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Abstract

In this paper, we present a graphical model
for protein secondary structure prediction.
This model extends segmental semi-Markov
models (SSMM) to exploit multiple sequence
alignment profiles which contain information
from evolutionarily related sequences. A
novel parameterized model is proposed as the
likelihood function for the SSMM to capture
the segmental conformation. By incorporat-
ing the information from long range interac-
tions in β-sheets, this model is capable of car-
rying out inference on contact maps. The nu-
merical results on benchmark data sets show
that incorporating the profiles results in sub-
stantial improvements and the generalization
performance is promising.

1. Introduction

Protein secondary structure prediction remains an im-
portant step on the way to full tertiary structure pre-
diction in computational biology. A variety of ap-
proaches have been proposed to derive the secondary
structure of a protein from its amino acid sequence
as a classification problem. Beginning with the semi-
nal work of Qian and Sejnowski (1988), many of these
methods have utilized neural networks. A major im-
provement in the prediction accuracy of these methods
was made by Rost and Sander (1993), who proposed a
prediction scheme using multi-layered neural networks,
known as PHD. The key novel aspect of this work was
the use of evolutionary information in the form of pro-
files derived from multiple sequence alignments instead
of training the networks on single sequences. Another
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type of alignment profile, position-specific scoring ma-
trices (PSSM) derived by the iterative search proce-
dure PSI-BLAST (Altschul et al., 1997), has been used
in neural network prediction methods to achieve fur-
ther improvements (Jones, 1999; Cuff & Barton, 2000).

An alternative approach is to treat the problem from
the perspective of generative models. One of the first
applications of hidden Markov models (HMMs) to the
secondary structure prediction problem was described
by Delcher et al. (1993). Generalized HMMs with
explicit state duration, also known as segmental semi-
Markov models (SSMMs), have been widely applied
in the field of gene identification (Burge & Karlin,
1997; Yel et al., 2001; Zhang et al., 2003; Korf et al.,
2001). Recently, Schmidler (2002) presented a particu-
lar SSMM for protein structure prediction, which is an
interesting statistical generative model for sequence-
structure relationships. One advantage of the proba-
bilistic framework is that it is possible to incorporate
varied sources of sequence information using a joint
sequence-structure probability distribution based on
structural segments. Secondary structure prediction
can then be formulated as a general Bayesian infer-
ence problem. However, the secondary structure pre-
diction accuracy of the SSMM as described by Schmi-
dler (2002) still falls short of the best contemporary
discriminative methods. Incorporation of the pro-
files from multiple sequence alignments into the model
might be a plausible way to improve the performance.
In this paper, we propose a novel parameterized model
as the likelihood function for the SSMM to exploit the
information provided by the profiles. Moreover, it is
straightforward to incorporate long range interaction
information in β-sheets into the modelling. We de-
scribe a Markov Chain Monte Carlo sampling scheme
to perform inference in this model, and demonstrate
the capability of the parametric SSMM to carry out
inference on β-sheet contact maps in the Bayesian seg-
mental framework. This ability to infer contact maps
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Figure 1. Presentation of the secondary structure of a pro-
tein chain in terms of segments. The square blocks denote
our observations on these amino acid residues, which is a
realization of a multinomial random variable. The rectan-
gular blocks with solid borders denote the segments. The
graph represents the segment type T = [C, E, C, H, . . .]
and the segmental endpoints e = [4, 7, 9, 14, . . .]. Capping
positions specify the N- and C-terminal positions within
a segment. Both the N-capping and C-capping length are
fixed at 2, and then {N1, N2, Internal, C2, C1} are used to
indicate the capping positions within a segment.

represents one of the advantages of the probabilistic
modelling approach over the traditional discriminative
approach to protein secondary structure prediction.

The paper is organized as follows. We describe the
Bayesian framework of the SSMM with details in sec-
tion 2. In section 3 we extend the model to incorporate
long range interactions. In section 4 we discuss the is-
sue of parameter estimation. In section 5 a sampling
scheme for inference is given, and we point out the ca-
pability to infer contact maps in section 6. In section
7 we present the results of numerical experiments, and
conclude in section 8.

