3-like), € (B-type
found in early embryos), v (comprises fetal hemoglobin F in combi-
nation with two « chains), p (major early embryonic 8-type chain)
and 6 chains (embryonic S-type chain).

3. Class 3 71 myoglobins.

4. Class 4 58 sequences. The 13 highest scoring in this cluster were
leghemoglobins. This class contained a variety of sequences includ-
ing 3 non-globins in the original data set.

5. Class 5 19 sequences. Midge globins.
6. Class 6 8 sequences. Globins from agnatha (jawless fish).
7. Class 7 7 sequences. varied.

Our results, using an updated version of the same data set (630
globin sequences, distributed with the HMMER?2 software package) is
shown in Figure 1. In this plot we show the number of times, out of
100 samples, that the indicator variables for two sequences were equal.
As shown above, this may be interpreted as the probability p;; that
two proteins i and j belong to the same cluster. It is evident that
our model has discovered a larger number of clusters that the method
of Krogh et al’. The granularity of this clustering is determined by
the data and not by some user-defined threshold. Large solid blocks of
color along the diagonal correspond to homogeneous clusters. Note that
in our method, sequences may belong to more than one cluster with
a defined probability: off-diagonal elements indicate ’cross-clustering’.
For comparison, we also clustered the sequences using BLASTCLUST,
which clusters the sequences according to a sequence identity threshold
and a single linkage algorithm. With a 90% sequence identity thresh-
old, 261 clusters were obtained. The first large homogeneous cluster
in Figure 1 (bottom right hand corner) comprises 37 hemoglobin 3 se-
quences plus two ¢ sequences (HBD_COLPO and HBD_PANTR) (Figure
1). Although a number of these sequences are contained within the same
cluster in the BLASTCLUST output, indicating that they have > 90%
sequence identity, we note that the clusters are by no means identical.
The BLASTCLUST cluster containing many of these hemoglobin 3 se-
quences also contains 8 hemoglobin § sequences and one Hemoglobin
(-2 chain (HBB2_PANLE). Figure 1 indicates that all sequences within
this cluster also ’cross-cluster’ with another group of 8 sequences with a
probability of around 20-30%. The next cluster from the bottom right
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(Figure 1) contains all @ sequences and cross clusters with another group
of a sequences with a probability of around 40-50%. Although a detailed
analysis of these results is beyond the scope of this paper, we identify
at least 11 distinct o and 13 distinct 8 clusters (plus some additional
smaller ones). Although some of the variant sequences cluster with
and (3 sequences, we identify a number of clusters composed only of
variant sequences: 3 clusters comprising only v, € and 6 sequences, one
cluster of § and one cluster of ¢ sequences. We identify 3 distinct clusters
of leghemoglobins and 1 cluster of midge hemoglobins (6 sequences), a
small cluster of fish hemoglobins and a small cluster comprising clam
and earthworm sequences. Myoglobins, which Krogh et al (1994) found
in one cluster, form 10 distinct clusters, mainly comprising proteins from
related species. BLASTCLUST groups these into 6 clusters plus 9 single-
tons at a 90% identity theshold. We identify only 11 singletons (proteins
which never cluster with another), none of which are myoglobins.

100

HG beta
HG alpha
HG alpha

HG alpha ||

Myoglobin

HG beta

Figure 1: Clustering of the 630 globin sequences. The gray scale indicates the number of
times, out of 100 samples, that the indicator variables for two sequences were equal, or the
probability that two sequences belong to the same cluster

These results indicate that our method is capable of producing bio-
logically meaningful results and correctly classifies the main globin sub-
families. In addition, it provides a finer level of clustering within these
subfamilies than either the use of BLAST alignments and sequence iden-
tity or the method of Krogh et al?

