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 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.Factorial Hidden Markov ModelsZOUBIN GHAHRAMANI zoubin@cs.toronto.eduDepartment of Computer Science, University of Toronto, Toronto, ON M5S 3H5, CanadaMICHAEL I. JORDAN jordan@psyche.mit.eduDepartment of Brain & Cognitive Sciences, Massachusetts Institute of Technology,Cambridge, MA 02139, USAEditor: Padhraic SmythAbstract. Hidden Markov models (HMMs) have proven to be one of the most widely used toolsfor learning probabilistic models of time series data. In an HMM, information about the pastis conveyed through a single discrete variable|the hidden state. We discuss a generalization ofHMMs in which this state is factored into multiple state variables and is therefore represented ina distributed manner. We describe an exact algorithm for inferring the posterior probabilities ofthe hidden state variables given the observations, and relate it to the forward{backward algorithmfor HMMs and to algorithms for more general graphical models. Due to the combinatorial natureof the hidden state representation, this exact algorithm is intractable. As in other intractablesystems, approximate inference can be carried out using Gibbs sampling or variational methods.Within the variational framework, we present a structured approximation in which the the statevariables are decoupled, yielding a tractable algorithm for learning the parameters of the model.Empirical comparisons suggest that these approximations are e�cient and provide accurate al-ternatives to the exact methods. Finally, we use the structured approximation to model Bach'schorales and show that factorial HMMs can capture statistical structure in this data set which anunconstrained HMM cannot.Keywords: Hidden Markov models, time series, EM algorithm, graphical models, Bayesian net-works, mean �eld theory1. IntroductionDue to its 
exibility and to the simplicity and e�ciency of its parameter estimationalgorithm, the hidden Markov model (HMM) has emerged as one of the basic sta-tistical tools for modeling discrete time series, �nding widespread application in theareas of speech recognition (Rabiner & Juang, 1986) and computational molecularbiology (Krogh, Brown, Mian, Sj�olander, & Haussler, 1994). An HMM is essen-tially a mixture model, encoding information about the history of a time series inthe value of a single multinomial variable|the hidden state|which can take onone of K discrete values. This multinomial assumption supports an e�cient pa-rameter estimation algorithm|the Baum-Welch algorithm|which considers eachof the K settings of the hidden state at each time step. However, the multinomialassumption also severely limits the representational capacity of HMMs. For exam-ple, to represent 30 bits of information about the history of a time sequence, anHMM would need K = 230 distinct states. On the other hand, an HMM with adistributed state representation could achieve the same task with 30 binary state



2 Z. GHAHRAMANI AND M.I. JORDANvariables (Williams & Hinton, 1991). This paper addresses the problem of con-structing e�cient learning algorithms for hidden Markov models with distributedstate representations.The need for distributed state representations in HMMs can be motivated in twoways. First, such representations let the model automatically decompose the statespace into features that decouple the dynamics of the process that generated thedata. Second, distributed state representations simplify the task of modeling timeseries that are known a priori to be generated from an interaction of multiple,loosely-coupled processes. For example, a speech signal generated by the superpo-sition of multiple simultaneous speakers can be potentially modeled with such anarchitecture.Williams and Hinton (1991) �rst formulated the problem of learning in HMMswith distributed state representations and proposed a solution based on determinis-tic Boltzmann learning.1 The approach presented in this paper is similar to Williamsand Hinton's in that it can also be viewed from the framework of statistical me-chanics and mean �eld theory. However, our learning algorithm is quite di�erentin that it makes use of the special structure of HMMs with a distributed staterepresentation, resulting in a signi�cantly more e�cient learning procedure. An-ticipating the results in Section 3, this learning algorithm obviates the need forthe two-phase procedure of Boltzmann machines, has an exact M step, and makesuse of the forward{backward algorithm from classical HMMs as a subroutine. Adi�erent approach comes from Saul and Jordan (1995), who derived a set of rulesfor computing the gradients required for learning in HMMs with distributed statespaces. However, their methods can only be applied to a limited class of architec-tures.Hidden Markov models with distributed state representations are a particularclass of probabilistic graphical model (Pearl, 1988; Lauritzen & Spiegelhalter, 1988),which represent probability distributions as graphs in which the nodes correspondto random variables and the links represent conditional independence relations.The relation between hidden Markov models and graphical models has recentlybeen reviewed in Smyth, Heckerman and Jordan (1997). Although exact probabilitypropagation algorithms exist for general graphical models (Jensen, Lauritzen, &Olesen, 1990), these algorithms are intractable for densely-connected models suchas the ones we consider in this paper. One approach to dealing with this issue isto utilize stochastic sampling methods (Kanazawa et al., 1995). Another approach,which provides the basis for algorithms described in the current paper, is to makeuse of variational methods (cf. Saul, Jaakkola, & Jordan, 1996).In the following section we de�ne the probabilistic model for factorial HMMsand in Section 3 we present algorithms for inference and learning. In Section 4 wedescribe empirical results comparing exact and approximate algorithms for learningon the basis of time complexity and model quality. We also apply factorial HMMsto a real time series data set consisting of the melody lines from a collection ofchorales by J. S. Bach. We discuss several generalizations of the probabilistic model
