
Modular decomposition in visuomotor learningZoubin Ghahramani�y and Daniel M. WolpertzyDepartment of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridge, MA 02139, USAzSobell Department of NeurophysiologyInstitute of Neurology, Queen SquareLondon WC1N 3BG, United KingdomNature 386:392-395 (1997)The principle of `divide-and-conquer,' thedecomposition of a complex task into simplersubtasks each learned by a separate module,has been proposed as a computational strategyduring learning [1, 2, 3]. We explore the possi-bility that the human motor system uses sucha modular decomposition strategy to learn thevisuomotor map, the relationship between vi-sual inputs and motor outputs. Using a vir-tual reality system, subjects were exposed toopposite prism-like visuomotor remappings|discrepancies between actual and visually per-ceived hand locations|for movements start-ing from two distinct locations. Despite thiscon
icting pairing between visual and motorspace, subjects learned the two starting-point-dependent visuomotor mappings and the gen-eralization of this learning to intermediatestarting locations demonstrated an interpola-tion of the two learned maps. This interpola-tion was a weighted average of the two learnedvisuomotor mappings, with the weighting sig-moidally dependent on starting location|aprediction made by a computational model ofmodular learning known as the \mixture ofexperts" [1]. These results provide evidencethat the brain may employ a modular decom-position strategy during learning.A general strategy for learning is to divide a com-plex task into simpler subtasks and learn each sub-task with a separate module. This strategy has re-cently been formalized into a computational modelof learning known as the mixture of experts [1], inwhich a set of expert modules each learn one of thesubtasks and a gating module weights the contribu-tion of each expert module's output to the �nal sys-�Correspondence should be addressed to Zoubin Ghahra-mani, Department of Computer Science, University of Toronto,Canada M5G 3H5. Email: zoubin@cs.toronto.edu.

tem output. The gating module bases its weightingof each expert on its estimate of the probability thatthis expert is the appropriate one to use for the cur-rent task. During learning, the gating module simul-taneously learns to partition the task into subtaskswhile the expert modules learn these subtasks. Suchmodular decomposition has been proposed both as amodel of high-level vision [4] and of the role of thebasal ganglia during sensorimotor learning [5]. Themixture of experts model makes speci�c predictionsregarding the nature of learning which have not beentested empirically. Here we test the hypothesis thatthe visuomotor system exhibits such modular decom-position during learning.Previous studies have shown that the motor systemis able to adapt to multiple di�erent perturbations.Subjects adapt increasingly readily when repeatedlypresented with two di�erent prismatic displacementsseparated temporally [6, 7], a process which is medi-ated by posterior parietal cortex [8]. Similarly, sub-jects adapt to multiple perturbations if cued by gazedirection [9, 10, 11], body orientation [12], arm con-�guration [13], an auditory tone [14] or the feel ofprism goggles [15, 16, 17]. One hypothesis to accountfor these studies is that multiple visuomotor map-pings are stored simultaneously, suggesting a modu-lar system. However, alternative explanations, suchas a general increase in adaptability, or a single, non-modular system which is responsive to inputs frommany modalities, cannot be ruled out from thesestudies. In particular it is not clear if the outputs ofseparate modules can be appropriately combined forcontexts not already learned. Here we probe the exis-tence of multiple modules by testing the speci�c pre-dictions of a computational model of modular learn-ing.We investigated a learning paradigm in which thevisual feedback of the hand during pointing move-ments was perturbed so that a single location in vi-1
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Figure 1. A modular decomposition model of visuomo-tor learning in which two di�erent maps can be learnedfor the same visual target location. This represents thesimplest instantiation of the hierarchical mixture of ex-perts [2], having only one level and two experts. Themodel maps target and starting locations to motor out-puts, m, which could represent, for example, the �nalhand location or movement vector. Each expert learnsa di�erent mapping between target locations and motoroutputs. The contribution of each expert's output, m1and m2, to the �nal motor output, m, is determined bythe gating module's output, p. The output p re
ects theprobability that expert 1 is the correct module to use fora particular starting location|at p values of 1 or 0 the �-nal output is determined solely by the output of expert 1or expert 2 respectively, whereas at intermediate valuesof p both experts contribute to the �nal output. The lo-gistic form of the gating module's output as a function ofstarting location can be derived by assuming that each ex-pert learns the visuomotor map at one of the two startinglocations|its preferred starting location|and that eachexpert is responsible for an equal size Gaussian regionaround this preferred starting location.sual space was remapped to two di�erent hand posi-tions depending on the starting location of the move-ment (see Methods for details). This perturbationcreates a con
