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Abstract— We provide a novel solution to the problem of
simultaneously estimating the unknown parameters and hid-
den states of a nonlinear dynamical system. Our solution is
based on the expectation—-maximization (EM) algorithm, an
iterative procedure for maximum likelihood parameter esti-
mation from data sets with missing or hidden variables [1].
EM has been applied to system identification in linear state-
space models, where the state variables are hidden from the
observer and both the state and the parameters of the mod-
el have to be estimated simultaneously [2], [3], [4]. Here
we generalize the EM algorithm to estimate parameters of
nonlinear dynamical state-space models. The “expectation”
step makes use of Extended Kalman Smoothing to estimate
the state, while the “maximization” step re-estimates the
parameters using these uncertain state estimates. In gen-
eral, the nonlinear maximization step is difficult because it
requires integrating out the uncertainty in the states. How-
ever, if Gaussian radial basis function (RBF) approximators
are used to model the nonlinearities, the integrals become
tractable and the maximization step can be solved via sys-
tems of linear equations. We derive an online version of this
EM-EKS algorithm, as well as a version for non-stationary
time series. We also consider the identifiability and expres-
sive power of nonlinear dynamical systems and relate our
learning algorithm with more traditional system identifica-
tion procedures based on dual and joint Extended Kalman
Filtering. Finally, we demonstrate our algorithm on several
synthetic problems and one real time series.

I. LEARNING STOCHASTIC NONLINEAR DYNAMICS

INCE the advent of cybernetics, dynamical systems

have been an important modeling tool in fields ranging
from engineering to the physical and social sciences. Most
realistic dynamical systems models have two essential fea-
tures. First, they are stochastic—the observed outputs are
a noisy function of the inputs, and the dynamics itself may
be driven by some unobserved noise process. Second, they
can be characterized by some finite-dimensional internal s-
tate which, while not directly observable, summarizes at
any time all information about the past behaviour of the
process relevant to predicting its future evolution.

From a modeling standpoint, stochasticity is essential to
allow a model with a few fixed parameters to generate a
rich variety of time-series outputs.! Explicitly modeling
the internal state makes it possible to decouple the inter-
nal dynamics from the observation process. For example,
to model a sequence of video images of a balloon floating
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IThere are, of course, completely deterministic but chaotic sys-
tems with this property. If we separate the noise processes in our
models from the deterministic portions of the dynamics and observa-
tions, we can think of the noises as another deterministic (but highly
chaotic) system which depends on initial conditions and exogenous
inputs that we do not know. Indeed when we run simulations using a
pseudo-random number generator started with a particular seed this
is precisely what we are doing.

in the wind, it would be computationally very costly to
directly predict the array of camera pixel intensities from
a sequence of arrays of previous pixel intensities. It seems
much more sensible to attempt to infer the true state of the
balloon (its position, velocity, and orientation) and decou-
ple the process which governs the balloon dynamics from
the observation process which maps the actual balloon s-
tate to an array of measured pixel intensities.

Often we are able to write down equations governing
these dynamical systems directly, based on prior knowledge
of the problem structure and the sources of noise—for ex-
ample, from the physics of the situation. In such cases, we
may want to infer the hidden state of the system from a
sequence of observations of the system’s inputs and out-
puts. Solving this inference or state estimation problem is
essential for tasks such as tracking or the design of state-
feedback controllers, and there exist well-known algorithms
for this.

However in many cases the exact parameter values, or
even the gross structure of the dynamical system itself may
be unknown. In such cases the dynamics of the system have
to be learned or identified from sequences of observations
only. Learning may be a necessary precursor if the ulti-
mate goal is effective state inference. But learning nonlin-
ear state-based models is also useful in its own right, even
when we are not explicitly interested in the internal states
of the model, for tasks such as prediction (extrapolation),
time-series classification, outlier detection, and filling-in of
missing observations (interpolation). This chapter address-
es the problem of learning time series models when the in-
ternal state is hidden. Below, we briefly review the two
fundamental algorithms that form the basis of our learn-
ing procedure. In section IT we introduce our algorithm
and derive its learning rules. Section III presents results
of using the algorithm to identify nonlinear dynamical sys-
tems. Finally, we present some conclusions and potential
extensions to the algorithm in sections IV and V.

A. State inference and model learning

Two remarkable algorithms from the 1960’s, one devel-
oped in engineering and the other in statistics, form the
basis of modern techniques in state estimation and mod-
el learning. The Kalman filter, introduced by Kalman and
Bucy in 1961 [5], was developed in a setting where the phys-
ical model of the dynamical system of interest was readily
available; its goal is optimal state estimation in system-
s with known parameters. The expectation-maximization
(EM) algorithm, pioneered by Baum and colleagues [6] and
later generalized and named by Dempster et.al [1], was de-



veloped to learn parameters of statistical models in the
presence of incomplete data or hidden variables.

In this chapter we bring together these two algorithms in
order to learn the dynamics of stochastic nonlinear systems
with hidden states. Our goal is two-fold: both to develop a
method for identifying the dynamics of nonlinear systems
whose hidden states we wish to infer, and to develop a gen-
eral nonlinear time-series modeling tool. We examine in-
ference and learning in discrete-time? stochastic nonlinear
dynamical systems with hidden states z;, external inputs
ug, and noisy outputs y;. (All lowercase characters (except
indices) denote vectors. Matrices are represented by up-
percase characters.) The systems are parametrized by a
set of tunable matrices, vectors and scalars which we shall
collectively denote as §. The inputs, outputs and states are
related to each other by

Ty = f(@e,ur) +wy

Yt = g(xt,ue) + vt

where w; and v; are zero mean Gaussian noise processes.
The state vector x evolves according to a nonlinear but
stationary Markov dynamics® driven by the inputs v and
by the noise source w. The outputs y are nonlinear, noisy
but stationary and instantaneous functions of the current
state and current input. The vector-valued nonlinearities
f and g are assumed to be differentiable, but otherwise
arbitrary.

Models of this kind have been examined for decades
in systems and control engineering. They can also be
viewed within the framework of probabilistic graphical mod-
els which use graph theory to represent the conditional de-
pendencies between a set of variables [7], [8]. A graphical
model is a diagram corresponding to a probabilistic gener-
ative model; it has a node for each possibly vector valued
random variable, with directed arcs representing stochas-
tic dependencies. Absent connections indicate conditional
independence. In particular, nodes are conditionally inde-
pendent from their non-descendents, given their parents—
where parents, children, descendents, etc, are defined with
respect to the directionality of the arcs (i.e. from parent
to child). We can capture the dependencies in equations
(1) compactly by drawing its graphical model as shown in
figure 1.

Graphical models have helped clarify the relationship
between dynamical systems and other probabilistic mod-
els such as hidden Markov models and factor analysis [9].
Graphical models have also made it possible to develop

2Continuous time dynamical systems (in which derivatives are spec-
ified as functions of the current state and inputs) can be convert-
ed into discrete time systems by sampling their outputs and using
“zero-order holds” on their inputs. In particular, for a continuous-
time linear system #(t) = Acz(t) + Bcu(t) sampled at interval
7 the corresponding dynamics and input driving matrices so that
Ti41 = Azt + Bug are A = Y72, A,?Tk/k! = exp(Ac7) and
B=A;Y(A-ID)B..

3Stationarity means here that neither f, nor the covariance of the
noise process w: depend on time; that is, the dynamics are time
invariant. Markov refers to the fact that given the current state the
next state does not depend on the past history of the states.

Fig. 1. A probabilistic graphical model for stochastic dynamical
systems with hidden states z¢, inputs u¢ and observables y;.

probabilistic inference algorithms that are vastly more gen-
eral that the Kalman filter.

Since our learning algorithm for nonlinear dynamical sys-
tems combines the key ideas behind Kalman filtering and
EM, we review these in the following two sections. The goal
is to develop an algorithm which can be used to model the
probability density of output sequences (or the conditional
density of outputs given inputs) using only a finite number
of example time-series. The crux of the problem is that
both the the hidden state trajectory and the parameters
are unknown.

If we knew the parameters, the operation of interest
would be to infer the hidden state sequence. The uncer-
tainty in this sequence would be encoded by computing the
posterior distributions of the hidden state variables given
the sequence of observations. The Kalman filter provides
a solution to this problem in the case where f and g are
linear. If, on the other hand, we had access to the hidden
state trajectories as well as to the observables, then the
problem would be one of model fitting, i.e. estimating the
parameters of f and g and the noise covariances. Given
observations of the (no longer hidden) states and outputs,
f and g can be obtained as the solution to a possibly non-
linear regression problem, and the noise covariances can
be obtained from the the residuals of the regression. How
should we proceed when both the system model and the
hidden states are unknown?

The classical approach to solving this problem is to treat
the parameters 6 as “extra” hidden variables, and to apply
an Extended Kalman Filtering algorithm (described below)
to the nonlinear system with the state vector augmented
by the parameters [10], [11]. For stationary models, the
dynamics of the parameter portion of this extended state
vector are set to the identity function. This approach can
be made inherently on-line, which may be important in
certain applications. Furthermore, it provides an estimate
of the covariance of the parameters at each time step. Fi-
nally, its objective, probabilistically speaking, is to find a
optimum in the joint space of parameters and hidden state
sequences.