2. Model Description

The key idea in our model for secondary structure
prediction is the alignment profile derived by multiple
sequence alignment1 or PSI-BLAST2. For a sequence
of n amino acid residues, we can search a sequence
database for several other sequences which are similar
enough at the sequence level to be evolutionarily re-
lated. By aligning these sequences and counting the
number of occurrences of each amino acid at each lo-
cation, we obtain an alignment profile. Formally, the
alignment profile O = [O1, O2, . . . , Oi, . . . , On] is a se-
quence of 20× 1 vectors, where Oi contains the occur-
rence counts for the 20 amino acids at location i which

1The techniques of pairwise sequence comparison are
employed to search a non-redundant protein sequence
database for homologs of query sequence. These are
then aligned using standard multiple alignment techniques
(Thompson et al., 1994). Ideally, a column of aligned
residues occupy similar structural positions and all diverge
from a common ancestral residue.

2PSI-BLAST (Altschul et al., 1997) is a gapped-version
of BLAST that uses an effective scheme for weighting the
contribution of different numbers of specific residues at
each position in this sequence in a position-specific score
matrix. The position-specific score matrix can be mapped
as relatively occurrence counting (Jones, 1999).

can be regarded as a realization of a multinomial ran-
dom variable. The associated secondary structure can
be fully specified in terms of segment locations and seg-
ment types. The segment locations can be identified
by the positions of the last residue of these segments,
denoted as e = [e1, e2, . . . , em] where m is the num-
ber of segments. We use three secondary structure
types. The set of secondary structure types is denoted
as T = {H,E,C} where H is used for α-helix, E for
β-strand and C for Coil. The sequence of segment
types can be denoted as T = [T1, T2, . . . , Ti, . . . , Tm]
with Ti ∈ T ∀i. It is worth noting the existence
of helical capping signals within segments (Aurora &
Rose, 1998), which refer to the preference for particu-
lar amino acids at the N- and C-terminal ends which
terminate helices through side chain-backbone hydro-
gen bonds or hydrophobic interactions. In Figure 1, we
present an illustration for the specification of the sec-
ondary structure of an observed sequence along with
the definition of capping positions within segments.
Based on the set of protein chains with known sec-
ondary structure, we learn an explicit probabilistic
model for sequence-structure relationships in the form
of a segmental semi-Markov model.

The segmental semi-Markov model (SSMM) (Osten-
dorf et al., 1996) is a generalization of hidden Markov
models that allows each hidden state to generate a
variable length sequence of the observations. In seg-
ment modelling, the segment types are regarded as
the set of discrete variables, known as states. Each of
the segment types possesses an underlying generator,
which generates a variable-length sequence of obser-
vations, i.e. a segment. A schematic depiction of the
SSMM is presented in Figure 2 from the perspective
of generative models. The variables (m, e, T ) describe
the secondary structure segmentation of the sequence.
The secondary structure prediction problem consists of
computing P(m, e, T |O) for an observed sequence O.
For this purpose we need to define the prior P(m, e, T )
and the likelihood P(O|m, e, T ). This Bayesian frame-
work is described with more details in the following.

2.1. Prior Distribution

The prior distribution for the variables describing sec-
ondary structure P(m, e, T ) is factored as

P(m, e, T ) = P(m)
m∏

i=1

P(ei|ei−1, Ti)P(Ti|Ti−1). (1)

The segment type depends on the nearest previous
neighbour in the sequence through the state transi-
tion probabilities P(Ti|Ti−1), which are specified by a
3 × 3 transition matrix. P(ei|ei−1, Ti), more exactly
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Figure 2. The segmental semi-Markov model illustrated as
generative processes. A variable-length segment of obser-
vations associated with random length li is generated by
the state Ti. The observations within a segment need not
be fully correlated, while there might be dependencies be-
tween the residues in adjacent segments. The dashed rect-
angle denotes the dependency window with length 5 for
the observation On−1. In the enlarged dependency win-
dow, θn−1 is a vector of latent variables that defines the
multinomial distribution in which we observe On−1, while
θn−1 is assumed to be dependent on On−6, . . . , On−2 and
the capping position of On−1.

P(li|Ti) is the segmental length distribution of the type
Ti, where li = ei − ei−1 with e0 = 0. Note that the
prior on length implicitly defines a prior on the num-
ber of segments m for a sequence of a given length. A
uniform prior can be assigned for m, i.e. P(m) ∝ 1,
as this does not have much effect on inference.

