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Abstract

We define a probability distribution over equivalence agsef binary
matrices with a finite number of rows and an unbounded number o
columns. This distribution is suitable for use as a prior fiab@bilistic
models that represent objects using a potentially infinit@yeof features.
We identify a simple generative process that results in éneesdistribu-
tion over equivalence classes, which we call the Indiangbyifocess.
We illustrate the use of this distribution as a prior in anriité latent fea-
ture model, deriving a Markov chain Monte Carlo algorithmifderence

in this model and applying the algorithm to an image dataset.

1 Introduction

The statistical models typically used in unsupervisediea draw upon a relatively small
repertoire of representations. The simplest representatised in mixture models, asso-
ciates each object with a single latent class. This appr&aelppropriate when objects
can be partitioned into relatively homogeneous subsetsveier, the properties of many
objects are better captured by representing each objaw nwiltiple latent features. For
instance, we could choose to represent each object as § biaor, with entries indicat-
ing the presence or absence of each feature [1], allow eathréeto take on a continuous
value, representing objects with points in a latent spagefalefine a factorial model, in
which each feature takes on one of a discrete set of valud$.[3,

A critical question in all of these approaches is the dimemelity of the representation:
how many classes or features are needed to express the daigrttire expressed by a
set of objects. Often, determining the dimensionality & thpresentation is treated as a
model selection problem, with a particular dimensionaliémng chosen based upon some
measure of simplicity or generalization performance. Essumes that there is a single,
finite-dimensional representation that correctly chamaogs the properties of the observed
objects. An alternative is to assume that the true dimeasitgns unbounded, and that the
observed objects manifest only a finite subset of classesaturfes [5]. This alternative
is pursued in nonparametric Bayesian models, such as Ritiphocess mixture models
[6, 7, 8, 9]. In a Dirichlet process mixture model, each obje@ssigned to a latent class,
and each class is associated with a distribution over oabkr\properties. The prior dis-
tribution over assignments of objects to classes is definetdich a way that the number
of classes used by the model is bounded only by the numberjeétsbmaking Dirichlet
process mixture models “infinite” mixture models [10].

The prior distribution assumed in a Dirichlet process mm&tmodel can be specified in



terms of a sequential process called the Chinese restqunasgss (CRP) [11, 12]. In the
CRP,N customers enter a restaurant with infinitely many tablesh @ath infinite seating
capacity. Theth customer chooses an already-occupied tabiéth probability ;=3
wheremy, is the number of current occupants, and chooses a new tattigovaibability
—iro- Customers arexchangeableinder this process: the probability of a particular
seating arrangement depends only on the number of peopdelatable, and not the order
in which they enter the restaurant.

If we replace customers with objects and tables with clagkesCRP specifies a distribu-
tion over partitions of objects into classes. A partitiomidivision of the set ofV objects
into subsets, where each object belongs to a single subde¢harordering of the subsets
does not matter. Two assignments of objects to classesdbalt in the same division of
objects correspond to the same partition. For example, ihagthree objects, the class
assignmentgcy, co, c3} = {1,1,2} would correspond to the same partition{@s2, 1},
since all that differs between these two cases is the lali¢lealasses. A partition thus
defines an equivalence class of assignment vectors.

The distribution over partitions implied by the CRP can bewtel by taking the limit of
the probability of the corresponding equivalence classssfgamment vectors in a model
where class assignments are generated from a multinonsitbdition with a Dirichlet
prior [9, 10]. In this paper, we derive an infinitely exchaafle distribution over infinite
binary matrices by pursuing this strategy of taking thetiofia finite model. We also de-
scribe a stochastic process (the Indian buffet processtakihe CRP) which generates this
distribution. Finally, we demonstrate how this distriloutican be used as a prior in statisti-
cal models in which each object is represented by a sparsetsoban unbounded number
of features. Further discussion of the properties of thegridhution, some generalizations,
and additional experiments, are available in the longesigarof this paper [13].

2 Adistribution on infinite binary matrices

In a latent feature model, each object is represented bytanefilatent feature values,
and the observable properties of that objecare generated from a distribution determined
by its latent features. Latent feature values can be camtisiuas in principal component
analysis (PCA) [2], or discrete, as in cooperative vect@mjization (CVQ) [3, 4]. In the
remainder of this section, we will assume that feature \saéwe continuous. Using the ma-

trix F = [f{ £ - ff,]T to indicate the latent feature values for Allobjects, the model
is specified by a prior over featurgs(F'), and a distribution over observed property ma-
trices conditioned on those featureéX|F), wherep(-) is a probability density function.
These distributions can be dealt with separatg(¥) specifies the number of features and
the distribution over values associated with each featuhéle p(X|F) determines how
these features relate to the properties of objects. Ousfadgiibe onp(F'), showing how
such a prior can be defined without limiting the number ofdezd.