4.2 Globin Sequences of Known Structure

For this experiment we obtained globin sequences from the Strucural
Classification of Proteins (SCOP) database '® using the ASTRAL re-
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source®. Sequences with > 95% sequence identity were excluded, leav-
ing 91 proteins. According to the SCOP classification, these conprised
representatives of 4 globin structural subfamilies (a.1.1.1: truncated
hemoglobins (4 sequences) , a.1.1.2: glycera globins, myoglobins, hemoglobin
I, flavohemoglobins, leghemoglobins, hemoglobin « and 3 chains, a.1.1.3:
phycocyanins, allophycocyanins, phycoerythrins and a.1.1.4: nerve tis-
sue mini-hemoglobin (1 sequence) ). The sequences were clustered using
feature vectors derived from two models: a sequence-only HMM and a
Bayesian net model (structural HMM). The results are shown in Figure

2 and Figure 3.

The results from the sequence only clustering (Figure 2 left) show a
similar pattern to those obtained with the 630 globin sequences. Fairly
homogeneous clusters are mainly composed of related sequences, eg: 8
hemoglobin chains, @ hemoglobin chains, myoglobins, phycocyanin a and
b, phycoerythrin and b and allophycocyanin a and b chains (which all
form separate clusters). Glycera globins forms a separate cluster, as
do leghemoglobins. Three or four heterogeneous (loosely associated)
clusters are observed, which include truncated hemoglobins, hemoglobin
I's, dehaloperoxidase etc.

The results from the model which includes secondary structure and
residue accessibility information shows fewer clusters; 12 in all, plus two
singletons (dehaloperoxidase and pig roundworm hemoglobin, domain 1)
(Figure 2 right). Again o and § hemoglobin chains form distinct and
fairly homogeneous clusters, as do the myoglobins, with the exception
of IMYT (this is a myoglobin which lacks the D helix), which clusters
more strongly with 8 hemoglobins, as well as weakly with the myoglobin
cluster, and 1IMBA (a mollusc myoglobin), which clusters with clam
hemoglobins and glycera globins from bloodworms. Phycocyanins, allo-
phycocyanins and phycoerythrins (which are all classified by SCOP into
the same subfamily a.1.1.3) form two distinct large joint clusters. Within
these clusters one can detect subfamilies corresponding to the allophyco-
cyanins, phycoerythrins and phycocyanins, which cluster amongst them-
selves with a higher probability. Leghemoglobins cluster strongly with
a single non-symbiotic plant hemoglobin from rice, and weakly with a
clam hemoglobin I. Truncated hemoglobins, which SCOP classifies into
a different subfamily (a.1.1.1), form two distinct clusters, and the sole
member of subfamily a.1.1.4 (nerve tissue mini-hemoglobin), clusters
with 1CH4 (chimeric synthetic hemoglobin beta-alpha). In comparison,
13 clusters are produced with BLASTCLUST only at a 10% sequence
identity threshold. These comprise a single cluster for a.1.1.1, nine sep-
arate clusters for a.1.1.2 (including 4 singletons), a single cluster for
a.1.1.3 and a singleton for a.1.1.4. Our results, which do not require a

bhttp://astral.stanford.edu



predefined threshold to be specified, provide a reflection the underlying
SCOP classifications but also suggest that a further level of subfamily
subdivision is possible.

Figure 2: Clustering of the 91 SCOP globin sequences:left, by sequence information only;
right, with the inclusion of structural information. Sequence labels on the y-axis are ordered
optimally for each plot.

Figure 3: Dendrogram resresentation of the clustering of the 91 SCOP globin sequences
shown in Figure 2:left, by sequence information only; right, with the inclusion of structural
information.