2.2. Likelihood Function

The likelihood is the probability of observing the se-
quence of alignment profiles given the set of random
variables {m, e, T}. Generally, the probability of the
observations can be evaluated as a product of the seg-
ments specified by {m, e, T}:

P(O|m, e, T ) =
∏m

i=1 P(Si|S−i, Ti) (2)

where Si = O[ei−1+1:ei] = [Oei−1+1, Oei−1+2, . . . , Oei
]

is the i-th segment, and S−i = [S1, S2, . . . , Si−1]. The
likelihood function P(Si|S−i, Ti) for each segment can
be further written as a product of the conditional prob-
abilities of individual observations

P(Si|S−i, Ti) =
∏ei

k=ei−1+1 P(Ok|O[1:k−1], Ti) (3)

where Ok is the 20× 1 count vector obtained from the
alignment profile at the k-th residue. The likelihood
function P(Ok|O[1:k−1], Ti) for each residue should be
capable of capturing the core features of the segmen-
tal composition, such as segmental dependency (Eisen-
berg et al., 1984) and helical capping signals (Aurora
& Rose, 1998). Schmidler et al. (2000) proposed a
helical segment model with lookup tables to capture
helical capping signals and the hydrophobicity depen-
dency of segmental residues. However, this method

is designed to use the residue sequence only, and its
secondary structure prediction accuracy falls short of
the best contemporary methods. Incorporation of the
alignment profiles into the model might be a plausible
way to improve the performance. Here, we propose
a new parameterization for the likelihood function to
exploit the information in the profile.

2.2.1. Multinomial Distribution

We assume that Ok comes from a multinomial distri-
bution with 20 possible outcomes and outcome proba-
bilities θk, a 20 × 1 vector. The outcomes refer to the
types of amino acids occurring at the current residue
position, while Ok is a 20 × 1 vector counting the oc-
currence of these outcomes. Thus, the probability of
getting Ok can be evaluated by

P(Ok|θk, Ti) = (
∑

a Oa
k)!∏

a Oa
k !

∏
a∈A (θa

k)Oa
k (4)

where A is the set of 20 amino acids, Oa
k is the element

in Ok for the amino acid a, and θa
k denotes the proba-

bility of the outcome a with the constraint
∑

a θa
k = 1.

2.2.2. Dirichlet Distribution

As shown in the dependency window of Figure 2, the
multinomial distribution at the k-th residue is depen-
dent upon preceding observations within the depen-
dency window, the segment type, and the current cap-
ping position within the segment (refer to Figure 1).

The underlying causal impact on the current multino-
mial distribution, where we observed Ok, can be cap-
tured by a prior distribution over the latent variables
θk. A natural choice for the prior distribution over θk

is a Dirichlet, which has also been used to define pri-
ors for protein family HMMs (Sjölander et al., 1996).
In our case, this can be explicitly parameterized by
weight matrices with positive elements as follows:

P(θk|O[1:k−1], Ti) = Γ(
∑

a γa
k)∏

a Γ(γa
k)

∏
a∈A (θa

k)γa
k−1 (5)

where γk is a 20 × 1 vector defined as

γk = Wcap +
�k∑

j=1

W j
intra · Ok−j +

�∑
j=�k+1

W j
inter · Ok−j

(6)
with � is the length of dependency window,3

�k = min(k − ei−1 − 1, �), and weight vectors Wcap of
size 20 × 1 are used to capture capping signals at the
capping position cap of Ok. Weight matrices Wintra

and Winter of size 20 × 20 are used to capture both
3The window length may be specified individually for

segment types.



intra-segmental and inter-segmental dependency re-
spectively, where the superscript denotes the residue
interval. Γ(·) is the Gamma function defined as
Γ(x) =

∫ ∞
0

tx−1 exp(−t) dt. The constraint γa
k > 0 ∀a

is guaranteed by constraining the weight variables to
have positive values. Note that we have used two sets
of positioning indices for each residue: a sequential
number k where 1 ≤ k ≤ n, and a capping position
cap where cap ∈ {N1,N2, . . . , Internal, . . . ,C2,C1}.
In total we have three sets of weights for
τ ∈ T individually. For a segment type τ ,
we get the set of weight parameters, W τ =
{WN1, . . . , WC1,W

1
intra, . . . , W �

intra,W 1
inter, . . . , W

�
inter}.