We can brealf" into two components: a binary mati#&indicating which features are pos-
sessed by each object, with, = 1 if objecti has featuré: and0 otherwise, and a matrix
V indicating the value of each feature for each obj&tis the elementwise product &
andV, F = Z ® V, as illustrated in Figure 1. In many latent feature modelg. (€ CA)
objects have non-zero values on every feature, and every @nZ is 1. In sparselatent
feature models (e.g., sparse PCA [14, 15]) only a subsetdiifes take on non-zero values
for each object, an@ picks out these subsets. A prior dhcan be defined by specifying
priors forZ and'V, with p(F) = P(Z)p(V), whereP(-) is a probability mass function.
We will focus on defining a prior o, since the effective dimensionality of a latent feature
model is determined b¥. Assuming tha is sparse, we can define a prior for infinite la-
tent feature models by defining a distribution over infinitegloy matrices. Our discussion
of the Chinese restaurant process provides two desidemasucéh a distribution: objects
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Figure 1: A binary matridz, as shown in (a), indicates which features take non-zeregal
Elementwise multiplication oZ by a matrixV of continuous values produces a represen-
tation like (b). If V contains discrete values, we obtain a representationdike (

should be exchangeable, and posterior inference shouldabelble. It also suggests a
method by which these desiderata can be satisfied: starevmtbdel that assumes a finite
number of features, and consider the limit as the numberatfifes approaches infinity.

2.1 A finite feature model

We haveN objects andK features, and the possession of featul®/ object: is indicated

by a binary variable;,. The z;; form a binaryN x K feature matrix,Z. Assume that
each object possesses featiraith probability 7, and that the features are generated
independently. Under this model, the probabilityo§ivent = {my,m, ..., 7k}, IS

K N K
P(Zlr) = [T [ PGalme) = T mi (1 = m) ¥, @
k=1

k=11i=1

wheremy, = Zf;l z;k IS the number of objects possessing featuré/e can define a prior
on by assuming that eact, follows a beta distribution, to give

mr|a ~ Beta($,1)
zik | Tk ~ Bernoulli(ry,)

Eachz;, is independent of all other assignments, conditioned;grand ther; are gener-
ated independently. We can integrate sub obtain the probability of, which is

Ko (my, + 2N — my + 1)
P(Z) = ,EK r<sz+1+%) : )

This distribution is exchangeable, sineg is not affected by the ordering of the objects.

2.2 Equivalence classes

In order to find the limit of the distribution specified by Edjoa 2 asK — oo, we need to
define equivalence classes of binary matrices — the analofgpegtitions for class assign-
ments. Our equivalence classes will be defined with respexfiinction on binary matri-
ces,lof(+). This function maps binary matrices left-orderedbinary matriceslof(Z) is
obtained by ordering the columns of the binary ma#iftom left to right by the magnitude
of the binary number expressed by that column, taking thertivg as the most significant
bit. The left-ordering of a binary matrix is shown in Figurel the first row of the left-
ordered matrix, the columns for which, = 1 are grouped at the left. In the second row,
the columns for which,, = 1 are grouped at the left of the sets for whigh = 1. This
grouping structure persists throughout the matrix.

Thehistory of featurek at objecti is defined to bézx, ..., z;—1)x). Where no object is
specified, we will usénistoryto refer to the full history of featuré, (z1x,...,znk). We



Figure 2: Left-ordered form. A binary matrix is transformiedo a left-ordered binary
matrix by the functioriof(-). The entries in the left-ordered matrix were generated from
the Indian buffet process withh = 10. Empty columns are omitted from both matrices.

will individuate the histories of features using the dedigguivalent of the binary numbers
corresponding to the column entries. For example, at oBjdettures can have one of four
histories:0, corresponding to a feature with no previous assignmeénksging a feature for
which zo, = 1 but z1, = 0, 2, being a feature for whick,;, = 1 butz9, = 0, and3, being

a feature possessed by both previous objects were assifgpedlill denote the number of
features possessing the histarnywith K being the number of features for whiety, = 0

andk, = 322" ! K}, being the number of features for whieky, > 0, SOK = Ko+ K.

Two binary matricesY and Z are lof-equivalent iflof(Y) = lof(Z). The lof-
equivalence class of a binary matt# denotedZ], is the set of binary matrices that are
lof-equivalent toZ. lof-equivalence classes play the role for binary matricesphdi-
tions play for assignment vectors: they collapse togethdvimary matrices (assignment
vectors) that differ only in column ordering (class labels)-equivalence classes are pre-
served through permutation of the rows or the columns of aixpairovided the same
permutations are applied to the other members of the eguigalclass. Performing infer-
ence at the level ofo f-equivalence classes is appropriate in models where &eataler

is not identifiable, withp(X|F) being unaffected by the order of the columnskof Any
model in which the probability oX is specified in terms of a linear function &f, such
as PCA or CVQ, has this property. The cardinality of th¢-equivalence clasfZ] is

(Ko..%%QN,l) m,{(ilh whereK), is the number of columns with full history.