4.8 G-Coupled Protein Receptors (GPCRs)

According to the GPCRDB classification system ”, the G-protein cou-
pled receptor (GPCR) superfamily is classified into 5 major classes: Class
A (related to rhodopsin and adrenergic receptors), Class B (related to
calcitonin and PTH/PTHrP receptors), Class C (related to metatropic
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receptors), Class D (related to pheromone receptors) and Class E (re-
lated to cAMP receptors). The classes share > 20% sequence identity
over predicted transmembrane helices 7. Each class is further divided
into level 1 subfamilies (eg: Amine, Peptide, Opsin etc. for Class A)
and further into Level 2 subfamilies (Muscarinic, Histamine, Serotonin
etc. for the Amine subfamily). A number of putative GPCRs have no
identified natural ligand and are dubbed ’orphan’ receptors. The se-
quence diversity of the GPCR classes makes subfamily classification a
challenging problem. The problem of recognizing GPCR subfamilies is
compounded by the fact that the subfamily classifications in GPCRDB
are defined chemically (that is, according to the differential binding of
ligands to the receptors) and not necessarily by either sequence similarity
or the post ligand-receptor binding pathways.

A number of other authors have described computational approaches
to classifying GPCRs. Karchin et al'® trained 2-class support vector ma-
chines (SVMs) using Fisher score vectors derived from HMMs . Joost
and Methner '° used a phylogenetic tree constructed by neighbor joining
with bootstrapping. Lapinsh et al ?* translated amino acid sequences
into vectors based on the physicochemical properties of the amino acids
and used and autocross-covariance transformation followed by principal
components analysis (PCA) to classify GPCRs.

For our experiments, sequences were obtained from the GPCRDB
database '” ©. Because of the smaller number of sequences in Classes
B-E, we have focussed our analysis of Class A sequences. Our dataset
comprised 946 sequences, of which 303 were “orphan” receptors, with
no family classification. A portion of the clustering results using the
infinite Gaussian mixture model are shown in Figure 4. Because of the
sequence diversity of this superfamily, a larger number of smaller clus-
ters are evident around the diagonal than were observed with the globin
sequences. Most of the homogeneous clusters (solid color) comprise se-
quences from the same subfamily (level 3 in the GPCRDB hierarchy),
and appear to be orthologs of the same protein from related species.
Whilst a detailed analysis of these is beyond the scope of the present pa-
per, as an illustration, we note that the largest cluster (bottom right hand
corner), comprises Rhodopsin (Rhodopsin Vertebrate type 1) sequences
from mammals and reptiles (plus lamprey), whilst the second cluster
is composed entirely of fish Rhodopsins. Some unexpected associations
also appear. Although in some case our results indicate assignments for
certain orphan receptors which agree those of the authors cited above,
in other cases our predictions are novel. A detailed analysis of these will
be published in an extended version of this paper.

Chttp://www.gpcr.org
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Figure 4: Part of the clustering of the GPCR Class A sequences.

5 Discussion

The consistency of the clusters we obtain with a well annotated super-
family of protein sequences such as the globins gives us confidence that
our method is producing biologically meaningful results, which provide
a very good indication of the underlying families and subfamilies. Ho-
mogeneous clusters tend to consist of orthologs of the same protein and
paralogs appear to be separated into distinct clusters. This pattern ap-
pears to be repeated in our clustering of the GPCR sequences, with the
potential of providing functional annotations for certain orphan recep-
tors. Whilst some of these agree with predictions derived from neighbor-
joining phylogenetic trees and principal component analysis, a number
are novel. In all cases, our method provides a finer level of granularity
than the method of Lapinsh et al. 2°, clustering orphan receptors with
members of particular GPCRDB subfamilies, rather than a broad fam-
ily classification. With the inclusion of secondary stucture and residue
solvent accessibility information in the HMM on which our method is
based, the clustering of the SCOP globin sequences changes from a large
number of small clusters of functionally related sequences to a smaller
number of clusters, in which the members of the SCOP globin families
are clearly separated. However, once again we achieve an even finer level
of classification, clearly separating o, # and myoglobins, as well as other
members of SCOP class a.1.1.2. This suggests that our method also has
the potential to provide a novel automated method for the structural
classification of proteins. In order to achieve a large scale clustering of
sequence or structure space we will investigate the use of Fisher scores
obtained from from a “mixture model” which combines individual mod-
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els for different superfamilies as described in'*.
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