2.2.3. Dirichlet-Multinomial Distribution

The quantity of interest, P(Ok|O[1:k−1], Ti) in (3), can
be finally obtained as an integral over the space of the
latent variables θk, which is given by

P(Ok|O[1:k−1], Ti)

=
∫

θk

P(Ok|θk, Ti)P(θk|O[1:k−1], Ti) dθk

=
Γ(

∑
a γa

k) ·
∏

a Γ(γa
k + Oa

k)
Γ (

∑
a(γa

k + Oa
k)) ·

∏
a Γ(γa

k)
· (

∑
a Oa

k)!∏
a Oa

k !

(7)

where Γ(·) denotes the Gamma function, and γk is
defined as in (6).

2.3. Posterior Distribution

All inferences about the segmental variables (m, e, T )
defining secondary structure are derived from the pos-
terior probability P(m, e, T |O). Using Bayes’ theorem,

P(m, e, T |O) = P(O|m,e,T )P(m,e,T )
P(O) (8)

where P(O) =
∑

{m,e,T} P(O|m, e, T )P(m, e, T ) as
the normalizing factor. In this framework, we con-
sider some important measures of the segmental vari-
ables for an observed sequence, such as
• The most probable segmental variables in the poste-
rior distribution: arg max

m,e,T
P(m, e, T |O), known as the

MAP estimate;
• The marginal posterior mode estimate is defined
as arg max

T
P(TOi

|O), where TOi
denotes the segment

type at the i-th observation.
The Viterbi and forward-backward algorithms for
SSMM (Rabiner, 1989) can be employed for the MAP
and marginal posterior mode estimate respectively.

3. Long Range Interactions in β-sheets

We have set up a Bayesian framework to predict the
secondary structure. However, the secondary struc-
ture is affected not only by local sequence information,
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Figure 3. Anti-parallel (top), and parallel (bottom), pairs
of interacting segments, Si and Sj . dij is the binary vari-
able for alignment direction, and aij is the integer variable
for alignment position. A weight matrix Wsheet is intro-
duced to capture the distal residue interactions.

but also by long range interactions with distal regions
of the amino acid sequence. An important example
is a β sheet which is built up from several interacting
regions of β-strands. The strands align so that the NH
groups on one strand can form hydrogen bonds with
the CO groups on the distal strand and vice versa. The
alignment can happen in two ways: either the direc-
tion of the polypeptide chain of β-strands is identical,
a parallel β-sheet, or the strand alignment is in an al-
ternative direction, an anti-parallel β-sheet. In Figure
3, we present the two cases for a pair of interacting
segments, Si and Sj with i < j. A binary variable
is used to indicate alignment direction; dij = +1 for
parallel and dij = −1 for anti-parallel. An integer
variable aij is used to indicate the alignment position.
The endpoint of Si, known as ei, is used as the ori-
gin, and then aij is defined as the shift between ei and
ej for parallel cases, while for anti-parallel cases it is
the shift between ei and the beginning point of Sj ,
i.e. ej−1 +1.4 The challenge for a predictive approach
is how to introduce these long range interactions into
the model. In this section, we extend the paramet-
ric model to incorporate the information of long range
interactions in β-sheets.

3.1. Prior Specification for Distal Interactions

A set of random variables is introduced to de-
scribe the long range interactions, collected as I ={
{Sj , Sj′ , djj′ , ajj′}r

j=1

}
, where r is the number of

interacting pairs and {Sj , Sj′ , djj′ , ajj′} is a pair of
interacting segments together with their alignment
information. We can expand the prior probabil-
ity as P(m, e, T, I) = P(I|m, e, T )P(m, e, T ), where
P(m, e, T ) is defined as in (1) and the conditional prob-
ability P(I|m, e, T ) can be further factored as

P(I|m, e, T ) = P(r|k)P({Sj , Sj′}r
j=1)·∏r

j=1 P(djj′ |Sj , Sj′)P(ajj′ |Sj , Sj′ , djj′) (9)

where r is the number of interacting pairs, k is the
number of β-strands, and {Sj , Sj′}r

j=1 denotes a com-

4We assume interaction parts to be contiguous, e.g. ex-
cluding the case of β-bulges.



