
Hidden Markov decision trees�Michael I. Jordany, Zoubin Ghahramaniz, and Lawrence K. Saulyfjordan,zoubin,lksaulg@psyche.mit.eduyCenter for Biological and Computational LearningMassachusetts Institute of TechnologyCambridge, MA USA 02139zDepartment of Computer ScienceUniversity of TorontoToronto, ON Canada M5S 1A4AbstractWe study a time series model that can be viewed as a decisiontree with Markov temporal structure. The model is intractable forexact calculations, thus we utilize variational approximations. Weconsider three di�erent distributions for the approximation: one inwhich the Markov calculations are performed exactly and the layersof the decision tree are decoupled, one in which the decision treecalculations are performed exactly and the time steps of the Markovchain are decoupled, and one in which a Viterbi-like assumption ismade to pick out a single most likely state sequence. We presentsimulation results for arti�cial data and the Bach chorales.
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1 IntroductionDecision trees are regression or classi�cation models that are based on a nesteddecomposition of the input space. An input vector x is classi�ed recursively by aset of \decisions" at the nonterminal nodes of a tree, resulting in the choice of aterminal node at which an output y is generated. A statistical approach to decisiontree modeling was presented by Jordan and Jacobs (1994), where the decisions weretreated as hidden multinomial random variables and a likelihood was computed bysumming over these hidden variables. This approach, as well as earlier statisticalanalyses of decision trees, was restricted to independently, identically distributeddata. The goal of the current paper is to remove this restriction; we describe ageneralization of the decision tree statistical model which is appropriate for timeseries.The basic idea is straightforward|we assume that each decision in the decision treeis dependent on the decision taken at that node at the previous time step. Thus we�A revised version of this technical report will appear in M. C. Mozer, M. I. Jordanand T. Petsche (eds.) Advances in Neural Information Processing Systems 9. Cambridge,MA: MIT Press.



augment the decision tree model to include Markovian dynamics for the decisions.For simplicity we restrict ourselves to the case in which the decision variable ata given nonterminal is dependent only on the same decision variable at the samenonterminal at the previous time step. It is of interest, however, to consider morecomplex models in which inter-nonterminal pathways allow for the possibility ofvarious kinds of synchronization.Why should the decision tree model provide a useful starting point for time seriesmodeling? The key feature of decision trees is the nested decomposition. If weview each nonterminal node as a basis function, with support given by the subsetof possible input vectors x that arrive at the node, then the support of each nodeis the union of the support associated with its children. This is reminiscent ofwavelets, although without the strict condition of multiplicative scaling. Moreover,the regions associated with the decision tree are polygons, which would seem toprovide a useful generalization of wavelet-like decompositions in the case of a high-dimensional input space.The architecture that we describe in the current paper is fully probabilistic. Weview the decisions in the decision tree as multinomial random variables, and weare concerned with calculating the posterior probabilities of the time sequence ofhidden decisions given a time sequence of input and output vectors. Althoughsuch calculations are tractable for decision trees and for hidden Markov modelsseparately, the calculation is intractable for our model. Thus we must make useof approximations. We utilize the partially factorized variational approximationsdescribed by Saul and Jordan (1996), which allow tractable substructures (e.g., thedecision tree and Markov chain substructures) to be handled via exact methods,within an overall approximation that guarantees a lower bound on the log likelihood.2 Architectures2.1 Probabilistic decision treesThe \hierarchical mixture of experts" (HME) model (Jordan & Jacobs, 1994) is adecision tree in which the decisions are modeled probabilistically, as are the outputs.The total probability of an output given an input is the sum over all paths in thetree from the input to the output. The HME model is shown in the graphicalmodel formalism in Figure 2.1. Here a node represents a random variable, and thelinks represent probabilistic dependencies. A conditional probability distribution isassociated with each node in the graph, where the conditioning variables are thenode's parents.Let z1, z2, and z3 denote the (multinomial) random variables corresponding tothe �rst, second and third levels of the decision tree.1 We associate multinomialprobabilities P (z1jx; �1), P (z2jx; z1; �2), and P (z3jx; z1; z2; �3) with the decisionnodes, where �1; �2, and �3 are parameters (e.g., Jordan and Jacobs utilized soft-max transformations of linear functions of x for these probabilities). The leaf prob-abilities P (yjx; z1; z2; z3; �) are arbitrary conditional probability models; e.g., lin-ear/Gaussian models for regression problems.The key calculation in the �tting of the HME model to data is the calculation ofthe posterior probabilities of the hidden decisions given the clamped values of xand y. This calculation is a recursion extending upward and downward in the tree,in which the posterior probability at a given nonterminal is the sum of posteriorprobabilities associated with its children. The recursion can be viewed as a special1Throughout the paper we restrict ourselves to three levels for simplicity of presentation.