In contrast, the algorithm we present is a batch algo-
rithm (although as we discuss in section IV-B, online ex-
tensions are possible) and does not attempt to estimate
the covariance of the parameters. Like other instances of
the EM algorithm, which we describe below, its goal is to
integrate over the uncertain estimates of the unknown hid-



den states and optimize the resulting marginal likelihood
of the parameters given the observed data. An Extended
Kalman Smoother (EKS) is used to estimate the approx-
imate state distribution in the E-step, and a radial basis
function (RBF) network [12] is used for nonlinear regres-
sion in the M-step. It is important not to confuse this use
of the Extended Kalman algorithm, to estimate just the
hidden state as part of the E-step of EM, with the use
we described in the previous paragraph, to simultaneously
estimate parameters and hidden states.

B. The Kalman Filter

Linear dynamical systems with additive white Gaussian
noises are the most basic models to examine when con-
sidering the state estimation problem because they admit
exact and efficient inference. (Here, and in what follows
we call a system linear if both the state evolution function
and the state-to-output observation function are linear, and
nonlinear otherwise.) The linear dynamics and observation
processes correspond to matrix operations which we denote
with A, B and C, D respectively, giving the classic state-
space formulation of input-driven linear dynamical system-
s:

(2a)
(2b)

The Gaussian noise vectors w and v have zero mean and
covariances ) and R respectively. If the prior probability
distribution p(z1) over initial states is taken to be Gaus-
sian, then the joint probabilities of all states and outputs at
future times are also Gaussian, since the Gaussian distribu-
tion is closed under the linear operations applied by state
evolution and output mapping and under the convolution
applied by additive Gaussian noise. Thus, all distribution-
s over hidden state variables are fully described by their
means and covariance matrices. The algorithm for exactly
computing the posterior mean and covariance for z; given
some sequence of observations consists of two parts: a for-
ward recursion which uses the observations from y; to v,
known as the Kalman filter [13], and a backward recursion
which uses the observations from yr to y¢+1. The com-
bined forward and backward recursions are known as the
Kalman or Rauch-Tung-Streibel (RTS) smoother [14].

There are three key insights to understanding the
Kalman filter.

The first insight is that the Kalman filter is simply a
method for implementing Bayes rule. Consider the very
general setting where we have a prior p(z) on some state
variable and an observation model p(y|z) for the noisy out-
puts given the state. Bayes rule gives us the state inference
procedure:

Typ1 = Amg + Bug +wy
Yt = Cxy + Duy + v

plyle)p(z) _ plyle)p(z)
p(y) Z

7 =ply) = / p(y|2)p(e)ds

where the normalizer Z is the unconditional density of the
observation. All we need to do to convert our prior on the

p(zly) = (3a)

(3b)

state into a posterior is multiply by the likelihood from the
observation equation and renormalize.

The second insight is that there is no need to invert the
output or dynamics functions, as long as we work with
easily normalizable distributions over hidden states. We
see this by applying Bayes rule to the linear Gaussian case
for a single time step.? We start with a Gaussian belief
N (z4_1,V;_1) on the current hidden state, use the dynam-
ics to convert this to a prior N (z*, V1) on the next state,
and then condition on the observation to convert this prior
into a posterior N (x4, V;). This gives the classic Kalman
filtering equations:

p(xe_1) =N (zF,VT) (4a)
et =Az .y, VP=AV, AT +Q (4b)
p(ys|zs) = N (Cxy, R) (4¢)
p(zelys) = N (24, V3) (4d)
zp=2"+K(yy—Cz"), Vi =(I—-KC)V*t (de)
K=V*CT (CV*C™ +R) ' (4f)

The posterior is again Gaussian and analytically tractable.
Notice that neither the dynamics matrix A nor the obser-
vation matrix C needed to be inverted.

The third insight is that the state estimation procedures
can be implemented recursively. The posterior from the
previous time step is run through the dynamics model and
becomes our prior for the current time step. We then con-
vert this prior into a new posterior by using the current
observation.

For the general case of a nonlinear system with non-
Gaussian noise, state estimation is much more complex.
In particular, mapping through arbitrary nonlinearities f
and g can result in arbitrary state distributions, and the
integrals required for Bayes rule can become intractable.
Several methods have been proposed to overcome this in-
tractability, each providing a distinct approximate solution
to the inference problem. Assuming f and g are differen-
tiable and the noise is Gaussian, one approach is to locally
linearize the nonlinear system about the current state es-
timate so that applying the Kalman filter to the linearized
system the approximate state distribution remains Gaus-
sian. Such algorithms are known as extended Kalman fil-
ters (EKF) [15], [16]. The EKF has been used both in the
classical setting of state estimation for nonlinear dynamical
systems, and also as a basis for online learning algorithms
for feedforward neural networks [17] and radial basis func-
tion networks [18], [19].

Another possibility is to propagate a set of discrete sam-
ples in state space through f and g, and to re-weight them
using the likelihood p(y|z). Algorithms which use this gen-
eral strategy are known as particle filters [20]; a particular
form of which is known as the CONDENSATION algorith-

4Some notation: A multivariate normal (Gaussian) distribution
with mean p and covariance matrix ¥ is written as A (u, X). The
same Gaussian evaluated at the point z is denoted N (u, X) |.. The
determinant of a matrix is denoted by |A| and matrix inversion by
A~1. The symbol ~ means “distributed according to”.



m [21]. (These filters have also been called Monte Car-
lo filters [22], bootstrap filters [23], and dynamic mixture
models [24], [25]. See the book [26] for a recent survey.)
A third approximation called the unscented filter [27], [28],
[29] deterministically chooses a set of balanced points and
propagates them through the nonlinearities in order to re-
cursively approximate a Gaussian state distribution. Fi-
nally, there are algorithms for approximate inference and
learning based on mean field theory and variational meth-
ods [30], [31]. Although we have chosen to make local lin-
earization (EKS) the basis of our algorithms below, it is
possible to formulate the same learning algorithms using
any approximate inference method, for example, the un-
scented filter.

C. The EM Algorithm

The EM or ezpectation-mazimization algorithm [32], [1]
is a widely applicable iterative parameter re-estimation
procedure. The objective of the EM algorithm is to max-
imize the likelihood of the observed data P(Y'|#) in the
presence of hidden® variables z. (We will denote the entire
sequence of observed data by Y = {y;...y,}, of hidden
variables by X = {z;...z;}, and the parameters of the
model by 6.) Maximizing the likelihood as a function of 6
is equivalent to maximizing the log likelihood:

£(0) = log P(Y1]0) = log / PX,Y|0)dX  (5)
b's
Using any distribution Q(X) over the hidden variables, we
can obtain a lower bound on L:

P(X,Y|6)

10g/PYX|6)dX log/Q Q(X)

P(X,Y]9)

/Q Q)

=/ Q(X)log P(X,Y|0) dX—/ Q(X)log Q(X) dX
X X

dX (6a)

dx (6b)

=F(Q,0)

where the middle inequality is known as Jensen’s inequality
and can be proven using the concavity of the log function.
If we define the energy of a global configuration (X,Y") to
be —log P(X,Y|6), then the lower bound F(Q,8) < L(6)
is the negative of a quantity known in statistical physics
as the free energy: the expected energy under ) minus the
entropy of @ [33]. The EM algorithm alternates between
maximizing F with respect to the distribution () and the
parameters 0, respectively, holding the other fixed. Starting
from some initial parameters y we alternately apply:

E-step: Qpt1 + argmax F(Q,6k) (7a)
Q

M-step: Or+1 < argmax F(Qk+1,0) (7b)
0

50ften called missing data or auziliary parameters.

It is easy to show that the maximum in the E-step re-
sults when @ is exactly the conditional distribution of X,
Q41 (X) = P(X]Y,6;), at which point the bound becomes
an equality: F(Qj,,,0k) = L(0r). The maximum in the
M-step is obtained by maximizing the the first term in (6¢),
since the entropy of () does not depend on 6:

M-step: 6;,; < argmax P(X|Y,0,)log P(X,Y10) dX
9 b's

(8)

This is the expression most often associated with the EM
algorithm, but it obscures the elegant interpretation [33] of
EM as coordinate ascent in F (see figure 2). Since F = L at
the beginning of each M-step, and since the E-step does not
change 6, we are guaranteed not to decrease the likelihood
after each combined EM step. (While this is obviously true
of “complete” EM algorithms as described above, it may
also be true for “incomplete” or “sparse” variants in which
approximations are used during the E- and/or M-steps so
long as F always goes up; see also the earlier work of [34].)
For example, this can take the form of a gradient M-step
algorithm (where we increase P(Y'|@) with respect to 6 but
do not strictly maximize it), or any E-step which improves
the bound F without saturating it [33].)

