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Abstract

We define a probability distribution over equivalence classes of binary
matrices with a finite number of rows and an unbounded number of
columns. This distribution is suitable for use as a prior in probabilistic
models that represent objects using a potentially infinite array of features.
We identify a simple generative process that results in the same distribu-
tion over equivalence classes, which we call the Indian buffet process.
We illustrate the use of this distribution as a prior in an infinite latent fea-
ture model, deriving a Markov chain Monte Carlo algorithm for inference
in this model and applying the algorithm to an image dataset.

1 Introduction

The statistical models typically used in unsupervised learning draw upon a relatively small
repertoire of representations. The simplest representation, used in mixture models, asso-
ciates each object with a single latent class. This approachis appropriate when objects
can be partitioned into relatively homogeneous subsets. However, the properties of many
objects are better captured by representing each object using multiple latent features. For
instance, we could choose to represent each object as a binary vector, with entries indicat-
ing the presence or absence of each feature [1], allow each feature to take on a continuous
value, representing objects with points in a latent space [2], or define a factorial model, in
which each feature takes on one of a discrete set of values [3,4].

A critical question in all of these approaches is the dimensionality of the representation:
how many classes or features are needed to express the latentstructure expressed by a
set of objects. Often, determining the dimensionality of the representation is treated as a
model selection problem, with a particular dimensionalitybeing chosen based upon some
measure of simplicity or generalization performance. Thisassumes that there is a single,
finite-dimensional representation that correctly characterizes the properties of the observed
objects. An alternative is to assume that the true dimensionality is unbounded, and that the
observed objects manifest only a finite subset of classes or features [5]. This alternative
is pursued in nonparametric Bayesian models, such as Dirichlet process mixture models
[6, 7, 8, 9]. In a Dirichlet process mixture model, each object is assigned to a latent class,
and each class is associated with a distribution over observable properties. The prior dis-
tribution over assignments of objects to classes is defined in such a way that the number
of classes used by the model is bounded only by the number of objects, making Dirichlet
process mixture models “infinite” mixture models [10].

The prior distribution assumed in a Dirichlet process mixture model can be specified in



terms of a sequential process called the Chinese restaurantprocess (CRP) [11, 12]. In the
CRP,N customers enter a restaurant with infinitely many tables, each with infinite seating
capacity. Theith customer chooses an already-occupied tablek with probability mk

i−1+α ,
wheremk is the number of current occupants, and chooses a new table with probability

α
i−1+α . Customers areexchangeableunder this process: the probability of a particular
seating arrangement depends only on the number of people at each table, and not the order
in which they enter the restaurant.

If we replace customers with objects and tables with classes, the CRP specifies a distribu-
tion over partitions of objects into classes. A partition isa division of the set ofN objects
into subsets, where each object belongs to a single subset and the ordering of the subsets
does not matter. Two assignments of objects to classes that result in the same division of
objects correspond to the same partition. For example, if wehad three objects, the class
assignments{c1, c2, c3} = {1, 1, 2} would correspond to the same partition as{2, 2, 1},
since all that differs between these two cases is the labels of the classes. A partition thus
defines an equivalence class of assignment vectors.

The distribution over partitions implied by the CRP can be derived by taking the limit of
the probability of the corresponding equivalence class of assignment vectors in a model
where class assignments are generated from a multinomial distribution with a Dirichlet
prior [9, 10]. In this paper, we derive an infinitely exchangeable distribution over infinite
binary matrices by pursuing this strategy of taking the limit of a finite model. We also de-
scribe a stochastic process (the Indian buffet process, akin to the CRP) which generates this
distribution. Finally, we demonstrate how this distribution can be used as a prior in statisti-
cal models in which each object is represented by a sparse subset of an unbounded number
of features. Further discussion of the properties of this distribution, some generalizations,
and additional experiments, are available in the longer version of this paper [13].