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bFigure 2: An HMM as a graphicalmodel. The transition matrix appearson the horizontal links and the outputprobability distribution on the verticallinks. The E step of the learning algo-rithm for HMM's involves calculatingthe posterior probabilities of the hid-den (unshaded) variables given the ob-served (shaded) variables.case of generic algorithms for calculating posterior probabilities on directed graphs(see, e.g., Shachter, 1990).2.2 Hidden Markov modelsIn the graphical model formalism a hidden Markov model (HMM; Rabiner, 1989) isrepresented as a chain structure as shown in Figure 2.1. Each state node is a multi-nomial random variable zt. The links between the state nodes are parameterized bythe transition matrix a(ztjzt�1), assumed homogeneous in time. The links betweenthe state nodes zt and output nodes yt are parameterized by the output probabilitydistribution b(ytjzt), which in the current paper we assume to be Gaussian with(tied) covariance matrix �.As in the HME model, the key calculation in the �tting of the HMM to observeddata is the calculation of the posterior probabilities of the hidden state nodes giventhe sequence of output vectors. This calculation|the E step of the Baum-Welchalgorithm|is a recursion which proceeds forward or backward in the chain.2.3 Hidden Markov decision treesWe now marry the HME and the HMM to produce the hidden Markov decision tree(HMDT) shown in Figure 3. This architecture can be viewed in one of two ways:(a) as a time sequence of decision trees in which the decisions in a given decisiontree depend probabilistically on the decisions in the decision tree at the precedingmoment in time; (b) as an HMM in which the state variable at each moment intime is factorized (cf. Ghahramani & Jordan, 1996) and the factors are coupledvertically to form a decision tree structure.Let the state of the Markov process de�ning the HMDT be given by the values ofhidden multinomial decisions z1t ; z2t , and z3t , where the superscripts denote the levelof the decision tree (the vertical dimension) and the subscripts denote the time (thehorizontal dimension). Given our assumption that the state transition matrix hasonly intra-level Markovian dependencies, we obtain the following expression for the
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Figure 3: The HMDT model is an HME decision tree (in the vertical dimension)with Markov time dependencies (in the horizontal dimension).HMDT probability model:P (fz1t ; z2t ; z3tg; fytgjfxtg) = �1(z11jx1)�2(z21jx1; z11)�3(z31jx1; z11; z21)TYt=2a1(z1t jxt; z1t�1)a2(z2t jxt; z2t�1; z1t )a3(z3t jxt; z3t�1; z1t ; z2t ) TYt=1 b(ytjxt; z1t ; z2t ; z3t )Summing this probability over the hidden values z1t ; z2t , and z3t yields the HMDTlikelihood.The HMDT is a 2-D lattice with inhomogeneous �eld terms (the observed data).It is well-known that such lattice structures are intractable for exact probabilisticcalculations. Thus, although it is straightforward to write down the EM algorithmfor the HMDT and to write recursions for the calculations of posterior probabilitiesin the E step, these calculations are likely to be too time-consuming for practicaluse (for T time steps, K values per node and M levels, the algorithm scales asO(KM+1T )). Thus we turn to methods that allow us to approximate the posteriorprobabilities of interest.3 Algorithms3.1 Partially factorized variational approximationsCompletely factorized approximations to probability distributions on graphs canoften be obtained variationally as mean �eld theories in physics (Parisi, 1988). Forthe HMDT in Figure 3, the completely factorized mean �eld approximation woulddelink all of the nodes, replacing the interactions with constant �elds acting at eachof the nodes. This approximation, although useful, neglects to take into accountthe existence of e�cient algorithms for tractable substructures in the graph.Saul and Jordan (1996) proposed a re�ned mean �eld approximation to allow in-teractions associated with tractable substructures to be taken into account. Thebasic idea is to associate with the intractable distribution P a simpli�ed distribu-tion Q that retains certain of the terms in P and neglects others, replacing themwith parameters �i that we will refer to as \variational parameters." Graphicallythe method can be viewed as deleting arcs from the original graph until a forestof tractable substructures is obtained. Arcs that remain in the simpli�ed graph