In dynamical systems with hidden states, the E-step cor-
responds exactly to solving the smoothing problem: esti-
mating the hidden state trajectory given both the obser-
vations/inputs and the parameter values. The M-step in-
volves system identification using the state estimates from
the smoother. Therefore, at the heart of the EM learning
procedure is the following idea: use the solutions to the
filtering/smoothing problem to estimate the unknown hid-
den states given the observations and the current model
parameters. Then use this fictitious complete data to solve
for new model parameters. Given the estimated states ob-
tained from the inference algorithm, it is usually easy to
solve for new parameters. For example, when working with
linear Gaussian models this typically involves minimizing

Fl@,e)

QU

Fig. 2. The EM algorithm can be though of as coordinate ascent in
the functional F(Q(X), 6) (see text). The E-step maximizes F
with respect to Q(X) given fixed 6 (horizontal moves) while the
M-step maximizes F with respect to 8 given fixed Q(X) (vertical
moves).



quadratic forms which can be done with linear regression.
This process is repeated, using these new model parame-
ters to infer the hidden states again, and so on. Keep in
mind that our goal is to maximize the log-likelihood (5)
(or equivalently maximize the total likelihood) of the ob-
served data with respect to the model parameters. This
means integrating (or summing) over all ways in which the
model could have produced the data (i.e. hidden state se-
quences). As a consequence of using the EM algorithm to
do this maximization we find ourselves needing to compute
(and maximize) the ezpected log likelihood of the joint data
(8), where the expectation is taken over the distribution of
hidden values predicted by the current model parameters
and the observations.

In the past, the EM algorithm has been applied to learn-
ing linear dynamical systems in specific cases (such as
multiple-indicator multiple-cause (MIMC) models with a
single latent variable [2] or state space models with the ob-
servation matrix known [3]) as well more generally [4]. This
chapter is an extension of our earlier work [35]; since then,
there has been other similar work applying EM to nonlin-
ear dynamical systems [36], [37]. Whereas other work uses
sampling for the E-step and gradient M-steps, our algo-
rithm uses the RBF networks to obtain a computationally
efficient and exact M-step.

There are four important advantages the EM algorithm
has over classical approaches. First, the EM algorithm pro-
vides a straightforward and principled method for handing
missing inputs or outputs. (Indeed this was the original
motivation for Shumway and Stoffer’s application of the
EM algorithm to learning of partially unknown linear dy-
namical systems [3].) Second, EM generalizes readily to
more complex models with combinations of discrete and
real-valued hidden variables. For example, one can for-
mulate EM for a mizture of nonlinear dynamical systems
[38], [39]. Third, whereas it is often very difficult to prove
or analyze stability within the classical on-line approach,
the EM algorithm is always attempting to maximize the
likelihood, which acts as a Lyapunov function for stable
learning. Fourth, the EM framework facilitates Bayesian
extensions to learning, for example through the use of vari-
ational approximations [31].

II. CoMmBINING EKS AND EM

In the next sections we will describe the basic compo-
nents of our EM learning algorithm. For the expectation
step of the algorithm, we infer an approximate conditional
distribution of the hidden states using Extended Kalman S-
moothing (section II-A). For the maximization step we first
discuss the general case (section II-B) and then describe
the particular case where the nonlinearities are represent-
ed using Gaussian radial basis function (RBF) networks
(section II-C). Since, as with all EM or likelihood ascen-
t algorithms, our algorithm is not guaranteed to find the
globally optimum solutions, good initialization is a key fac-
tor in practical success. We typically use a variant of factor
analysis followed by estimation of a purely linear dynami-
cal system as the starting point for training our nonlinear

models (section II-D).

A. Extended Kalman smoothing (E-step)

Given a system described by equations (1), the E-step
of an EM learning algorithm needs to infer the hidden s-
tates from a history of observed inputs and outputs. The
quantities at the heart of this inference problem are two
conditional densities

1<t<T 9)
1<t<T—1 (10)

P(.’Et|U1,... ,UT, Y15 - - - 7yT)7

P($t7'rt+1|u1>-" ,UT, Y1, - - - 7yT)7

For nonlinear systems these conditional densities are in
general non-Gaussian and can in fact be quite complex.
For all but a very few nonlinear systems exact inference
equations cannot be written down in closed form. Fur-
thermore, for many nonlinear systems of interest exact in-
ference is intractable (even numerically) meaning that in
principle the amount of computation required grows expo-
nentially in the length of the time series observed. The
intuition behind all extended Kalman algorithms is that
they approximate a stationary nonlinear dynamical system
with a non-stationary (time-varying) but linear system. In
particular, Extended Kalman Smoothing (EKS) simply ap-
plies regular Kalman smoothing to a local linearization of
the nonlinear system. At every point Z in z-space, the
derivatives of the vector-valued functions f and g define

the matrices, A; = 2L and C; = @‘ _, respective-

T = 3z = T — Oz

T=T Tr=
ly. The dynamics are linearized about &, the mean of the
current filtered (not smoothed) state estimate at time ¢.
The output equation can be similarly linearized. These

linearizations yield:

Tip1 = f(:i:t,ut) + A@t (:ct — fi't) + w

Yr = 9(Ze,us) + Cs, (¢ — 4) + v

If the noise distributions and the prior distribution of the
hidden state at ¢t = 1 are Gaussian, then, in this progres-
sively linearized system, the conditional distribution of the
hidden state at any time ¢ given the history of inputs and
outputs will also be Gaussian. Thus, Kalman smoothing
can be used on the linearized system to infer this condi-
tional distribution; this is illustrated in figure 3.

Notice that although the algorithm performs smoothing
(in other words, it takes into account all observations in-
cluding future ones when inferring the state at any time)
the linearization is only done in the forward direction. Why
not re-linearize about the backwards estimates during the
Rauch recursions? While in principle this approach might
give better results it is difficult to implement in practice
because it requires the dynamics function to be uniquely
invertible, which is often not true.

Unlike the normal (linear) Kalman smoother, in the EK-
S the error covariances for the state estimates and the
Kalman gain matrices do depend on the observed data,
not just on the time index ¢. Furthermore, it is no longer
true that if the system is stationary the Kalman gain will
converge to a value which makes the smoother act as the
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Fig. 3. Illustration of the information used in Extended Kalman S-
moothing (EKS), which infers the hidden state distribution dur-
ing the E-step of our algorithm. The nonlinear model is linearized
about the current state estimate at each time, and then Kalman
Smoothing is used on the linearized system to infer Gaussian s-
tate estimates.

optimal Wiener filter in the steady state. (In fact, the
Kalman gain need not converge to a fixed value at all.)

B. Learning model parameters (M-step)

The M-step of our EM algorithm re-estimates the param-
eters of the model given the observed inputs, outputs, and
the conditional distributions over the hidden states. For
the model we have described, the parameters define the
nonlinearities f and g, and the noise covariances () and R
(as well as the mean and covariance of the initial state, z1).

Two complications can arise in the M-step. First, fully
re-estimating f and g in each M-step may be computa-
tionally expensive. For example, if they are represented
by neural network regressors, a single full M-step would be
a lengthy training procedure using backpropagation, con-
jugate gradients, or some other optimization method. To
avoid this, one could use partial M-steps which increase but
do not maximize the expected log likelihood (8), for exam-
ple each consisting of one or a few gradient steps. However,
this will in general make the fitting procedure much slower.

The second complication is that f and g have to be
trained using the uncertain state estimates output by the
EKS algorithm. This makes it difficult to apply standard
curve-fitting or regression techniques. Consider fitting f,
which takes as inputs z; and w; and outputs x¢y1. For
each t, the conditional density estimated by EKS is a full-
covariance Gaussian in (z,%¢y1)-space. So f has to be
fit not to a set of data points but instead to a mixture of
full-covariance Gaussians in input-output space (Gaussian
“clouds” of data). Ideally, to follow the EM framework,
this conditional density should be integrated over during
the fitting process. Integrating over this type of data is
non-trivial for almost any form of f. One simple but inef-
ficient approach to bypass this problem is to draw a large
sample from these Gaussian clouds of data and then fit f to
these samples in the usual way. A similar situation occurs
with the fitting of the output function g.

We present an alternative approach, which is to choose
the form of the function approximator to make the integra-

tion easier. As we will show, using Gaussian radial basis
function (RBF) networks [12] to model f and g allows us
to do the integrals exactly and efficiently. With this choice
of representation both of the above complications vanish.

C. Fitting Radial Basis Functions to Gaussian Clouds

We will present a general formulation of an RBF network
from which it should be clear how to fit special forms for
f and g. Consider the following nonlinear mapping from
input vectors z and u to an output vector z:

1
z2=Y hipi(z) + Az + Bu+b+w, (13)
i=1

where w is a zero-mean (Gaussian noise variable with co-
variance @), and p; are RBFs defined below. This general
mapping can be used in several ways to represent dynam-
ical systems, depending on which of the input to hidden
to output mappings are assumed to be nonlinear. Three
examples are: (1) representing f using (13) with the sub-
stitutions z < x;, u < wg, and z < x41; (2) representing
f using z + (x4, us), u « 0, and z « 3441; and (3) rep-
resenting g using the substitutions z + =z, u + u;, and
z < y;. (Indeed for different simulations we will use dif-
ferent forms.) The parameters are: the I coefficients h; of
the RBFs; the matrices A and B multiplying inputs  and
u, respectively; and an output bias vector b, and the noise
covariance (). Each RBF is assumed to be a Gaussian in
z-space, with center ¢; and width given by the covariance
matrix S;:

pi(z) = |278;| /% exp {—%(m —¢)" S (7 - cz)} . (14)

For now we assume the centers and widths of the RBFs
are fixed, although we discuss learning their locations in
section IV

The goal is to fit this model to data (u,z, z). The com-
plication is that the data set comes in the form of a mixture
of Gaussian distributions. Here we show how to analytical-
ly integrate over this mixture distribution to fit the RBF
model.