2 A distribution on infinite binary matrices

In a latent feature model, each object is represented by a vector of latent feature valuesf i,
and the observable properties of that objectxi are generated from a distribution determined
by its latent features. Latent feature values can be continuous, as in principal component
analysis (PCA) [2], or discrete, as in cooperative vector quantization (CVQ) [3, 4]. In the
remainder of this section, we will assume that feature values are continuous. Using the ma-

trix F =
[

f
T
1 f

T
2 · · · f

T
N

]T
to indicate the latent feature values for allN objects, the model

is specified by a prior over features,p(F), and a distribution over observed property ma-
trices conditioned on those features,p(X|F), wherep(·) is a probability density function.
These distributions can be dealt with separately:p(F) specifies the number of features and
the distribution over values associated with each feature,while p(X|F) determines how
these features relate to the properties of objects. Our focus will be onp(F), showing how
such a prior can be defined without limiting the number of features.

We can breakF into two components: a binary matrixZ indicating which features are pos-
sessed by each object, withzik = 1 if object i has featurek and0 otherwise, and a matrix
V indicating the value of each feature for each object.F is the elementwise product ofZ
andV, F = Z ⊗ V, as illustrated in Figure 1. In many latent feature models (e.g., PCA)
objects have non-zero values on every feature, and every entry of Z is 1. In sparselatent
feature models (e.g., sparse PCA [14, 15]) only a subset of features take on non-zero values
for each object, andZ picks out these subsets. A prior onF can be defined by specifying
priors forZ andV, with p(F) = P (Z)p(V), whereP (·) is a probability mass function.
We will focus on defining a prior onZ, since the effective dimensionality of a latent feature
model is determined byZ. Assuming thatZ is sparse, we can define a prior for infinite la-
tent feature models by defining a distribution over infinite binary matrices. Our discussion
of the Chinese restaurant process provides two desiderata for such a distribution: objects
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Figure 1: A binary matrixZ, as shown in (a), indicates which features take non-zero values.
Elementwise multiplication ofZ by a matrixV of continuous values produces a represen-
tation like (b). IfV contains discrete values, we obtain a representation like (c).

should be exchangeable, and posterior inference should be tractable. It also suggests a
method by which these desiderata can be satisfied: start witha model that assumes a finite
number of features, and consider the limit as the number of features approaches infinity.

2.1 A finite feature model

We haveN objects andK features, and the possession of featurek by objecti is indicated
by a binary variablezik. Thezik form a binaryN × K feature matrix,Z. Assume that
each object possesses featurek with probability πk, and that the features are generated
independently. Under this model, the probability ofZ givenπ = {π1, π2, . . . , πK}, is

P (Z|π) =
K
∏

k=1

N
∏

i=1

P (zik|πk) =
K
∏

k=1

πmk

k (1 − πk)N−mk , (1)

wheremk =
∑N

i=1 zik is the number of objects possessing featurek. We can define a prior
onπ by assuming that eachπk follows a beta distribution, to give

πk |α ∼ Beta( α
K , 1)

zik |πk ∼ Bernoulli(πk)

Eachzik is independent of all other assignments, conditioned onπk, and theπk are gener-
ated independently. We can integrate outπ to obtain the probability ofZ, which is

P (Z) =

K
∏

k=1

α
K Γ(mk + α

K )Γ(N − mk + 1)

Γ(N + 1 + α
K )

. (2)

This distribution is exchangeable, sincemk is not affected by the ordering of the objects.

2.2 Equivalence classes

In order to find the limit of the distribution specified by Equation 2 asK → ∞, we need to
define equivalence classes of binary matrices – the analogueof partitions for class assign-
ments. Our equivalence classes will be defined with respect to a function on binary matri-
ces,lof(·). This function maps binary matrices toleft-orderedbinary matrices.lof(Z) is
obtained by ordering the columns of the binary matrixZ from left to right by the magnitude
of the binary number expressed by that column, taking the first row as the most significant
bit. The left-ordering of a binary matrix is shown in Figure 2. In the first row of the left-
ordered matrix, the columns for whichz1k = 1 are grouped at the left. In the second row,
the columns for whichz2k = 1 are grouped at the left of the sets for whichz1k = 1. This
grouping structure persists throughout the matrix.