2.3 Taking the infinite limit

Under the distribution defined by Equation 2, the probahdita particularo f-equivalence
class of binary matrice$Z], is

P(Z) = ) P(Z)= —5— T

Ze(Z) h=0

Rearranging terms, and using the fact tﬁ&r) = (z— 1I'(z — 1) forz > 1, we can
compute the limit ofP([Z]) as K approaches infinity

ks K N1 O (N m) TG+ )
() I

ﬁ #l(mg + )L(N —my + 1) 3)

I(N+1+ %)

lim

K—oo HQN_lKh K()!KK+ ’ ‘N:l(]_|_% b1 N!
o+ K N mk my — 1)!
= 21\]71.[(}1 1 - exp{—aHny} H ) . (4)

where Hy is the Nth harmonic number{y = Z;.Vzl 7 This distribution is infinitely

exchangeable, since neith&¥, norm, are affected by the ordering on objects. Technical
details of this limit are provided in [13].



2.4 The Indian buffet process

The probability distribution defined in Equation 4 can beiw from a simple stochastic
process. Due to the similarity to the Chinese restauramgss we will also use a culinary
metaphor, appropriately adjusted for geography. Indiatargants in London offer buffets
with an apparently infinite number of dishes. We will defineigtribution over infinite
binary matrices by specifying how customers (objects) sbatishes (features).

In our Indian buffet process (IBP)Y customers enter a restaurant one after another. Each
customer encounters a buffet consisting of infinitely maisyes arranged in a line. The
first customer starts at the left of the buffet and takes airsgrivom each dish, stopping
after a Poissom{) number of dishes. Théh customer moves along the buffet, sampling
dishes in proportion to their popularity, taking dislvith probability **, wherem; is the
number of previous customers who have sampled that dishingla®ached the end of all
previous sampled dishes, tith customer then tries a Poissén(number of new dishes.
We can indicate which customers chose which dishes usinggaybmatrixZ with N rows

and infinitely many columns, whetg,, = 1 if the ith customer sampled thigh dish.

Using K{i) to indicate the number of new dishes sampled byitheustomer, the proba-
bility of any particular matrix being produced by the IBP is

(®)

S T (N — ) (my, — 1)

The matrices produced by this process are generally nofttioldered form. These ma-
trices are also not ordered arbitrarily, because the Poidsmws always result in choices
of new dishes that are to the right of the previously sampletle. Customers are not

exchangeable under this distribution, as the number ofedisiounted ai(fi) depends
upon the order in which the customers make their choices. edewy if we only pay at-
tention to thelo f-equivalence classes of the matrices generated by thiegspwe obtain

the infinitely exchangeable distributid®([Z]) given by Equation 4:M matrices

2N 1
h=1 h*

generated via this process map to the same left-ordered mrmP([i]) is obtained by
multiplying P(Z) from Equation 5 by this quantity. A similar but slightly mocempli-
cated process can be defined to produce left-ordered nmatficectly [13].

2.5 Conditional distributions

To define a Gibbs sampler for models using the IBP, we need ¢w khe conditional
distribution on feature assignment3(z;, = 1|Z_(;;)). In the finite model, wheré>(Z)
is given by Equation 2, it is straightforward to compute ttesditional distribution for any
z;x. Integrating overr;, gives
m_ik+ %
o R 6
NrE (6)
wherez_; ;, is the set of assignments of other objects, not includijrfgr featurek, and

m_; i iS the number of objects possessing featyreot includingi. We need only condi-
tion onz_;  rather tharZ _ ;;,) because the columns of the matrix are independent.

In the infinite case, we can derive the conditional distidoufrom the (exchangeable) IBP.
Choosing an ordering on objects such thatdheobject corresponds to the last customer
to visit the buffet, we obtain

P(ZZk = 1|Z—i,k) =

P(Zik = 1‘Z—i,k) =

m_g.k
P L 7
= )

for any k£ such thatn_; ; > 0. The same result can be obtained by taking the limit of
Equation 6 ag{ — oo. The number of new features associated with objesttould be



drawn from a Poissor§f) distribution. This can also be derived from Equation 6ngshe
same kind of limiting argument as that presented above.

3 Alinear-Gaussian binary latent feature model

To illustrate how the IBP can be used as a prior in models fauparvised learning, we
derived and tested a linear-Gaussian latent feature modehich the features are binary.
In this case the feature matrX reduces to the binary matriZ. As above, we will start
with a finite model and then consider the infinite limit.