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Figure 1. (a) A directed acyclic graph (DAG) specifying conditional independence relations fora hidden Markov model. Each node is conditionally independent from its non-descendants givenits parents. (b) A DAG representing the conditional independence relations in a factorial HMMwith M = 3 underlying Markov chains.in Section 5, and we conclude in Section 6. Where necessary, details of derivationsare provided in the appendixes.2. The probabilistic modelWe begin by describing the hidden Markov model, in which a sequence of obser-vations fYtg where t = 1; : : :T , is modeled by specifying a probabilistic relationbetween the observations and a sequence of hidden states fStg, and a Markovtransition structure linking the hidden states. The model assumes two sets of con-ditional independence relations: that Yt is independent of all other observations andstates given St, and that St is independent of S1 : : :St�2 given St�1 (the �rst-orderMarkov property). Using these independence relations, the joint probability for thesequence of states and observations can be factored asP (fSt; Ytg) = P (S1)P (Y1jS1) TYt=2P (StjSt�1)P (YtjSt): (1)The conditional independencies speci�ed by equation (1) can be expressed graphi-cally in the form of Figure 1 (a). The state is a single multinomial random variablethat can take one of K discrete values, St 2 f1; : : : ;Kg. The state transitionprobabilities, P (StjSt�1), are speci�ed by a K �K transition matrix. If the obser-vations are discrete symbols taking on one ofD values, the observation probabilitiesP (YtjSt) can be fully speci�ed as a K � D observation matrix. For a continuousobservation vector, P (YtjSt) can be modeled in many di�erent forms, such as aGaussian, a mixture of Gaussians, or even a neural network.2In the present paper, we generalize the HMM state representation by letting thestate be represented by a collection of state variablesSt = S(1)t ; : : :S(m)t ; : : : ; S(M)t ; (2)



4 Z. GHAHRAMANI AND M.I. JORDANeach of which can take on K(m) values. We refer to these models as factorialhidden Markov models, as the state space consists of the cross product of these statevariables. For simplicity, we will assume that K(m) = K, for allm, although all theresults we present can be trivially generalized to the case of di�ering K(m). Giventhat the state space of this factorial HMM consists of all KM combinations of theS(m)t variables, placing no constraints on the state transition structure would resultin a KM �KM transition matrix. Such an unconstrained system is uninterestingfor several reasons: it is equivalent to an HMM with KM states; it is unlikelyto discover any interesting structure in the K state variables, as all variables areallowed to interact arbitrarily; and both the time complexity and sample complexityof the estimation algorithm are exponential in M .We therefore focus on factorial HMMs in which the underlying state transitionsare constrained. A natural structure to consider is one in which each state variableevolves according to its own dynamics, and is a priori uncoupled from the otherstate variables:P (StjSt�1) = MYm=1P (S(m)t jS(m)t�1): (3)A graphical representation for this model is presented in Figure 1 (b). The tran-sition structure for this system can be represented as M distinct K �K matrices.Generalizations that allow coupling between the state variables are brie
y discussedin Section 5.As shown in Figure 1 (b), in a factorial HMM the observation at time step t candepend on all the state variables at that time step. For continuous observations,one simple form for this dependence is linear Gaussian; that is, the observation Ytis a Gaussian random vector whose mean is a linear function of the state variables.We represent the state variables as K � 1 vectors, where each of the K discretevalues corresponds to a 1 in one position and 0 elsewhere. The resulting probabilitydensity for a D � 1 observation vector Yt isP (YtjSt) = jCj�1=2 (2�)�D=2 exp��12 (Yt � �t)0C�1 (Yt � �t)� ; (4a)where�t = MXm=1W (m)S(m)t : (4b)Each W (m) matrix is a D �K matrix whose columns are the contributions to themeans for each of the settings of S(m)t , C is the D�D covariance matrix, 0 denotesmatrix transpose, and j � j is the matrix determinant operator.One way to understand the observation model in equations (4a) and (4b) is toconsider the marginal distribution for Yt, obtained by summing over the possiblestates. There are K settings for each of the M state variables, and thus there