Assume the data set is:

Pz, z,u) = %Z/\/j(x,z) Su—uy).  (15)

That is, we observe samples from the u variables, each
paired with a Gaussian “cloud” of data, N}, over (z, z).
The Gaussian N; has mean p; and covariance matrix Cj.

Let Zp(z,u) = 25:1 hi pi(z) + Az + Bu + b, where 6 is
the set of parameters. The log likelihood of a single fully
observed data point under the model would be:

5z = Zo(e,w)]” Q7 [z — Zp(a, )] — 5 n|Q] + const

Since the (z,z) values in the data set are uncertain, the
maximum expected log likelihood RBF fit to the mixture



of Gaussian data is obtained by minimizing the following
integrated quadratic form:

i Z Nj(,2) [z = 20w, u)]” Q7" [z — 20(e,uy)) do dz

T,z

+ J1n|Q|}.
(16)

We rewrite this in a slightly different notation, using angled
brackets (-); to denote expectation over N, and defining

® [p1(z) p2() ... pr(z) 7 u” 1]".

Then, the objective can be written

rg’gl Z((z—ﬁ@)TQ_l(z—QCIJ))j+J1n|Q| . (A7)

Taking derivatives with respect to 6, premultiplying by
—Q7!, and setting to zero gives the linear equations
2 i{(z —62)@7); = 0, which we can solve for 6 and Q:

-1

0= Z(Z‘I’T)j Z(‘I"I’T)j ; (18a)
Q:% (e -0 3 @), ) (18b)

In other words, given the expectations in the angled brack-
ets, the optimal parameters can be solved for via a set of
linear equations. In appendix A we show that these expec-
tations can be computed analytically and efficiently, which
means that we can take full and exact M-steps. The deriva-
tion is somewhat laborious, but the intuition is very simple:
the Gaussian RBFs multiply the Gaussian densities N to
form new unnormalized Gaussians in (z,y)-space. Expec-
tations under these new Gaussians are easy to compute.
This fitting algorithm is illustrated in figure 4.

Note that of the four advantages we mentioned previous-
ly for the EM algorithm—ability to handle missing obser-
vations, generalizability to extensions of the basic model,
Bayesian approximations, and guaranteed stability through
a Lyapunov function—we have had to forgo one. There is
no guarantee that extended Kalman smoothing increases
the lower bound on the true likelihood and therefore sta-
bility cannot be assured. Although in practice the algorith-
m rarely became unstable and the approximation worked
well—in our experiments the likelihood increased mono-
tonically and good density models were learned—it may
be desirable to derive guaranteed-stable algorithms for cer-
tain special cases using lower-bound preserving variational
approximations [31].

output dimension

input dimension

Fig. 4. Illustration of the regression technique employed during the
M-step. A fit to a mixture of Gaussian densities is required; if
Gaussian RBF networks are used then this fit can be solved ana-
lytically. The dashed line shows a regular RBF fit to the centres
of the four Gaussian densities while the solid line shows the ana-
lytic RBF fit using the covariance information. The dotted lines
below show the support of the RBF kernels.

The ability to fully integrate over uncertain state esti-
mates provides practical benefits as well as being theoreti-
cally pleasing. We have compared fitting our RBF networks
using only the means of the state estimates to performing
the full integration as derived above. When using only the
means, we found it necessary to introduce a ridge regres-
sion (weight decay) parameter in the M-step to penalize the
very large coefficients that would otherwise occur based on
precise cancellations between inputs. This ridge regression
regularizer is like adding white noise to the radial basis out-
puts (i.e. after the RBF kernels have been applied). This
is equivalent to Gaussian noise at the inputs with a co-
variance determined by the derivatives of the RBF's at the
input locations. The uncertain state estimates provide ex-
actly this sort of noise, and thus automatically regularize
the RBF fit in the M-step. This naturally avoids the need
to introduce a penalty on large coefficients and improves
generalization.

D. Initialization of models and choosing locations for RBF
kernels

The practical success of our algorithm depends on two
design choices which need to be made at the beginning of
the training procedure. The first is to judiciously select the
placement of the RBF kernels in the representation of the
the state dynamics and/or output function. The second is
to sensibly initialize the parameters of the model so that
iterative improvement with the EM algorithm (which finds
only local maxima, of the likelihood function) finds a good
solution.

In models with low-dimensional hidden states, placement
of RBF kernel centres can be done by gridding the state
space and placing one kernel on each grid point. Since the
scaling of the state variables is given by the covariance ma-
trix of the state dynamics noise w; (1), which without loss



of generality we have set to I, it is possible to determine
both a suitable size for the gridding region over the state-
space, and a suitable scaling of the RBF kernels themselves.
However, the number of kernels in a grid increased expo-
nentially with the grid dimension, so for more than 3 or 4
state variables gridding the state-space is impractical. In
these cases we first use a simple initialization, such as a
linear dynamical system, to infer the hidden states, and
then place RBF kernels on a randomly chosen subset of
the inferred state means.® We set the widths (variances) of
the RBF kernels once we have the spacing of their centres
by attempting to make neighbouring kernels cross when
their outputs are half of their peak value. This ensures
that with all the coefficients set approximately equal the
RBF network will have an almost “flat” output across the
space.”

These heuristics can be used both for fixed assignments
of centres and widths, and as initialization to an adap-
tive RBF placement procedure. In section IV-A we discuss
techniques for adapting both the positions of the RBF cen-
tres and their widths during training of the model.

For systems with nonlinear dynamics but approximately
linear output functions we initialize using maximum like-
lihood factor analysis (FA) [9] trained on the collection of
output observations (or conditional factor analysis for mod-
els with inputs). The loading matrix of the factor analysis
solution is used to initialize the observation matrix C' in the
dynamical system. By doing time-independent inference
through the factor analysis model we can obtain approxi-
mate estimates for the state at each time (independently).
These estimates can be used to initialize the nonlinear RBF
regressor by fitting the estimates at one time step as a func-
tion of those at the previous time step. (We also sometimes
do a few iterations of training using a purely linear dynam-
ical system before initializing the nonlinear RBF network.)
Since such systems are nonlinear flows embedded in lin-
ear manifolds, this initialization estimates the embedding
manifold using a linear statistical technique (FA) and the
flow using a nonlinear regression based on projections into
the estimated manifold.

If the output function is nonlinear but the dynamics are
approximately linear then a mixture of factor analyzors (M-
FA) can be trained on the output observations [40], [41].
Such systems are linear flows in a nonlinear embedding
manifold. The MFA initialization captures the nonlinear
shape of the output manifold. Estimating the dynamics is
difficult (since the hidden states of the individual analy-
zors in the mixture cannot be combined easily into a single

61n order to properly cover the portions of the state space which are
most frequently used, we require a minimum distance between RBF
kernel centres. Thus in practice we reject centres that fall too close
together.

"One way to see this is to consider Gaussian RBFs in a n-
dimensional grid, i.e. a square lattice, all with heights 1. The RBF
centres define a hypercube, the distance between neighboring RBF's

being 2d where d is chosen such that e=d?/(20%) = 1/2. At the cen-
tres of the hypercubes, there are 2™ contributions from neighboring
Gaussians, each of which is a distance v/nd, and so contributes (1/2)"
to the height. Therefore the height at the interiors is approximately
equal to the height at the corners.

internal state representation) but still possible.®

Ideally Bayesian methods would be used to control the
complexity of the model by estimating the internal state
dimension and optimal number of RBF centres. However,
in general only approximate techniques such as cross vali-
dation or variational approximations can be implemented
in practice (see section IV-D). Currently we have set theses
complexity parameters either by hand or with cross valida-
tion.

III. RESULTS

We tested how well our algorithm could learn the dy-
namics of a nonlinear system by observing only the sys-
tem inputs and outputs. We investigated the behaviour
on simple one and two-dimensional state space problems
whose nonlinear dynamics were know as well as on a weath-
er time-series problem involving real temperature data.

A. One and two-dimensional nonlinear state space models

In order to be able to compare our algorithm’s learned
internal state representation with a ground truth state rep-
resentation, we first tested it on synthetic data generat-
ed by nonlinear dynamics whose form was known. The
systems we considered consisted of three inputs and four
observables at each time, with either one or two hidden
state variables. The relation of the state from one time
step to the next was given by a variety of nonlinear func-
tions followed by Gaussian noise. The outputs were a lin-
ear function of the state and inputs plus Gaussian noise.
The inputs affected the state only through a linear driving
function. The true and learned state transition functions
for these systems as well as sample outputs in response to
Gaussian noise inputs and internal driving noise are shown
in figures 5, 6 and 7 (right columns).

We initialized each nonlinear model with a linear dynam-
ical model trained with EM, which in turn we initialized
with a variant of factor analysis (see section II-D). The
one-dimensional state space models were given 11 RBFs in
z-space, which were uniformly spaced within a range which
was automatically determined from the density of inferred
points. Two-dimensional state space models were given 25
RBFs spaced in a 5x5 grid uniformly over the range of
inferred states. After the initialization was over, the algo-
rithm discovered the nonlinearities in the dynamics within
less than 5 iterations of EM (see figures 5, 6 and 7, left and
middle panels).