ict in the visuomotor map, the internalmodel [18] of the kinematics of the arm which cap-tures the normally one-to-one relation between visu-ally perceived and actual hand locations [19, 20, 21].One way to resolve this con
ict is to develop twoseparate visuomotor maps, the expert modules, eachappropriate for one of the two starting locations (Fig-ure 1). A separate mechanism, the gating mod-ule, then combines, based on the starting locationof the movement, the outputs of the two visuomotormaps. The output of the gating module, which rep-
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P2Figure 2. A schematic of the perturbations used for thefour groups of subjects (a{d). Movements were made inthe horizontal plane and the schematic shows the sevenpossible starting locations (L1{L7) and the target (T)seen from above. The solid lines indicate the actual pathtaken by the hand during the exposure phase; the dot-ted lines indicate the visually displayed path of the hand.For the control group (a) the two lines coincide every-where as there was no perturbation and therefore no dis-crepancy between the visually displayed and actual handlocation. For the perturbation groups a discrepancy be-tween displayed and actual hand position was introduced(see Methods for details). The discrepancy was chosen sothat subjects, in order to visually perceive their hand ontarget T, had to point to two di�erent locations, P2 & P6,depending on whether the movement started from L2 orL6.resents the weighting given to each visuomotor mapfor a given starting location, has a sigmoidal (logis-tic) shape, as a function of the starting location ofthe movement (Figure 1). This relationship resultsfrom the assumption that each expert is responsiblefor an equal variance Gaussian region around its pre-ferred starting location [22], which corresponds to itsreceptive �eld. As in previous studies of the visuomo-tor system [23, 24, 25], the internal structure of thesystem can be probed by investigating the generaliza-tion properties in response to novel inputs, which inthis case are the starting locations on which it has notbeen trained. The hallmark of a system with modulardecomposition is the ability to learn both con
ictingmappings, and to transition smoothly from one vi-suomotor map to the other in a sigmoidal fashion asthe starting location is varied.Subjects were exposed in a virtual reality setupto two di�erent visuomotor perturbations, discrepan-cies between the actual and perceived hand location,depending from which of two possible starting loca-tions the movement originated (L2 & L6 in Figure2; see Methods). Although subjects were unawareof the perturbation, they showed signi�cant adaptivechanges in their pointing behaviour when starting
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Figure 3. Adaptation of the visuomotor map for the con-trol (a) and perturbation groups (b{d). For each startinglocation (L1{L7 denoted by shading) the 95% con�denceellipse for the change in pointing behaviour, induced bythe visuomotor perturbation, is shown. For clarity, thecentre of the ellipses, which represents the change in point-ing behaviour, is also indicated numerically by the startinglocation (e.g. 3 corresponds to the change in pointing formovements starting from L3). The change in pointing cor-responding to the learned starting points L2 & L6 are indi-cated by the arrows. For the perturbation groups, signi�-cant changes in pointing are seen, corresponding to partialadaptation to the remappings introduced. These changesin pointing smoothly shift as the starting location variedbetween L1 and L7. As well as the changes in response tothe perturbation, there was a starting-point-independentmovement overshoot for the perturbation groups, account-ing for both the Y o�set of the means in b and d and theadditional right-to-left shift seen in c.from locations L2 and L6 (Figure 3 b{d). The adap-tation seen for movements from these two points wassigni�cantly di�erent from each other (P < 0:001),showing that the subjects were able to learn two dis-tinct remappings of the same point in visual spaceas a function of the starting location. Furthermore,as the starting location is varied between L1 and L7a smooth transition can be seen in the change inpointing behaviour which re
ects visuomotor learn-ing (Figure 3 b{d).We estimated the mixing proportion (p in Figure 1)by �tting the changes in pointing behaviour at eachstarting location to a weighted mixture of the adap-tation observed for movements starting from L6 andL2. These estimates show a signi�cant modulationover the starting locations (Figure 4) for groups b{d (P < 0:001), but as expected, not for the controlgroup (P > 0:05) who showed no change in pointingbehaviour. The modulation in groups b{d showed asigni�cantly better �t to a logistic function, the mix-

ing probabilities predicted by the modular decompo-sition model, than to a linear function (P = 0:02).