Thehistoryof featurek at objecti is defined to be(z1k, . . . , z(i−1)k). Where no object is
specified, we will usehistory to refer to the full history of featurek, (z1k, . . . , zNk). We
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Figure 2: Left-ordered form. A binary matrix is transformedinto a left-ordered binary
matrix by the functionlof(·). The entries in the left-ordered matrix were generated from
the Indian buffet process withα = 10. Empty columns are omitted from both matrices.

will individuate the histories of features using the decimal equivalent of the binary numbers
corresponding to the column entries. For example, at object3, features can have one of four
histories:0, corresponding to a feature with no previous assignments,1, being a feature for
whichz2k = 1 butz1k = 0, 2, being a feature for whichz1k = 1 butz2k = 0, and3, being
a feature possessed by both previous objects were assigned.Kh will denote the number of
features possessing the historyh, with K0 being the number of features for whichmk = 0

andK+ =
∑2N

−1
h=1 Kh being the number of features for whichmk > 0, soK = K0 +K+.

Two binary matricesY and Z are lof -equivalent if lof(Y) = lof(Z). The lof -
equivalence class of a binary matrixZ, denoted[Z], is the set of binary matrices that are
lof -equivalent toZ. lof -equivalence classes play the role for binary matrices thatparti-
tions play for assignment vectors: they collapse together all binary matrices (assignment
vectors) that differ only in column ordering (class labels). lof -equivalence classes are pre-
served through permutation of the rows or the columns of a matrix, provided the same
permutations are applied to the other members of the equivalence class. Performing infer-
ence at the level oflof -equivalence classes is appropriate in models where feature order
is not identifiable, withp(X|F) being unaffected by the order of the columns ofF. Any
model in which the probability ofX is specified in terms of a linear function ofF, such
as PCA or CVQ, has this property. The cardinality of thelof -equivalence class[Z] is
(

K
K0...K2N

−1

)

= K!
Q2N

−1
h=0 Kh!

, whereKh is the number of columns with full historyh.

2.3 Taking the infinite limit

Under the distribution defined by Equation 2, the probability of a particularlof -equivalence
class of binary matrices,[Z], is

P ([Z]) =
∑

Z∈[Z]

P (Z) =
K!

∏2N−1
h=0 Kh!

K
∏

k=1

α
K Γ(mk + α

K )Γ(N − mk + 1)

Γ(N + 1 + α
K )

. (3)

Rearranging terms, and using the fact thatΓ(x) = (x − 1)Γ(x − 1) for x > 1, we can
compute the limit ofP ([Z]) asK approaches infinity

lim
K→∞

αK+

∏2N−1
h=1 Kh!

·
K!

K0!KK+
·

(

N !
∏N

j=1(j + α
K )

)K

·

K+
∏

k=1

(N − mk)!
∏mk−1

j=1 (j + α
K )

N !

=
αK+

∏2N−1
h=1 Kh!

· 1 · exp{−αHN} ·

K+
∏

k=1

(N − mk)!(mk − 1)!

N !
, (4)

whereHN is theN th harmonic number,HN =
∑N

j=1
1
j . This distribution is infinitely

exchangeable, since neitherKh nor mk are affected by the ordering on objects. Technical
details of this limit are provided in [13].



2.4 The Indian buffet process

The probability distribution defined in Equation 4 can be derived from a simple stochastic
process. Due to the similarity to the Chinese restaurant process, we will also use a culinary
metaphor, appropriately adjusted for geography. Indian restaurants in London offer buffets
with an apparently infinite number of dishes. We will define a distribution over infinite
binary matrices by specifying how customers (objects) choose dishes (features).

In our Indian buffet process (IBP),N customers enter a restaurant one after another. Each
customer encounters a buffet consisting of infinitely many dishes arranged in a line. The
first customer starts at the left of the buffet and takes a serving from each dish, stopping
after a Poisson(α) number of dishes. Theith customer moves along the buffet, sampling
dishes in proportion to their popularity, taking dishk with probability mk

i , wheremk is the
number of previous customers who have sampled that dish. Having reached the end of all
previous sampled dishes, theith customer then tries a Poisson(α

i ) number of new dishes.
We can indicate which customers chose which dishes using a binary matrixZ with N rows
and infinitely many columns, wherezik = 1 if the ith customer sampled thekth dish.