After training the models on input-output observations
from the dynamics we examined the learned internal state
representation and compared it to the known structure of
the generating system. As the figures show, the algorithm

8As an approximate solution to the problem of getting a single
hidden state from a MFA, we can use the following procedure. (1)
Estimate the “similarity” between analyzor centres using average sep-
aration in time between data points for which they are active. (2)
Use standard embedding techniques such as multidimensional scaling
(MDS) [42] to place the MFA centres in a Euclidean space of dimen-
sion k. (3) Time-independent state inference for each observation now
consists of the responsibility weighted low-dimensional MFA centres,
where the responsibilities are the posterior probabilities of each ana-
lyzor given the observation under the MFA.
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Fig. 5. Example of fitting a system with nonlinear dynamics and
linear observation function. The panels show the fitting of a
nonlinear system with a one-dimensional hidden state and 4 noisy
outputs driven by Gaussian noise inputs and internal state noise.
(left) The true dynamics function (line) and states (dots) used
to generate the training data. Inset: histogram of internal states.
(right) The learned dynamics function and states inferred on
the training data. Inset: histogram of inferred internal states.
(middle) The first component of the observable time series from
the training data. (bottom) First component of fantasy data
generated from the learned model (same scale as middle plot).

recovers the form of the nonlinear dynamics quite well. We
are also able to generate “fantasy” data from the models
once they have been learned by exciting them with Gaus-
sian noise of similar variance to that applied during train-
ing. The resulting observation streams look qualitatively
very similar to the time series from the true systems.

We can quantify this quality of fit by comparing the
log-likelihood of the training sequences and novel test se-
quences under our nonlinear model to the likelihood under
a basic linear dynamical system model or a static model
such as factor analysis. Figure 8 presents this comparison.
The nonlinear dynamical system had significantly superior
likelihood on both training and test data for all the example
systems. (Notice that for system E, the linear dynamical
system is much better than factor analysis because of the
strong hysteresis (mode-locking) in the system. Thus, the
output at the previous time step is an excellent predictor
of the current output.)

B. Weather data

As an example of a real system with a nonlinear out-
put function as well as important dynamics, we trained our
model on records of the daily maximum and minimum tem-
peratures in Melbourne, Australia, over the period 1981—
1990.° We used a model with two internal state variables,
three outputs and no inputs. During the training phase,
the three outputs were the minimum and maximum daily
temperature as well as a real valued output indicating the

9This data is available on the world wide web from the Australian
Bureau of Meteorology.
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Fig. 7. Multidimensional example of fitting a system with nonlinear
dynamics and linear observation functions. The true system is
piecewise linear across the state space. The plots show the fitting
of a nonlinear system with a two-dimensional hidden state and 4
noisy outputs driven by Gaussian noise inputs and internal state
noise. (top left) The true dynamics vector field (arrows) and
states (dots) used to generate the training data. (top right) The
learned dynamics vector field and states inferred on the training
data. (middle/bottom) The first component of the observable
time series: training data above and fantasy data generated from
the learned model below.

time of the year (month) in the range [0,12]. The model
was trained on 1500 days of temperature records, or just
over four seasons. We tested on the remaining 2150 days by
showing the model only the minimum and maximum daily
temperatures and attempting to predict the time of year
(month). The prediction was performed by using the EKS
algorithm to do state inference given only the two available
observation streams. Once state inference was performed,
the learned output function of the model could be used to
predict the time of year. This prediction problem inher-
ently requires the use of information from previous and/or
future times since the static relationship between temper-
ature and season is ambiguous during spring/fall. Figure 9
shows the results of this prediction after training; the al-
gorithm has discovered a relationship between the hidden
state and the observations which allows it to perform rea-
sonable prediction for this task. Also show are the model
predictions of minimum and maximum temperatures given
the inferred state.

Although not explicitly part of the generative model, the
learned system implicitly parameterizes a relationship be-
tween time of year and temperature. We can discover this
relationship by evaluating the nonlinear output function
at many points in the state space. Each evaluation yields
a triple of month, minimum and maximum temperature.
These triples can then be plotted against each other as in
figure 10 to show that the model has discovered the south-
ern hemisphere’s seasonal temperature variations.



th M

@
BLAr - T T |\ T T
i) Training Data Test Data
<) (FA|LDS |NLDS) (FA|LDS|NLDS)
83 - -t -
o
<
[}
=2 Ay B [ | E -l -
o
kS}

1, — - N - — - RN 1 R - B - — - — - — - —

o A. ol dhifl

O e
A B C D E A B C D E

Fig. 8. Differences in log-likelihood assigned by various models to
training and test data from the systems in figure 6. Each adjacent
group of three bars shows the log-likelihood under factor analysis
(FA), linear dynamical systems (LDS), and the nonlinear dynam-
ical systems (NLDS). The letters on the ordinate match the labels
in previous figures. Results on training data appear on the left
and on test data on the right; taller bars represent better models.
Log-likelihoods are offset so that FA on the training data is zero.
Error bars represent the 68% quantile about the median across
100 repetitions of training or testing.

IV. EXTENSIONS
A. Learning the means and widths of the RBFs

It is possible to relax the assumption that the Gaussian
radial basis functions have fixed centers and widths, al-
though this results in a somewhat more complicated and
slower fitting algorithm. To derive learning rules for the
RBF centers ¢; and width matrices S; we need to consid-
er how they play into the cost function (17) through the
RBF kernel, (14). We take derivatives with respect to the
expectation of the cost function C and exchange the order
of the expectation and the derivative:

(50 = (aan)
=2((0% — 2)TQ 7 h; pi(z) S; Mz — &)

Recalling that ® = [p1(z) p2(z)...pr(z) 27 w™ 1]7, it is
clear that ¢; figures nonlinearly in several places in this
equation, and therefore it is not possible to solve for ¢; in
closed form. We can however, use the above gradient to
move the center ¢; to decrease the cost, which corresponds
to taking a partial M-step w.r.t. ¢;. Equation (19) requires
computing three third order expectations in addition to
the first and second order expectations needed to optimize
0 and Q: {pi(z)pr(z)ze);, (pi(®)TrTe)j, and (pi(z)2kTe);-
Similarly, differentiating the cost with respect to S; ! gives:

(35) = (amosm) -
8s;t/ \op:idas;t/

([0 — 2)TQ hs] pi(x) [Si— (z — i)z —ci)T]).

(19)
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Fig. 9. Model of maximum and minimum daily temperatures in

Melbourne, Australia from 1981-1990. (left of vertical line) A
system with two hidden states governed by linear dynamics and
a nonlinear output function was trained on observation vectors
of a three-dimensional time-series consisting of maximum and
minimum temperatures for each day as well as the (real-valued)
month of the year. Training points are shown as triangles (max
temp), squares (min temp) and a solid line (sawtooth wave be-
low). (right of vertical line) After training, the system can
infer its internal state from only the temperature observations.
Having inferred its internal state it can predict the month of the
year as a missing output (line below). The solid lines in the up-
per plots show the model’s prediction of minimum and maximum
temperature given the inferred state at the time.

We now need three fourth order expectations as well:
(pi (@) pre (B)TeTm) ;5 Pi(@) T TeTm) ;, and (pi () 2k TeTm) ;-

These additional expectations increase both the storage
and computation time of the algorithm, a cost which may
not be compensated by the added advantage of moving of
centers and widths by small gradient steps. One heuristic is
to place centers and widths using unsupervised techniques
like the EM algorithm for Gaussian mixtures, which consid-
ers solely the input density and not the output nonlinearity.
Alternatively, some of these higher-order expectations can
be approximated using, for example (p;(z)) = p;({z)).

B. Online learning

One of the major limitations of the algorithm we have
presented in this paper is that it is a batch algorithm, i.e.
it assumes that we use the entire sequence of observations
to estimate the model parameters. Fortunately, it is rel-
atively straightforward to derive an online version of the
algorithm, which updates parameters as it receives obser-
vations. This is achieved using the recursive least squares
(RLS) algorithm [11].

The key observation is that the cost minimized in the
M-step of the algorithm (17) is a quadratic function of the
parameters #. RLS is simply a way of solving quadratic
problems online. Using ¢ to index time step, the resulting
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Fig. 10. Prediction of maximum and minimum daily temperatures
based on time of year. The model from figure 9 implicitly learn-
s a relationship between time of year and minimum/maximum
temperature. This relationship is not directly invertible, but the
temporal information used by Extended Kalman Smoothing cor-
rectly infers month given temperature as shown in figure 9.

algorithm for scalar z is as follows:

0y = O 1+(2®),— 61 (®2T))P  (21a)
P = P1- I;t_}_légf;t)ig): (21b)
Qt = Qtfl + 1 [<Z2>t - 6t <‘I’ Z)t - Qtfl] (21C)

t

Let us ignore the expectations for now. Initializing 8y = 0,
Qo = 1 and Py very large, it is easy to show that after
a few iterations the estimates of §; will rapidly converge
to the exact values obtained by the least square solution.
The estimate of () will converge to the correct values plus a
bias incurred by the fact that the early estimates of () were
based on residuals from 6; rather than lim; .., 6;. P; is a
recursive estimate of (Zﬁ.:l(@@)j)*l, obtained by using
the matrix inversion lemma.