In our finite model, theD-dimensional vector of properties of an objéck; is generated
from a Gaussian distribution with meanA and covariance matrifx = o%1I, where
z; IS a K-dimensional binary vector, and is a K x D matrix of weights. In matrix
notation,E [X] = ZA. If Z is a feature matrix, this is a form of binary factor analy3ike
distribution of X givenZ, A, andox is matrix Gaussian with medAA and covariance
matrix % I, wherel is the identity matrix. The prior or is also matrix Gaussian, with
mean0 and covariance matrix? . Integrating outA, we have

1

(2m)ND/2g N KD oKD 7Ty, | T g D)2
A

p(X|Z,0x,04) =

2
exp{—%tr(XT(I ~Z(Z"Z + ‘%‘I)—lzT)X)}. (8)
20% o4

This result is intuitive: the exponentiated term is theeti#nce between the inner product
of X and its projection onto the space spanne@byegularized to an extent determined
by the ratio of the variance of the noiseXato the variance of the prior oA. It follows
thatp(X|Z,ox,04) depends only on the non-zero columnsZgfand thus remains well-
defined when we take the limit & — oo (for more details see [13]).

We can define a Gibbs sampler for this model by computing thedaditional distribution
P(zix| X, Z_(; py,0x,04) X p(X|Z,0x,04)P(2ir|2_i 1) 9

The two terms on the right hand side can be evaluated usingtiégs 8 and 7 respectively.
The Gibbs sampler is then straightforward. Assignmentseiatures for whichn_; , > 0

are drawn from the distribution specified by Equation 9. Tistridbution over the number
of new features for each object can be approximated by ttiom;@omputing probabilities

for a range of values OKY) up to an upper bound. For each valpé€X|Z,ox,04) can
be computed from Equation 8, and the prior on the number offeatures is Poissog().

We will demonstrate this Gibbs sampler for the infinite bjnimear-Gaussian model on a
dataset consisting of 1aB10 x 320 pixel images. We represented each image,using

a 100-dimensional vector corresponding to the weights of thermiesge and the firt9
principal components. Each image contained up to four elagrpbjects — a $20 bill, a
Klein bottle, a prehistoric handaxe, and a cellular phorechEobject constituted a single
latent feature responsible for the observed pixel valudse images were generated by
sampling a feature vectog,;, from a distribution under which each feature was present
with probability0.5, and then taking a photograph containing the approprigeztdbusing

a LogiTech digital webcam. Sample images are shown in Fig\g2.

The Gibbs sampler was initialized witi, = 1, choosing the feature assignments for
the first column by setting;; = 1 with probability 0.5. ¢4, ox, anda were initially
set t00.5, 1.7, and1 respectively, and then sampled by adding Metropolis stepghe
MCMC algorithm. Figure 3 shows trace plots for the first 10@@dtions of MCMC for the
number of features used by at least one obj&ct, and the model parameters, o x, and

«. All of these quantities stabilized after approximately) iteérations, with the algorithm
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Figure 3. Data and results for the demonstration of the iifihear-Gaussian binary
latent feature model. (a) Four sample images from the 10@éndataset. Each image
had320 x 240 pixels, and contained from zero to four everyday objectsT{t® posterior
mean of the weightsA) for the four most frequent binary features from ttd@0th sample.
Each image corresponds to a single feature. These featariesly indicate the presence
or absence of the four objects. The first feature indicatesptiesence of the $20 bill,
the other three indicate the absence of the Klein bottle hdrelaxe, and the cellphone.
(c) Reconstructions of the images in (a) using the binaresadferred for those images.
These reconstructions are based upon the posterior mearfafthe 1000th sample. For
example, the code for the first image indicates that the $2@skabsent, while the other
three objects are not. The lower panels show trace plotshiardimensionality of the
representationK ) and the parameters, ox, ando4 over 1000 iterations of sampling.
The values of all parameters stabilize after approximatelyiterations.



finding solutions with approximately seven latent featufiédse four most common features
perfectly indicated the presence and absence of the foactjshown in Figure 3 (b)), and
three less common features coded for slight differencdsardcations of those objects.

4 Conclusion

We have shown that the methods that have been used to defimeitdient class models
[6, 7, 8, 9, 10, 11, 12] can be extended to models in which ¢bjace represented in
terms of a set of latent features, deriving a distributiorirdimite binary matrices that can
be used as a prior for such models. While we derived this pgatha infinite limit of

a simple distribution on finite binary matrices, we have shakat the same distribution
can be specified in terms of a simple stochastic process -nttien buffet process. This
distribution satisfies our two desiderata for a prior fomiité latent feature models: objects
are exchangeable, and inference remains tractable. Ocesait transferring the strategy
of taking the limit of a finite model from latent classes tcelatt features suggests that a
similar approach could be applied with other represematiexpanding the forms of latent
structure that can be recovered through unsupervisediggarn
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