correspond to terms that are retained in Q; arcs that are deleted correspond tovariational parameters.To obtain the best possible approximation of P we minimize the Kullback-Lieblerdivergence KL(QjjP ) with respect to the parameters �i. The result is a coupledset of equations that are solved iteratively. These equations make reference to thevalues of expectations of nodes in the tractable substructures; thus the (e�cient)algorithms that provide such expectations are run as subroutines. Based on the pos-terior expectations computed under Q, the parameters de�ning P are adjusted. Thealgorithm as a whole is guaranteed to increase a lower bound on the log likelihood.3.2 A forest of chainsThe HMDT can be viewed as a coupled set of chains, with couplings induced directlyvia the decision tree structure and indirectly via the common coupling to the outputvector. If these couplings are removed in the variational approximation, we obtaina Q distribution whose graph is a forest of chains. There are several ways toparameterize this graph; in the current paper we investigate a parameterization withtime-varying transition matrices and time-varying �elds. Thus the Q distributionis given byQ(fz1t ; z2t ; z3tg j fytg; fxtg) = 1ZQ TYt=2 ~a1t (z1t jz1t�1)~a2t (z2t jz2t�1)~a3t (z3t jz3t�1)TYt=1 ~q1t (z1t )~q2t (z2t )~q3t (z3t )where ~ait(zitjzit�1) and ~qit(zit) are potentials that provide the variational parameter-ization.3.3 A forest of decision treesAlternatively we can drop the horizontal couplings in the HMDT and obtain avariational approximation in which the decision tree structure is handled exactlyand the Markov structure is approximated. The Q distribution in this case isQ(fz1t ; z2t ; z3tg j fytg; fxtg) = TYt=1 ~r1t (z11)~r2t (z21jz11)~r3t (z31jz11; z21)Note that a decision tree is a fully coupled graphical model; thus we can view thepartially factorized approximation in this case as a completely factorized mean �eldapproximation on \super-nodes" whose con�gurations include all possible con�gu-rations of the decision tree.3.4 A Viterbi-like approximationIn hidden Markov modeling it is often found that a particular sequence of stateshas signi�cantly higher probability than any other sequence. In such cases theViterbi algorithm, which calculates only the most probable path, provides a usefulcomputational alternative.We can develop a Viterbi-like algorithmby utilizing an approximationQ that assignsprobability one to a single path f�z1t ;�z2t ; �z3tg:Q(fz1t ; z2t ; z3tg j fytg; fxtg) = � 1 if zit = �zit; 8t; i0 otherwise (1)
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Figure 4: a) Arti�cial time series data. b) Learning curves for the HMDT.Note that the entropy Q lnQ is zero, moreover the evaluation of the energy Q lnPreduces to substituting �zit for zit in P . Thus the variational is particularly simplein this case. The resulting algorithm involves a subroutine in which a standardViterbi algorithm is run on a single chain, with the other (�xed) chains providing�eld terms.4 ResultsWe illustrate the HMDT on (1) an arti�cial time series generated to exhibit spatialand temporal structure at multiple scales, and (2) a domain which is likely to exhibitsuch structure naturally|the melody lines from J.S. Bach's chorales.The arti�cial data was generated from a three level binary HMDT with no inputs,in which the root node determined coarse-scale shifts (�5) in the time series, themiddle node determined medium-scale shifts (�2), and the