There is an important way in which this online algo-
rithm is an approximation to the batch EM algorithm we
have described for nonlinear state-space models. The ex-
pectations (-); in the online algorithm are computed by
running a single step of the extended Kalman filter using
the previous parameters §; ;. In the batch EM algorith-
m, the expectations are computed by running an extended
Kalman smoother over the entire sequence using the current
parameter estimate. Moreover, these expectations are used
to re-estimate the parameters, the smoother is then re-run,
the parameters are re-re-estimated, and so on, to perform
the usual iterations of EM. In general, we can expect that,
unless the time series is non-stationary, the parameter es-
timates obtained by the batch algorithm after convergence
will model the data better than those obtained by the on-
line algorithm.

Interestingly, the updates for the RLS online algorithm
described here are very similar to the parameter updates

used in a dual extended Kalman filter approach to sys-
tem identification [43] (discussed in section V-E). This
similarity is not coincidental, since the Kalman filter can
be derived as a generalization of the RLS algorithm. In
fact this similarity can be exploited in an elegant manner
to derive an online algorithm for parameter estimation for
non-stationary nonlinear dynamical systems.

C. Nonstationarity

To handle nonstationary time series we assume that the
parameters can drift according to a Gaussian random walk
with covariance Yg:

0y =01 + ¢ where €; ~ N(O, Eo)
As before, we have the following function relating the z
variables to the parameters § and nonlinear kernels ®:

2t = 0:®; +wy where w; ~ N(0,Q)
which we can view as the observation model for a “state
variable” 6; with time varying “output matrix” ®;. Since
both the dynamics and observation models are linear in
f and the noise is Gaussian we can apply the following

Kalman filter to recursively compute the distribution of
drifting parameters 6:

((z ®), — 01 (@ ‘I’T)t) Pt\t—l{

b = b1+ 22a
t i1 Qi1+ (3 Py @), {22a)
Py 1 = P1+%y (22b)
Py 1{(® D7), Pys_
P, = Py - teoof - ) Pyec (22¢)
Qt—l + <(I) Pt|t—1 (I)>t
Qr = Q1+ [<z2>t —0,(® 2), — QH} (22d)

There are two important things to note. First, these e-
quations describe an ordinary Kalman filter except that
both the “output” z and “output matrix” ®; are jointly
uncertain with a Gaussian distribution. Second, we have
also assumed that the output noise covariance can drift by
introducing a forgetting factor A in its re-estimation equa-
tion. As before, the expectations are computed by running
one step of the EKF over the hidden variables using ;.

While we derived this online algorithm starting from the
batch EM algorithm, what we have ended up with appears
almost identical to the dual extended Kalman filter. In-
deed, we have two Kalman filters, one extended and one
ordinary, running in parallel, estimating the hidden states
and parameters, respectively.

We can also view this online algorithm as an approxima-
tion to the Bayesian posterior over parameters and hidden
variables. The true posterior would be some complicated
distribution over the z, z and 6 parameters. Here we have
recursively approximated it with two independent Gaus-
sians, one over (z,z) and one over . The approximated
posterior for 6; has mean 6, and covariance P,.



D. Using Bayesian methods for model selection and com-
plexity control

Like any other maximum likelihood procedure, the EM
algorithm described in this chapter has the potential to
overfit the data set, that is, to find spurious patterns in
noise in the data thereby generalizing poorly. In our im-
plementation we used some ridge regression, i.e. a weight
decay regularizer on the h; parameters, which seemed to
work well in practice but required some heuristics for set-
ting regularization parameters. (Although, as mentioned
previously, integrating over the hidden variables acts as a
sort of modulated input noise and so in effect performs
ridge regression which can eliminate the need for explicit
regularization.)

A second closely related problem faced by maximum like-
lihood methods is that there is no built-in procedure for
doing model selection. That is, the value of the maximum
of the likelihood is not a suitable way to choose between
different model structures. For example, consider the prob-
lems of choosing the dimensionality of the state space z
and choosing the number of basis functions /. Higher di-
mensions of z and more basis functions should always, in
principle, result in higher maxima of the likelihood, which
means that more complex models will always be preferred
to simpler ones. But this, of course, leads to overfitting.

Bayesian methods provide a very general framework for
simultaneously handling the overfitting and model selec-
tion problems in a consistent manner. The key idea of the
Bayesian approach is to avoid maximization wherever pos-
sible. Instead, possible models, structures, parameters—
in short, all settings of unknown quantities—should be
weighted by their posterior probabilities and predictions
should be made according to this weighted posterior.

For our nonlinear dynamical system, we can, for exam-
ple, treat the parameters 6 as an unknown. Then the mod-
el’s prediction of the output at time ¢ + 1 is:

p(yt+1 |U1:t+1, ylzt)

= / dg P(yt+1 |Ut+1; Yi:t,U1:t, 9) p(0|y1:t; ul:t)

- / O pBlyure)

/dSUt-i-l p(yt+1 |Ut+17 $t+1,9) P($t+1 |U1:t+1; Y1:t, 9)

where the first integral on the last line is over the posterior
distribution of the parameters and the second integral is
over the posterior distribution of the hidden variables.

The posterior distribution over parameters can be ob-
tained recursively from Bayes rule:

p(9|y1;t,u1:t) _ P(yt|U1:t,y1:t—1,9) P(9|U1:t—1,y1:t—1)
P(yt|’u1:t; yl:tfl)

The dual extended Kalman filter, the joint extended
Kalman filter, and the non-stationary online algorithm
from section IV-C are all coarse approximations of these
Bayesian recursions.

The above equations are all implicitly conditioned on
some choice of model structure S,,, i.e. dimension of z and
number of basis functions. Although the Bayesian model-
ing philosophy advocates averaging predictions of different
model structures, if necessary it is also possible to use Bayes
rule to choose between model structures according to their
probabilities:

P(y1:¢|u1:t, Sm) P(Sm)
P(Sy Y1, 11sg) =
(Smlyr:e, v1:t) S p(yralure, ) P(Sn)

Tractable approximations to the required integrals can be
obtained in several ways. We highlight three ideas, with-
out going into much detail; an adequate solution to this
problem for nonlinear dynamical systems requires further
research. The first idea is the use of Markov chain Monte
Carlo techniques to sample over both parameters and hid-
den variables. MCMC methods such as Gibbs sampling
have been used for linear dynamical systems [44], [45] while
a promising method for nonlinear systems is particle filter-
ing [20], [26]. The second idea is the use of so-called “au-
tomatic relevance determination” (ARD; [46], [47]). This
consists of using a zero-mean Gaussian prior on each pa-
rameter with tunable variances. Optimizing these variance
hyperparameters results in “irrelevant” being eliminated
from the model. ARD for RBF networks with a center on
each data point has been used by Tipping [48] successful-
ly for nonlinear regression, and given the name “relevance
vector machine” in analogy to support vector machines.
The third idea is the use of variational methods to lower
bound the model structure posterior probabilities. Varia-
tional Bayesian methods have been used by [49] to infer the
structure of linear dynamical systems, although the gener-
alization to nonlinear systems of the kind described in this
chapter is not straightforward.

Of course, in principle the Bayesian approach would ad-
vocate averaging over all possible choices of ¢;, S;, I, @, etc.
It is easy to see how this can rapidly get very unwieldy.

V. DISCUSSION
A. Identifiability and Ezrpressive Power

As we saw in the experiments above, the algorithm we
have presented is capable of learning good density models
for a variety of nonlinear time series. Specifying the class
of nonlinear systems which our algorithm can model well
defines its expressive power. A related question is, what
is the ability of this model, in principle, to recover the
actual parameters of specific nonlinear systems? This is the
question of model identifiability. These two questions are
intimately tied as they both describe the mapping between
actual nonlinear systems and model parameter settings.

There are three trivial degeneracies which make our mod-
el technically unidentifiable, but should not concern us.
First, it is always possible to permute the dimensions in
the state space and, by permuting the domain of the out-
put mapping and dynamics in the corresponding fashion,
obtain an exactly equivalent model. Second, the state vari-
ables can be rescaled or in fact transformed by any invert-
ible linear mapping. This transformation can be absorbed



by the output and dynamics functions yielding a model
with identical input-output behaviour. Without loss of
generality, we always set the covariance of the state evo-
lution noise to be the identity matrix which both sets the
scale of the state space, and disallows certain state trans-
formations without reducing the expressive power of the
model. Third, we take the observation noise to be un-
correlated with the state noise and both noises to be zero
mean since again, without loss of generality these can be
absorbed into the f and g functions!®

There exist other forms of unidentifiability which are
more difficult to overcome. For example, if both f and
g are nonlinear then at least in the noise free case, for any
arbitrary invertible transformation of the state, there exist
transformations of f and g which result in identical input-
output behavior. In this case, it would be very hard to
detect that the recovered model is indeed a good model
of the actual system since the estimated and actual states
would appear to be unrelated.