bination for β-strands to form r interacting pairs. Var-
ious specifications for these distributions in (9) are ap-
plicable provided that they satisfy

∑
I P(I|m, e, T ) =

1. In the present work, we assume a uniform distri-
bution, P({Sj , Sj′}r

j=1) = 1
c(r,k) if the combination is

valid, where c(r, k) is the total number of valid com-
binations,5 otherwise P({Sj , Sj′}r

j=1) = 0. P(r|k),
P(djj′ |Sj , Sj′) and P(ajj′ |Sj , Sj′ , djj′) are discrete dis-
tributions. We may specify them according to our
prior knowledge or learn them from training data.

3.2. Joint Segmental Likelihood

It is straightforward to extend the parametric model
(7) to include long range interactions in β-sheets,
which can be regarded as an extension of the depen-
dency window to include the distal pairing partners.
We introduce another 20 × 20 weight matrix Wsheet

to capture the correlation between distal interacting
pairs. The segmental likelihood function (3) for the
β-strands can be enhanced as

P(Si|Ti = E,S−i, I)

=
ei∏

k=ei−1+1

Γ(
∑

a γ̃a
k) ·

∏
a Γ(γ̃a

k + Oa
k)

Γ (
∑

a(γ̃a
k + Oa

k)) ·
∏

a Γ(γ̃a
k)

· (
∑

a Oa
k)!∏

a Oa
k !

(10)
with γ̃k = γk +

∑
{k∗} Wsheet · Ok∗ where γk is de-

fined as in (6) and {k∗} denotes the set of interacting
residues of Ok that can be determined by I.

4. Parameter Estimates

The probabilistic model we describe above has two
classes of free parameters: a) the parameters that
specify discrete distributions, which include the state
transition probabilities for P(Ti|Ti−1) in (1),6 the seg-
mental length distributions P(ei|ei−1, Ti) in (1); b) the
weights in the segmental likelihood (7) and (10), which
consist of three sets for different segmental types, i.e.
{W τ} for τ ∈ T .

The parameters that specify discrete distributions can
be directly estimated by their relative frequency of oc-
currence in the training data set.7 For a segment type
τ , a Maximum A Posteriori estimate of its associated
weights W τ can be obtained as

arg max
W τ

P({O,m, e, T, I}|W τ )P(W τ ) (11)

5A valid combination requires that each β-strand in-
teracts with at least one and at most two other strands.
This constraint comes from the chemical structure of amino
acids, i.e. the CO and NH groups.

6The initial state probabilities P(T0) can be set to be
equal simply.

7An appropriate prior might be used for smoothing.

under the condition of positive elements, where
P(W τ ) is the prior probability usually specified by
P(W τ ) ∝ exp(−Cτ

2 ‖W τ‖2
2) with Cτ ≥ 0. The op-

timal W τ is therefore the minimizer of the negative
logarithm of (11), which can be obtained by

min
W τ

L(W τ ) = −
∑
{O}

∑
{τ}

logP(Si|S−i, τ) +
Cτ

2
‖W τ‖2

2

subject to w > 0,∀w ∈ W τ , where
∑

{O} means the
sum over all the sequences,

∑
{τ} denotes the sum over

all the segments of type τ , and P(Si|S−i, τ) is defined
as in (3). L(W τ ) is a regularized functional, and the
optimal regularization factor Cτ can be determined by
cross validation.8 A set of auxiliary variables µ = ln w
can be introduced to convert the constrained optimiza-
tion problem into an unconstrained problem, and then
standard gradient-based optimization methods are em-
ployed to minimize L(W τ ).

5. Sampling Scheme for Inference

Generally, the introduction of long range interactions
into the graphical model makes exact calculation of
posterior probabilities intractable. Markov Chain
Monte Carlo (MCMC) algorithms can be applied here
to obtain approximate inference. A series of samples
will be collected according to the joint distribution in
the Markov chain simulation. As the dimension of the
variable space varies in this process, the Metropolis-
Hasting scheme can be applied with a reversible-jump
approach (Green, 1995), which ensures that jumps be-
tween models of differing dimension are reversible.