UsingK
(i)
1 to indicate the number of new dishes sampled by theith customer, the proba-

bility of any particular matrix being produced by the IBP is

P (Z) =
αK+

∏N
i=1 K

(i)
1 !

exp{−αHN}

K+
∏

k=1

(N − mk)!(mk − 1)!

N !
. (5)

The matrices produced by this process are generally not in left-ordered form. These ma-
trices are also not ordered arbitrarily, because the Poisson draws always result in choices
of new dishes that are to the right of the previously sampled dishes. Customers are not
exchangeable under this distribution, as the number of dishes counted asK(i)

1 depends
upon the order in which the customers make their choices. However, if we only pay at-
tention to thelof -equivalence classes of the matrices generated by this process, we obtain

the infinitely exchangeable distributionP ([Z]) given by Equation 4:
Q

N

i=1 K
(i)
1 !

Q2N
−1

h=1 Kh!
matrices

generated via this process map to the same left-ordered form, andP ([Z]) is obtained by
multiplying P (Z) from Equation 5 by this quantity. A similar but slightly morecompli-
cated process can be defined to produce left-ordered matrices directly [13].

2.5 Conditional distributions

To define a Gibbs sampler for models using the IBP, we need to know the conditional
distribution on feature assignments,P (zik = 1|Z−(ik)). In the finite model, whereP (Z)
is given by Equation 2, it is straightforward to compute thisconditional distribution for any
zik. Integrating overπk gives

P (zik = 1|z−i,k) =
m−i,k + α

K

N + α
K

, (6)

wherez−i,k is the set of assignments of other objects, not includingi, for featurek, and
m−i,k is the number of objects possessing featurek, not includingi. We need only condi-
tion onz−i,k rather thanZ−(ik) because the columns of the matrix are independent.

In the infinite case, we can derive the conditional distribution from the (exchangeable) IBP.
Choosing an ordering on objects such that theith object corresponds to the last customer
to visit the buffet, we obtain

P (zik = 1|z−i,k) =
m−i,k

N
, (7)

for any k such thatm−i,k > 0. The same result can be obtained by taking the limit of
Equation 6 asK → ∞. The number of new features associated with objecti should be



drawn from a Poisson(αN ) distribution. This can also be derived from Equation 6, using the
same kind of limiting argument as that presented above.

3 A linear-Gaussian binary latent feature model

To illustrate how the IBP can be used as a prior in models for unsupervised learning, we
derived and tested a linear-Gaussian latent feature model in which the features are binary.
In this case the feature matrixF reduces to the binary matrixZ. As above, we will start
with a finite model and then consider the infinite limit.

In our finite model, theD-dimensional vector of properties of an objecti, xi is generated
from a Gaussian distribution with meanziA and covariance matrixΣX = σ2

XI, where
zi is a K-dimensional binary vector, andA is a K × D matrix of weights. In matrix
notation,E [X] = ZA. If Z is a feature matrix, this is a form of binary factor analysis.The
distribution ofX givenZ, A, andσX is matrix Gaussian with meanZA and covariance
matrix σ2

XI, whereI is the identity matrix. The prior onA is also matrix Gaussian, with
mean0 and covariance matrixσ2

AI. Integrating outA, we have

p(X|Z, σX , σA) =
1

(2π)ND/2σ
(N−K)D
X σKD

A |ZT Z +
σ2

X

σ2
A

I|D/2

exp{−
1

2σ2
X

tr(XT (I − Z(ZT
Z +

σ2
X

σ2
A

I)−1
Z

T )X)}. (8)

This result is intuitive: the exponentiated term is the difference between the inner product
of X and its projection onto the space spanned byZ, regularized to an extent determined
by the ratio of the variance of the noise inX to the variance of the prior onA. It follows
thatp(X|Z, σX , σA) depends only on the non-zero columns ofZ, and thus remains well-
defined when we take the limit asK → ∞ (for more details see [13]).