Clearly, not all systems can be modeled by assuming
that f is linear and g is nonlinear. Similarly, not all sys-
tems can be modeled by assuming that f is nonlinear and
g is linear. For example, consider the case where the obser-
vations y; and y., are statistically independent, but each
observation lies on a curved low-dimensional manifold in
a high dimensional space. Modeling this would require a
nonlinear g as in nonlinear factor analysis, but an f = 0.
Therefore, choosing either f or g to be linear restricts the
expressive power of the model.

Unlike for the state noise covariance (), assuming that
the observation noise covariance R is diagonal does restrict
the expressive power of the model. This is easy to see for
the case where the dimension of the state space is small
and the dimension of the observation vector is large. A
full covariance R can capture all correlations between ob-
servations at a single time step, while a diagonal R model
cannot.

For nonlinear dynamical systems, the Gaussian noise as-
sumption is not as restrictive as it may initially appear.
This is because the nonlinearity can be used to turn Gaus-
sian noise into non-Gaussian noise [9].

Of course, we have restricted our expressive power by us-
ing an RBF network, especially once the means and centers
of the RBFs are fixed. One could try to appeal to universal
approximation theorems to make the claim that we could in
principle model any nonlinear dynamical system. But this
would be misleading in the light of the noise assumptions
and the fact that only a finite and usually small number of
RBFs are going to be used in practice.

B. Embedded Flows

There are two ways to think about the dynamical models
we have investigated, shown in figure 11. One is as a non-

10Imagine that the joint noise covariance was nonzero: (wv; ) = S.
Replacing A with A’ = A— SR~ !C gives a new noise process w’ with
covariance Q' = Q — SR~1ST that is uncorrelated with v, leaving the
input output behavior invariant. Similarly any non-zero noise means
can be absorbed into the b terms in the functions f and g.

Fig. 11. Two interpretations of the graphical model for stochas-
tic (non)linear dynamical systems (see text). (top) A Markov
process embedded in a manifold. (bottom) Nonlinear factor
analysis through time.

linear Markov process (flow) z; which has been embedded
(or potentially projected) into a manifold y;. From this
perspective, the function f controls the evolution of the s-
tochastic process and the function g specifies the nonlinear
embedding (or projection) operation.!!

Another way to think of the same model is as a nonlinear
version of a latent variable model such as factor analysis
(but possibly with external inputs as well) in which the la-
tent variables or factors evolves through time rather than
being drawn independently for each observation. The non-
linear factor analysis model is represented by g and the
time evolution of the latent variables by f.

If the state space is of lower dimension than the obser-
vation space and the observation noise is additive, then a
useful geometrical intuition applies. In such cases, we have
observed a flow inside an embedded manifold. The ob-
servation function g specifies the structure (shape) of the
manifold, while the dynamics f specifies the flow within the
manifold. Armed with this intuition, the learning problem
looks like it might be decoupled into two separate stages:
first find the manifold by doing some sort of density mod-
eling on the collection of observed outputs (ignoring their
time order); second, find the flow (dynamics) by project-
ing the observations into the manifold and doing nonlinear
regression from one time step to the next. This intuition is
partly true, and indeed provides the basis for many of the
practical and effective initialization schemes we have tried.
However, the crucial point as far as the design of learning
algorithms is concerned, is that the two learning problem-
s interact in a way that makes the problem easier. Once
we know something about the dynamics, this information
gives some prior knowledge when trying to learn the man-
ifold shape. For example, if the dynamics suggest that the
next state will be near a certain point we can use this infor-
mation to do better than naive projection when we locate
a noisy observation on the manifold. Conversely, knowing
something about the manifold allows us to estimate the

1Ty simplify presentation we’ll neglect driving inputs u; in this
section, although the arguments extend as well to systems with in-
puts.



Fig. 12. Linear and nonlinear dynamical systems represents flow
fields embedded in manifolds. For systems with linear output
functions, such as the one illustrated, the manifold is a hyper-
plane while the dynamics may be complex. For systems with
nonlinear output functions the shape of the embedding manifold
is also curved.

dynamics more effectively.

We discuss separately two special cases of flows in man-
ifolds: systems with linear output functions but nonlinear
dynamics and systems with linear dynamics but nonlinear
output function.

When the output function g is linear and the dynamics
f is nonlinear (figure 12) the observed sequence forms a
nonlinear flow in a linear subspace of the observation s-
pace. The manifold estimation is made easier, even with
high levels of observation noise, by the fact that its shape is
known to be a hyperplane. All that is required is to find its
orientation and the character of the output noise. Time-
invariant analysis of the observations by algorithms such
as factor analysis is an excellent way to initialize estimates
of the hyperplane and noises. However during learning we
made have cause to tilt the hyperplane to make the dy-
namics fit better, or conversely to modify the dynamics to
make the hyperplane model better.

This setting is actually more expressive than it might
seem initially. Consider a nonlinear output function g(x)
that is “invertible” in the sense that it be written in the for-
m g(z) = Cg(z) for invertible § and non-square matrix C'.
Any such nonlinear output function can be made strictly
linear if we transform to a new state variable Z:

Z=g(z) =
Frpr = f(@,w) = §(F(571E)) +wy)
Yy = CZy + vy = g(x) + 04
which gives an equivalent model but with a purely lin-
ear output process, and potentially non-additive dynamics
noise.
For nonlinear output functions g paired with linear dy-

namics f, the observation sequence forms a matrix (linear)
flow in a nonlinear manifold:

(24a)
(24b)

Tpp1 = Az + wy
Ye = 9(@e) + vt

The manifold learning is harder now, because we must es-
timate a thin, curved subspace of the observation space in

the presence of noise. However, once we have learned this
manifold approximately, we project the observations into
it and learn only linear dynamics. The win comes from
the following fact: in the locations where the projected dy-
namics do not look linear, we know that we should bend
the manifold to make the dynamics more linear. Thus not
only the shape of the outputs (ignoring time) but also the
linearity of the dynamics give us clues to learning the man-
ifold.

C. Stability

Stability is a key issue in the study of any dynamical
system. Here we have to consider stability at two levels:
the stability of the learning procedure, and the stability of
the learned nonlinear dynamical system.

Since every step of the EM algorithm is guaranteed to
increase the log likelihood until convergence, it has a built-
in Lyapunov function for stable learning. However, as we
pointed out, our use of extended Kalman smoothing in the
E-step of the algorithm represents an approximation to the
exact E-step, and therefore we have to forego any guaran-
tees of stability of learning. While we rarely had prob-
lems with stability of learning, this is sure to be problem-
specific, depending both of the quality of the EKS approx-
imation and on how close the true system dynamics are to
the boundary of stability. In contrast to the EKS approxi-
mations, certain variational approximations [31] transform
the intractable Lyapunov function into a tractable one, and
therefore preserve stability of learning. It is not clear how
to apply these variational approximations to nonlinear dy-
namics, although this would clearly be an interesting area
of research.

Stability of the learned nonlinear dynamical system can
be analyzed by making use of some linear systems theory.
We know that for discrete time linear dynamical systems
if all eigenvalues of the A matrix lie inside the unit circle,
the system is globally stable. The nonlinear dynamics of
our RBF network f can be decomposed into two parts (cf
eq (13)) : a linear component given by A, and a nonlinear
component given by ). h;p;(x). Clearly for the system to
be globally stable, A has to satisfy the eigenvalue criterion
for linear systems. Moreover, if the RBF coeflicients for
both f and g are bounded, i.e. max; |h;| < h, and the RBF
support is bounded in the following way: min; det(S;) > 0
and max;; |¢; — ¢j| < &, then the nonlinear system is stable
in a bounded-input bounded-output sense. That is, for
any sequence of bounded inputs the output sequence of
the noise free system will be bounded with probability 1.
Intuitively, although unstable behavior might occur in the
region of RBF support, one x leaves this region it is drawn
back in by A.

For the online EM learning algorithm, the hidden state
dynamics and the parameter re-estimation dynamics will
interact, and therefore a stability analysis would be quite
challenging. However, since there is no stability guarantee
for the batch EKS-EM algorithm, it seems very unlikely
that a simple form of the online algorithm could be prov-
ably stable.



D. Takens’ theorem and hidden states

It has long been known that for linear systems, there is
an equivalence between so called state-space formulations
which involve hidden variables and direct vector autore-
gressive models of the time-series. In 1980, Takens proved
a remarkable theorem [50] which tells us that for almost
any deterministic nonlinear dynamical system with a d-
dimensional state space, the state can be effectively recon-
structed by observing 2d+ 1 time lags of any one of its out-
puts. In particular, Takens showed that such a lag vector
will be a smooth embedding (diffeomorphism) of the true
state if one exists. This notion of finding an “embedding”
for the state has been used to justify a nonlinear regression
approach to learning nonlinear dynamical systems. That
is, if you suspect that the system is nonlinear and that it
has d state dimensions, instead of building a state-space
model, you can do away with representing states and just
build an autoregressive (AR) model directly on the obser-
vations that nonlinearly relates previous outputs and the
current output. This view begs the question, do we need
our models to have hidden states at all?