What we are interested in here is the posterior distri-
bution P(m, e, T |O) which is proportional to the joint
distribution P(m, e, T,O). The joint distribution can
be evaluated as

P(m, e, T,O) = P(m, e, T )
∏

Si /∈I P(Si|S−i, Ti)
·
∑

I P(I|m, e, T )
∏

Si∈I P(Si|S−i, Ti)
(12)

where P(m, e, T ) is defined as in (1), and only the seg-
ments of β-strands are in the interaction set I. Schmi-
dler (2002) proposed an MCMC algorithm by sampling
in the posterior distribution P(m, e, T, I|O), in which
the dependency between (m, e, T ) and I makes the
sampling scheme complicated. However the main idea
of the reversible jump approach is still applicable here.
The following set of Metropolis proposals are defined
for the construction of a Markov chain on the space of
segmentations, denoted as V = (m, e, T ):
• Segment split : propose V∗ = (m∗, e∗, T ∗) with m∗ =

8It is also possible to carry out approximate Bayesian
inference on weight variables.



m + 1 by splitting segment Sk into two new seg-

ments (Sk∗ , Sk∗+1) with k ∼ Uniform[1 : m], ek∗ ∼
Uniform[ek−1 + 1 : ek − 1], ek∗+1 = ek, Tk∗ ∼
Uniform[H, E, L], and Tk∗+1 ∼ Uniform[H, E, L].9

• Segment merge: propose V∗ = (m∗, e∗, T ∗) with m∗ =

m − 1 by merging the two segments Sk and Sk+1 into one

new segment Sk∗ with k ∼ Uniform[1 : m− 1], ek∗ = ek+1,

and Tk∗ ∼ Uniform[H, E, L].

• Type change: propose V∗ = (m, e, T ∗) with

T ∗ = [T1, . . . , Tk−1, T
∗
k , Tk+1, . . . , Tm] where T ∗

k ∼
Uniform[H, E, L].

• Endpoint change: propose V∗ = (m, e∗, T ) with e∗ =

[e1, . . . , ek−1, e
∗
k, ek+1, . . . , em] where e∗k ∼ Uniform[ek−1 +

1 : ek+1 − 1].

The acceptance probability for Type change and
Endpoint change depends on the ratio of likelihood
P(V∗,O)
P(V,O) , where the likelihood is defined as in (12). Seg-
ment split and Segment merge jumps between segmen-
tations of different dimension are accepted or rejected
according to a reversible-jump Metropolis criteria. Ac-
cording to the requirement of detailed balance, the ac-
ceptance probability for a new proposal V∗ should be
ρ(V,V∗) = P(V∗,O)

P(V,O) × P(V←V∗)
P(V∗←V) . Therefore, the accep-

tance probability for Segment split and Segment merge
should respectively be

ρsplit(k)(V,V∗) = P(V∗,O)
P(V,O) × |T | · (ek − ek−1 − 1)

ρmerge(k)(V,V∗) = P(V∗,O)
P(V,O) × 1

|T |·(ek+1−ek−1−1)

where |T | = 3 denotes the number of segment
types. Due to the factorizations in (12), only the
changed parts require evaluation. Once the interact-
ing set I has been changed, the joint segmental like-
lihood has to be calculated again, which is a sum∑

I P(I|m, e, T )
∏

Si∈I P(Si|Ti, S−i). Although the
set I is composed of finite elements, it might be too
expensive to traverse all of them. We again apply sam-
pling methods here to approximate the sum by ran-
domly walking in the distribution P(I|m, e, T ) that is
defined as in (9).