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d)Figure 4. The mixing proportions with 95% con�dencelimits as a function of starting location for the (a) controland (b{d) perturbation groups. For the ith starting lo-cation, the mixing proportion p is computed to minimizethe distance between vi and pv6 + (1� p)v2, where vi isthe mean adaptation vector for starting location Li. Us-ing this criterion the values of p are �xed to be 0 and 1 atstarting locations L2 and L6 (indicated by �lled circles),respectively. The values of p at points other than L2 andL6 capture the form of the generalization as a functionof the two learned mappings at L2 and L6. Con�denceintervals were computed on this measure using bootstrapre-sampling [26]. The mixing proportions for the controlgroup (a) did not di�er signi�cantly from the null hypoth-esis of equal mixing (indicated by the line at 0.5). Forgroups (b{d) a logistic function, p(i) = 1=[1+exp(a+bi)],representing the mixing probabilities predicted by themodular decomposition model (Figure 1), was �t to themean mixing proportions (solid curve). All three �ts weresigni�cant (P < 0:001) and the logistic function �t wasa signi�cantly better �t than linear regression over theensemble data sets b{d (F (15; 15) = 3:17; P = 0:02).The hypothesis of modular decomposition can becontrasted with models in which a single visuomo-tor transformation is computed. Models in which thetransformation is based solely on the visual locationof the target cannot account for the two mappingslearned for the same point in visual space. Alterna-tively, a single visuomotor transformation may takein as inputs both the visual location of the targetand the movement starting location. The mannerin which such a single module would generalize tonew starting locations depends crucially on the in-ternal structure of the module. For example, a lin-ear model [23] predicts a corresponding linear pat-tern of generalization, which was not observed in thedata (Figure 4 b{d). Conversely, the internal struc-ture of a single module may consist of units with re-ceptive �elds which are local both in visual space, as



indicated by recent studies of generalization in thevisuomotor map [25], and starting location. In thiscase, the predicted adaptation would be maximal atstarting locations L2 and L6 and decay away fromthese points, a pattern also not supported by thedata. Our study shows that two di�erent maps can belearned for the same point in visual space and that thegeneralization to starting locations at which the sub-ject was not exposed to the perturbation has the lo-gistic relationship predicted by the mixture of expertsmodel. These results provide evidence that modulardecomposition is a feature of visuomotor learning.These �ndings can be interpreted through the hy-pothesis that the visuomotor system maps visual vec-tors, pairs of target and starting locations, into move-ment vectors. Evidence for such vector-based cod-ing has been obtained in neurophysiological studieswhich suggest that populations of cortical cells codefor direction of movement [27, 28]. Similarly, it hasbeen shown that a set of limb postures, which spec-ify endpoints, can be achieved by stimulation of spe-ci�c areas of the spinal cord, and that simultaneousstimulation of two such areas elicits a large repertoireof intermediate postures [29]. According to eitherof these hypotheses, our results show that learningtwo new visuomotor mappings, whether representedas vectors or postures, at the two starting locations,leads to a smooth sigmoidal generalization at inter-mediate locations. This generalization is consistentwith a gradual mixing, modulated by starting loca-tion, of two separate neuronal populations, each ofwhich has learned a di�erent visuomotor mapping.This suggests a simple and plausible neural mecha-nism by which the modular learning observed couldhave arisen in the visuomotor system.MethodsThirty-two right-handed participants, who were naive tothe purpose of the experiment and gave their informedconsent, were randomly assigned to one of four groups: a,b, c and d.Setup. Subjects sat at a large horizontal digitizing tabletwith their head supported by a chin and forehead rest (acomplete description of the setup can be found in [30]).The subjects held a digitizing mouse with their right in-dex �nger tip mounted on its cross hairs|direct view oftheir arm was prevented by a screen. The targets andfeedback of hand position were presented as virtual im-ages in the plane of the digitizing tablet, and therefore inthe plane of the hand. This was achieved by projecting acomputer display onto a horizontal rear projection screensuspended above the tablet. A horizontal front-re