bottom node determined�ne-scale shifts (�0:5) (Figure 4a). The temporal scales at these three nodes|asmeasured by the rate of convergence (second eigenvalue) of the transition matrices,with 0 (1) signifying immediate (no) convergence|were 0:85, 0:5, and 0:3, respec-tively.We implemented a forest-of-chains approximation and a Viterbi-like approximation.The learning curves for ten runs of the forest-of-chains approximation are shown inFigure 4b. Three plateau regions are apparent, corresponding to having extractedthe coarse, medium, and �ne scale structures of the time series. Five runs capturedall three spatio-temporal scales at their correct level in the hierarchy; three runscaptured the scales but placed them at incorrect nodes in the decision tree; andtwo captured only the coarse-scale structure. Similar results were obtained withthe Viterbi-like approximation.The Bach chorales dataset consists of 30 melody lines with 40 events each.2 Eachdiscrete event encoded 6 attributes|start time of the event (st), pitch (pitch),duration (dur), key signature (key), time signature (time), and whether the eventwas under a fermata (ferm).The chorales dataset was modeled with 3-level HMDTs with branching factors (K)2, 3, 4, 5, and 6 (3 runs at each size, summarized in Table 1). Thirteen out of 15runs resulted in a coarse-to-�ne progression of temporal scales from root to leavesof the tree. A typical run at branching factor 4, for example, dedicated the top2This dataset was obtained from the UCI Repository of Machine Learning Datasets.



Percent variance explained Temporal scaleK st pitch dur key time ferm level 1 level 2 level 32 3 6 6 84 95 0 1.00 1.00 0.513 22 38 7 93 99 0 1.00 0.96 0.854 55 48 36 96 99 5 1.00 1.00 0.695 57 41 41 97 99 61 1.00 0.95 0.756 70 40 58 94 99 10 1.00 0.93 0.76Table 1: Hidden Markov decision tree models of the Bach chorales dataset: meanpercentage of variance explained for each attribute and mean temporal scales at thedi�erent nodes.level node to modeling the time and key signatures|attributes that are constantthroughout any single chorale|the middle node to modeling start times, and thebottom node to modeling pitch or duration.5 ConclusionsViewed in the context of the burgeoning literature on adaptive graphical probabilis-tic models|which includes HMM's, HME's, CVQ's, IOHMM's (Bengio & Frasconi,1995), and factorial HMM's|the HMDT would appear to be a natural next step.The HMDT includes as special cases all of these architectures, moreover it arguablycombines their best features: factorized state spaces, conditional densities, represen-tation at multiple levels of resolution and recursive estimation algorithms. Our workon the HMDT is in its early stages, but the earlier literature provides a reasonablysecure foundation for its development. Moreover the empirical results obtained thusfar give us some con�dence that the approximations that we are using will prove tobe su�ciently accurate.ReferencesBengio, Y., & Frasconi, P. (1995). An input output HMM architecture. In G.Tesauro, D. S. Touretzky & T. K. Leen, (Eds.), Advances in Neural InformationProcessing Systems 7, MIT Press, Cambridge MA.Ghahramani, Z., & Jordan, M. I. (1996). Factorial hidden Markov models. In D. S.Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in Neural InformationProcessing Systems 8, MIT Press, Cambridge MA.Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and theEM algorithm. Neural Computation, 6, 181{214.Parisi, G. (1988). Statistical Field Theory. Redwood City, CA: Addison-Wesley.Rabiner, L. (1989). A tutorial on hidden Markov models and selected application sin speech recognition. Proceedings of the IEEE, 77, 257{285.Saul, L. K., & Jordan, M. I. (1996). Exploiting tractable substructures in intractablenetworks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances inNeural Information Processing Systems 8, MIT Press, Cambridge MA.Shachter, R. (1990). An ordered examination of in
uence diagrams. Networks, 20,535{563.