6. Inference on Contact Maps

Contact maps represent the pairwise, inter-residue
contacts as a symmetrical, square, boolean matrix.
Pollastri and Baldi (2002) have previously applied en-
sembles of bidirectional recurrent neural network ar-
chitectures to the prediction of such contact maps. In
this section, we describe the capability of this para-
metric SSMM model to carry out inference on contact
maps. This capability is one of the advantages of the
probabilistic modelling approach over the traditional

9Here ∼ Uniform[H, E, L] denotes uniformly sampling
in the set {H, E, L}, while [1 : m] means from 1 to m.

discriminative approach (e.g. neural networks) to pro-
tein secondary structure prediction. β-sheets are built
up from pairs of β-strands with hydrogen bonds, which
are prominent features in contact maps. The set of β-
sheet interactions is associated with a β-sheet contact
map defined by a n×n matrix C whose ij-th entry Cij

defined as

Cij(I) =
{

1 if Oi and Oj are paired in I;
0 otherwise (13)

We may estimate the marginal predicted C from the
posterior distribution of P(m, e, T, I|O), given by

P(Cij = 1|O) =
∑

m,e,T,I
Cij(I)P(m, e, T, I|O) (14)

where the indicator function Cij(I) is defined as in
(13). Using the samples we have collected in the dis-
tributions P(m, e, T |O) and P(I|m, e, T ) (refer to Sec-
tion 5), (14) can be estimated by

P(Cij = 1|O) =
∑

m,e,T

∑
I Cij(I)P(m, e, T, I|O)

≈ 1
N

∑
{m,e,T}

∑
{I} Cij(I) P(O|m,e,T,I)∑

{I} P(O|m,e,T,I)

where the samples {I} are collected from P(I|m, e, T ),
and N samples of {m, e, T} are from P(m, e, T |O).

7. Numerical Experiments

We implemented the proposed algorithm in ANSI C.10

In this implementation, the length of dependency win-
dow was fixed at 5, and the length of N- and C-capping
was fixed at 4, and the regularization factors Cτ = 0.01
∀τ were chose to estimate the optimal weights.11

7.1. 7-fold Cross Validation

The data set we used is CB513, a non-redundant set
of 513 non-homologous protein chains with structures
determined to a resolution of ≤ 2.5Å (Cuff & Barton,
2000).12 We used 3-state PDB definitions of secondary
structure. We removed the proteins that are shorter
than 30 residues, or longer than 550 residues, follow-
ing Cuff and Barton (2000), to leave 480 proteins for
cross validation training. Seven partitions were cre-
ated randomly, and cross validation was carried out on
these partitions. We used two kinds of alignment pro-
files: the multiple sequence alignment profiles (MSAP)

10The source code in ANSI C can be accessed at
http://www.gatsby.ucl.ac.uk/∼chuwei/code/bsmpssp.tar.gz.

11These model parameters were determined by cross vali-
dation, but we also found that there is a large region around
these settings where the model performs stably.

12The data set and the multiple sequence align-
ments profiles they generated can be accessed at
http://www.compbio.dundee.ac.uk/∼www-jpred/data/.



Table 1. 7-fold cross validation results for secondary struc-
ture prediction on 480 protein sequences from CB513. “Se-
quence Only” denotes the algorithm of Schmidler et al.
(2000); MSAP denotes our algorithm using multiple se-
quence alignment profiles; PSSM denotes our algorithm
using position-specific score matrices. Q3 denotes the
overall accuracy. Qobs = TruePositive

TruePositive+FalseNegative
and

Qpred = TruePositive
TruePositive+FalsePositive

. MAP denotes the
most probable posterior estimate, while MARG denotes
marginal posterior mode estimate.

Sequence Only with MSAP with PSSM
MAP MARG MAP MARG MAP MARG

Q3 59.2% 65.1% 68.8% 71.5% 63.9% 72.8%

Qobs
H 66.3% 66.7% 77.6% 78.7% 67.6% 74.0%

Qobs
E 20.7% 46.3% 44.2% 58.9% 29.5% 56.8%

Qobs
C 72.8% 73.2% 73.9% 71.9% 78.3% 79.8%

Qpred
H 61.9% 68.6% 71.8% 74.0% 69.5% 78.8%

Qpred
E 56.5% 58.9% 69.7% 67.2% 73.5% 71.9%

Qpred
C 57.8% 64.7% 66.1% 71.2% 59.1% 69.0%

Table 2. The results of 7-fold cross validation on 480 pro-
teins of CB513 reported by Cuff and Barton (2000), along
with our results.