While no constructive realization for Takens’ theorem
exists in general, for linear systems there are very strong
results. For purely linear systems, we can appeal to the
Cayley-Hamilton theorem!? to show that the hidden state
can always be eliminated to obtain a equivalent vector au-
toregressive model by taking only d time lags of the output.
Furthermore there is a construction which allows this con-
version to be performed explicitly. ® Takens’ theorem of-
fers us a similar guarantee for elimination of hidden states
in nonlinear dynamical systems as long as we take 2d + 1
output lags. However, no similar recipe exists for explicitly
converting to an autoregressive form. These results make
hidden states seem unnecessary.

The problem with this view is that it does not generalize
well to many realistic high-dimensional and noisy scenar-
ios. Consider the example mentioned in the introduction.
While it is mathematically true that the pixels in the video
frame of a balloon floating in the wind are a (highly nonlin-
ear) function of the pixels in the previous video frames, it
would be ludicrous from the modeling perspective to build
an AR model of the video images. This would require a
number of parameters on the order of the number of pixels
squared. Furthermore, unlike the noise-free case of Takens’
theorem, when the dynamics are noisy the optimal predic-
tion of the observation would have to depend on the entire
history of past observations. Any truncation of this his-

12 Any square matrix A of size n satisfies its own characteristic equa-
tion. Equivalently, any matrix power A™ for m > n can be written
as a linear combination of lower matrix powers I, A, A2,... A"~ 1,

13Start with the system z¢y1 = Azt + wt , Yyt = Czy + v¢. Create
a d-dimensional lag vector z¢ = [Y¢;Yt415.-- ;Yt+d—1) which holds
the current and d — 1 future outputs. Write 2z = Gzt + nt for G =
[CI;CA;CA?;... ;CA% 1] and Gaussian noise n (although with non-
diagonal covariance). The Cayley-Hamilton theorem assures us that
G is full rank and thus we need not take any more lags. Given the lag
vector z; we can solve the system z; = Gz for x;; write this solution
as GT2z;. Using the original observation equation d times, to solve
for yi,... ,yt44—1 in terms of 2; we can write an autoregression for

2t as z4+1 = GT AGz: + my for Gaussian noise m.

tory throws away potentially valuable information about
the unobserved state. The state-space formulation of non-
linear dynamical systems allows us to overcome both of
these limitations of nonlinear autoregressive models. That
is, it allows us to have compact representations of dynam-
ics, and to integrate uncertain information over time. The
price paid for this is that it requires having to do inference
over the hidden state.

E. Should parameters and hidden states be treated differ-
ently?

The maximum likelihood framework on which the EM
algorithm is based makes a distinction between parameter-
s and hidden variables: it attempts to integrate over hidden
variables to mazimize the likelihood as a function of param-
eters. This leads to the two-step approach which computes
sufficient statistics over the hidden variables in the E-step
and optimizes parameters in the M-step. In contrast, a
fully Bayesian approach to learning nonlinear dynamical
state-space models would treat both hidden variables and
parameters as unknown and attempt to compute or approx-
imate the joint posterior distribution over them, in effect
integrating over both.

It is important to compare these approaches to system
identification with more traditional ones. We highlight two
such approaches: joint EKF approaches, and dual EKF
approaches.

In joint EKF approaches [10], [11], an augmented hid-
den state space is constructed which comprises the original
hidden state space and the parameters. Since parameters
and hidden states interact, even for linear dynamical sys-
tems this approach results in nonlinear dynamics over the
augmented hidden states. Initializing a Gaussian prior dis-
tribution both over parameters and states, an extended
Kalman filter is then used to recursively update the joint
distribution over states and parameters based on the ob-
servations, p(X,0|Y). This approach has the advantage
that it can model uncertainties in the parameters and cor-
relations between parameters and hidden variables. In fact
this approach treats parameters and state variables com-
pletely symmetrically and can be thought of as iteratively
implementing a Gaussian approximation to the recursive
Bayes rule computations. Nonstationarity can be easily
built in by giving the parameters e.g. random-walk dy-
namics. Although it has some very appealing properties,
this approach is known to suffer from instability problems,
which is the reason why dual EKF approaches have been
proposed.

In dual EKF approaches [43], two interacting but dis-
tinct extended Kalman filters operate simultaneously. One
computes a Gaussian approximation of the state poste-
rior given a parameter estimate and the observations:
p(X 0014, Y"), while the other computes a Gaussian approx-
imation of the parameter posterior given the estimated s-
tates p(0|Xoia,Y). The two EKFs interact by each feed-
ing its estimate (i.e. the posterior means X and ) into
the other. One can think of the dual EKF as perform-
ing approximate coordinate ascent in p(X,8|Y") by itera-



tively maximizing p(X|éold, Y) and p(0|Xold, Y) under the
assumption that each conditional is Gaussian. Since the
only interaction between parameters and hidden variables
occurs through their respective means, the procedure has
the flavor of mean-field methods in physics and neural net-
works [51]. Like these methods it is also likely to suffer from
the overconfidence problem—namely, since the parameter
estimate does not take into account the uncertainty in the
states, the parameter covariance will be overly narrow, like-
wise for the states.

For large systems, both joint and dual EKF methods
suffer from the fact that the parameter covariance matrix
is quadratic in the number of parameters. This problem
is more pronounced for the joint EKF since it considers
the concatenated state space. Furthermore, both joint and
dual EKF methods rely on Gaussian approximations to pa-
rameter distributions. This can sometimes be problematic,
e.g. consider retaining positive definiteness of a noise co-
variance matrix under the assumption that its parameters
are Gaussian distributed.

VI. CONCLUSION

This chapter brings together two classic algorithms, one
from statistics and another from systems engineering, to
address the learning of stochastic nonlinear dynamical sys-
tems. We have shown that by pairing the Extended
Kalman Smoothing algorithm for approximate state esti-
mation in the E-step, with a radial basis function learning
model that permits exact analytic solution of the M-step,
the EM algorithm is capable of learning a nonlinear dy-
namical model from data. As a side effect we have derived
an algorithm for training a radial basis function network to
fit data in the form of a mixture of Gaussians. We have al-
so derived an online version of the algorithm and a version
for dealing with non-stationary time series.

We have demonstrated the algorithm on a series of syn-
thetic and realistic nonlinear dynamical systems and shown
that it is able to learn accurate models from only observa-
tions of inputs and outputs. Initialization of model parame-
ters and placement of the radial basis kernels are important
to the practical success of the algorithm. We have discussed
techniques for making these choices as well as provided gra-
dient rules for adapting the centres and widths of the basis
functions.

The belief network literature has recently been domi-
nated by two methods for approximate inference, Markov
chain Monte Carlo [52] and variational approximations [31].
To our knowledge [35] and [43] were the first instances
where extended Kalman smoothing had been used to per-
form approximate inference in the E-step of EM. While
EKS does not have the theoretical guarantees of variation-
al methods (which are also approximate but monotonically
optimize a computable objective function during learning),
its simplicity has gained it wide acceptance in the estima-
tion and control literatures as a method for doing inference
in nonlinear dynamical systems. Our practical success in
modeling a variety of nonlinear time series suggests that
the combination of Extended Kalman algorithms and the

EM algorithm can provide powerful tools for learning non-
linear dynamical systems.
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APPENDIX
I. EXPECTATIONS REQUIRED TO FIT THE RBFs

The expectations we need to compute for equation (18) are
()js (2)j, (wxT);, (227 );, (w27 );, and
(pi(@));, (& pi(@)), (2 pi(@));, (pila) pela));.

Starting with some of the easier ones that do not depend on the
RBF kernel p:

(x)j = uf (i =
(@) = ufui’ +Cp" (z2T); = it 403
(@:T); = peuyt 4 CPE

Observe that when we multiply the Gaussian RBF kernel p;(z) (e-
quation 14) and N; we get a Gaussian density over (z,z) with mean
and covariance

-1 .

and

iy = (c;l + [ St 0 ])_ (26)

and an extra constant (due to lack of normalization),
Bij = (2m) ~4=/%| 53| 71/2|C5| 72| C |1 exp{ =8 /2}

-1 -1 —1 .
where 6;; = ¢] S; "¢ + ,uJTCJ- B — /,L;;.Cij pij. Using Bs; and pgj,
we can evaluate the other expectations:

(pi(x)); = Bij)

(x pi(x)); = Bijui;, and (2 pi(z)); = Bijui;-

Finally,

(pi(@) pe(z)); = (2m) =% |C; |71/ 2|S;Sy| 712 |Cy45 2 exp{—ie; /2},
(27)
where

L [ sttesst oo N\
Cﬂj = (Cj + [ ¢ 0 £ 0 :|) (28)

and

-1 1
wie; = Cigj (Cj_llij + [ Sie 4(; S et D ) (29)

1 1 1 1
and 5 = ¢ S; “ci +¢) S, cl—f-,u]-.rC'j ,ujf,u;-';ZjCMjqu.
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Fig. 6. More examples of fitting systems with nonlinear dynamics and linear observation functions. Each of the five rows shows the fitting
of a nonlinear system with a one-dimensional hidden state and 4 noisy outputs driven by Gaussian noise inputs and internal state noise.
(left) The true dynamics function (line) and states (dots) used to generate the training data. (middle) The learned dynamics function
and states inferred on the training data. (right) The first component of the observable time series: training data on the top and fantasy

data generated from the learned model on the bottom. The nonlinear dynamics can produce quasi-periodic outputs in response to white
driving noise.