ectingsemi-silvered mirror was placed face up midway betweenthe screen and the tablet. The subjects viewed the re-
ected image of the rear projection screen by lookingdown at the mirror. By matching the screen-mirror dis-tance to the mirror-tablet distance, all projected images

appeared to be in the plane of the hand when viewed inthe mirror. The targets were represented as 1 cm hollowsquares and the hand position was displayed as a 6 mm�lled white square, the cursor spot. The position of thehand was used on-line to update the position of this cursorspot at 60 Hz. The relation between the actual hand lo-cation and the hand cursor spot was computer controlledso as to allow arbitrary visuomotor perturbations. There-fore, the cursor spot could either accurately represent thetrue location of the hand or computer-controlled discrep-ancies between the cursor feedback and actual hand loca-tion could be introduced.Paradigm. Subjects were asked to point to visually pre-sented targets with their right hand. The experimentconsisted of three parts: pre-exposure, exposure, andpost-exposure. During pre- and post-exposure, subjectspointed to target T (10 repetitions for groups a{c; 15 rep-etitions for group d) in the absence of any visual feedbackof the hand, starting from each of the 7 starting locations(L1{L7; Figure 2). This allowed the accuracy of pointingin the absence of visual feedback of hand location to beassessed for 7 starting locations.During the exposure phase, subjects repeatedly tracedout a visual triangle L2-L6-T-L6-L2-T-L2 forty times,thereby alternately pointing to the target from L2 and L6,while receiving feedback of hand location via the cursorspot. For the control group (Figure 2 a) the hand cursorspot accurately represented the actual hand position at alltimes. For the perturbation groups (Figure 2 b{d), dis-placements were surreptitiously introduced between theactual and visually displayed hand location. The displace-ment introduced increased linearly with distance from thestarting location; the direction of the displacement variedbetween the groups. For movements made during the ex-posure phase the sign of the displacement was di�erent forthe two starting locations, L2 and L6. The dotted linesin (Figure 2 b{d) show the path taken by the visual feed-back of the hand location and the solid lines the actualpath taken by the hand. For example, for group b a dis-crepancy was introduced so that visual feedback of handposition was shifted to the left for movements made fromL2, reaching a maximum discrepancy of 5 cm when thevisual feedback of the hand was on target. However, formovements from L6 the visual feedback of hand positionwas shifted to the right, again reaching a maximum of5 cm. Consequently, the single visual target location (T)was remapped to two distinct hand locations (P2 & P6;Figure 2) depending on whether the movement startedfrom L2 or L6. Movements between L2 and L6 were un-perturbed in all groups.To assess learning and generalization to movementsmade from other starting locations, the subjects' changein pointing behaviour between the pre-exposure and post-exposure phases was analyzed for each starting location.For each subject and start location the average changein pointing position between the pre-exposure and post-exposure phases was calculated, along with the corre-sponding covariance matrices. The subjects' data werecombined within each group for each starting location,obtaining the group mean change, along with the co-variance matrix of the change, for each starting loca-tion. The change in pointing from each starting locationwas plotted as a 95% con�dence ellipse centred on themean change (Figure 3).
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