Method Description Q3
Networks using frequency profile from CLUSTALW 71.6%

Networks using BLOSUM62 profile from CLUSTALW 70.8%

Networks using PSIBLAST alignment profiles 72.1%

Arithmetic sum based on the above three networks 73.4%

Networks using PSIBLAST PSSM 75.2%

Our algorithm with MSAP of Cuff and Barton (2000) 71.5%

Our algorithm with PSIBLAST PSSM 72.8%

used by Cuff and Barton (2000), and position-specific
score matrices (PSSM) as in Jones (1999). For com-
parison purposes, we also implemented the algorithm
proposed by Schmidler et al. (2000), which uses the se-
quence information only.13 The validation results are
recorded in Table 1. We also cite the results reported
by Cuff and Barton (2000) in Table 2 for reference.
The results obtained from our model show a great im-
provement over those of Schmidler et al. (2000) on all
evaluation criteria. Compared with the performance
of the neural network methods with various alignment
profiles as shown in Table 2, the prediction accuracy
of our model is also competitive.14 We observed that
the marginal posterior mode is more accurate than the
MAP estimate, which shows that averaging over all the
possible segmentations helps.

7.2. Prediction of Contact Maps

We prepared a dataset with long range interaction in-
formation specified by the data files of Protein Data
Bank (PDB). The dataset, a subset of CB513, is com-

13The source code in ANSI C can be accessed at
http://www.gatsby.ucl.ac.uk/∼chuwei/code/bspss.tar.gz.

14It is also possible to further improve performance by
constructing smoothers over current predictive outputs as
Cuff and Barton (2000) did in their Jury networks.

Table 3. Predictive results of our algorithm using PSSM on
the protein data of CASP.

CASP2 CASP3 CASP4 CASP5

(20 chains) (36 chains) (40 chains) (56 chains)

Q3 73.40% 71.12% 74.32% 74.03%

Qobs
H 76.62% 73.12% 80.22% 80.43%

Qobs
E 61.29% 56.35% 57.81% 59.52%

Qobs
C 77.73% 78.88% 78.00% 76.81%

Qpred
H 79.71% 74.91% 81.33% 76.95%

Qpred
E 76.48% 78.39% 76.19% 78.10%

Qpred
C 67.36% 65.99% 67.28% 69.88%

posed of 152 protein chains along with β-sheet defini-
tions. This reduction was caused by the incomplete-
ness in the long range interaction information in many
of the original PDB files. We carried out 30-fold cross
validation on this subset. In MCMC sampling, we col-
lected 9000 samples. We have not yet observed signif-
icant improvement on secondary structure prediction
accuracy in the sampling results over exact inference
without interactions. This suggests that in our cur-
rent model, the main determinants of β-sheet structure
are local contributions rather than distal hydrogen-
bonding information. The small size of training data
might be another factor. However it is interesting that
we can infer β-sheet contacts. We present two predic-
tive contact maps in Figure 4 as examples. We have
also computed the area under the ROC curve (AUC)
for β-sheet contact prediction. The average AUC over
these protein chains is 0.899 ± 0.086.

7.3. Test on CASP

The meetings of Critical Assessment of techniques
for protein Structure Prediction (CASP) facilitate
large-scale experiments to assess protein structure
prediction methods. We extracted protein chains
of the latest four meetings from the public web
page of the Protein Structure Prediction Center
http://predictioncenter.llnl.gov/.15 Using the 480
chains from CB513 and their PSSM profiles as train-
ing data, we built up our model, and then carried out
prediction on these CASP proteins. The predictive re-
sults of our algorithm are reported in Table 3 indexed
by the meetings. These results indicate that our algo-
rithm gives a performance that is very similar to that
given by other contemporary methods.

8. Conclusion

In this paper, we propose a graphical model with a
novel parametric likelihood function to exploit the in-
formation in alignment profiles. Long range inter-
action information in β-sheets can be directly incor-

15On this web site, we can find the predictive results
produced by other contemporary methods.



Figure 4. True β-sheet contact maps versus predictive
maps on protein chains 1ISA B and 3PMG B. Gray scale
indicates the probability P(Cij = 1|O).

porated into the model. The numerical results show
that the generalization performance of this graphical
model is competitive with other contemporary meth-
ods. Inference on contact maps can also be carried
out in the Bayesian segmental framework. Moreover,
with the inclusion of dihedral angle information in
the joint sequence-structure probability distribution,
this graphical model also has the potential for tertiary
structure prediction.
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