We can define a Gibbs sampler for this model by computing the full conditional distribution

P (zik|X,Z−(i,k), σX , σA) ∝ p(X|Z, σX , σA)P (zik|z−i,k). (9)

The two terms on the right hand side can be evaluated using Equations 8 and 7 respectively.
The Gibbs sampler is then straightforward. Assignments forfeatures for whichm−i,k > 0
are drawn from the distribution specified by Equation 9. The distribution over the number
of new features for each object can be approximated by truncation, computing probabilities
for a range of values ofK(i)

1 up to an upper bound. For each value,p(X|Z, σX , σA) can
be computed from Equation 8, and the prior on the number of newfeatures is Poisson(α

N ).

We will demonstrate this Gibbs sampler for the infinite binary linear-Gaussian model on a
dataset consisting of 100240 × 320 pixel images. We represented each image,xi, using
a 100-dimensional vector corresponding to the weights of the mean image and the first99
principal components. Each image contained up to four everyday objects – a $20 bill, a
Klein bottle, a prehistoric handaxe, and a cellular phone. Each object constituted a single
latent feature responsible for the observed pixel values. The images were generated by
sampling a feature vector,zi, from a distribution under which each feature was present
with probability0.5, and then taking a photograph containing the appropriate objects using
a LogiTech digital webcam. Sample images are shown in Figure3 (a).

The Gibbs sampler was initialized withK+ = 1, choosing the feature assignments for
the first column by settingzi1 = 1 with probability 0.5. σA, σX , andα were initially
set to0.5, 1.7, and1 respectively, and then sampled by adding Metropolis steps to the
MCMC algorithm. Figure 3 shows trace plots for the first 1000 iterations of MCMC for the
number of features used by at least one object,K+, and the model parametersσA, σX , and
α. All of these quantities stabilized after approximately 100 iterations, with the algorithm



(a)

(Positive)

(b)

(Negative) (Negative) (Negative)

0  0  0  0

(c)

0  1  0  0 1  1  1  0 1  0  1  1

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

 K
+

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

α

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

σ X

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

σ A

Iteration

Figure 3: Data and results for the demonstration of the infinite linear-Gaussian binary
latent feature model. (a) Four sample images from the 100 in the dataset. Each image
had320 × 240 pixels, and contained from zero to four everyday objects. (b) The posterior
mean of the weights (A) for the four most frequent binary features from the1000th sample.
Each image corresponds to a single feature. These features perfectly indicate the presence
or absence of the four objects. The first feature indicates the presence of the $20 bill,
the other three indicate the absence of the Klein bottle, thehandaxe, and the cellphone.
(c) Reconstructions of the images in (a) using the binary codes inferred for those images.
These reconstructions are based upon the posterior mean ofA for the1000th sample. For
example, the code for the first image indicates that the $20 bill is absent, while the other
three objects are not. The lower panels show trace plots for the dimensionality of the
representation (K+) and the parametersα, σX , andσA over1000 iterations of sampling.
The values of all parameters stabilize after approximately100 iterations.



finding solutions with approximately seven latent features. The four most common features
perfectly indicated the presence and absence of the four objects (shown in Figure 3 (b)), and
three less common features coded for slight differences in the locations of those objects.

4 Conclusion

We have shown that the methods that have been used to define infinite latent class models
[6, 7, 8, 9, 10, 11, 12] can be extended to models in which objects are represented in
terms of a set of latent features, deriving a distribution oninfinite binary matrices that can
be used as a prior for such models. While we derived this prior as the infinite limit of
a simple distribution on finite binary matrices, we have shown that the same distribution
can be specified in terms of a simple stochastic process – the Indian buffet process. This
distribution satisfies our two desiderata for a prior for infinite latent feature models: objects
are exchangeable, and inference remains tractable. Our success in transferring the strategy
of taking the limit of a finite model from latent classes to latent features suggests that a
similar approach could be applied with other representations, expanding the forms of latent
structure that can be recovered through unsupervised learning.
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