FACTORIAL HIDDEN MARKOV MODELS 5are KM possible mean vectors obtained by forming sums of M columns where onecolumn is chosen from each of the W (m) matrices. The resulting marginal densityof Yt is thus a Gaussian mixture model, with KM Gaussian mixture componentseach having a constant covariance matrix C. This static mixture model, withoutinclusion of the time index and the Markov dynamics, is a factorial parameterizationof the standard mixture of Gaussians model that has interest in its own right (Zemel,1993; Hinton & Zemel, 1994; Ghahramani, 1995). The model we are considering inthe current paper extends this model by allowing Markov dynamics in the discretestate variables underlying the mixture. Unless otherwise stated, we will assume theGaussian observation model throughout the paper.The hidden state variables at one time step, although marginally independent,become conditionally dependent given the observation sequence. This can be deter-mined by applying the semantics of directed graphs, in particular the d-separationcriterion (Pearl, 1988), to the graphical model in Figure 1 (b). Consider the Gaus-sian model in equations (4a)-(4b). Given an observation vector Yt, the posteriorprobability of each of the settings of the hidden state variables is proportional to theprobability of Yt under a Gaussian with mean �t. Since �t is a function of all thestate variables, the probability of a setting of one of the state variables will dependon the setting of the other state variables.3 This dependency e�ectively couples allof the hidden state variables for the purposes of calculating posterior probabilitiesand makes exact inference intractable for the factorial HMM.3. Inference and learningThe inference problem in a probabilistic graphical model consists of computingthe probabilities of the hidden variables given the observations. In the contextof speech recognition, for example, the observations may be acoustic vectors andthe goal of inference may be to compute the probability for a particular word orsequence of phonemes (the hidden state). This problem can be solved e�cientlyvia the forward{backward algorithm (Rabiner & Juang, 1986), which can be shownto be a special case of the Jensen, Lauritzen, and Olesen (1990) algorithm forprobability propagation in more general graphical models (Smyth et al., 1997). Insome cases, rather than a probability distribution over hidden states it is desirableto infer the single most probable hidden state sequence. This can be achieved viathe Viterbi (1967) algorithm, a form of dynamic programming that is very closelyrelated to the forward{backward algorithm and also has analogues in the graphicalmodel literature (Dawid, 1992).The learning problem for probabilistic models consists of two components: learn-ing the structure of the model and learning its parameters. Structure learning is atopic of current research in both the graphical model and machine learning commu-nities (e.g. Heckerman, 1995; Stolcke & Omohundro, 1993). In the current paper wedeal exclusively with the problem of learning the parameters for a given structure.



6 Z. GHAHRAMANI AND M.I. JORDAN3.1. The EM algorithmThe parameters of a factorial HMM can be estimated via the expectation maxi-mization (EM) algorithm (Dempster, Laird, & Rubin, 1977), which in the case ofclassical HMMs is known as the Baum{Welch algorithm (Baum, Petrie, Soules, &Weiss, 1970). This procedure iterates between a step that �xes the current param-eters and computes posterior probabilities over the hidden states (the E step) anda step that uses these probabilities to maximize the expected log likelihood of theobservations as a function of the parameters (the M step). Since the E step of EMis exactly the inference problem as described above, we subsume the discussion ofboth inference and learning problems into our description of the EM algorithm forfactorial HMMs.The EM algorithm follows from the de�nition of the expected log likelihood ofthe complete (observed and hidden) data:Q(�newj�) = E � logP (fSt; Ytgj�new) j �; fYtg	 ; (5)where Q is a function of the parameters �new, given the current parameter esti-mate � and the observation sequence fYtg. For the factorial HMM the param-eters of the model are � = fW (m); �(m); P (m); Cg, where �(m) = P (S(m)1 ) andP (m) = P (S(m)t jS(m)t�1). The E step consists of computing Q. By expanding (5)using equations (1){(4b), we �nd that Q can be expressed as a function of threetypes of expectations over the hidden state variables: hS(m)t i, hS(m)t S(n)0t i, andhS(m)t�1S(m)0t i, where h�i has been used to abbreviate Ef�j�; fYtgg. In the HMMnotation of Rabiner and Juang (1986), hS(m)t i corresponds to 
t, the vector ofstate occupation probabilities, hS(m)t�1S(m)0t i corresponds to �t, the K �K matrix ofstate occupation probabilities at two consecutive time steps, and hS(m)t S(n)0t i hasno analogue when there is only a single underlying Markov model. The M step usesthese expectations to maximize Q as a function of �new. Using Jensen's inequality,Baum, Petrie, Soules & Weiss (1970) showed that each iteration of the E and Msteps increases the likelihood, P (fYtgj�), until convergence to a (local) optimum.As in hidden Markov models, the exact M step for factorial HMMs is simpleand tractable. In particular, the M step for the parameters of the output modeldescribed in equations (4a)-(4b) can be found by solving a weighted linear regressionproblem. Similarly, the M steps for the priors, �(m), and state transition matrices,P (m), are identical to the ones used in the Baum{Welch algorithm. The detailsof the M step are given in Appendix A. We now turn to the substantially moredi�cult problem of computing the expectations required for the E step.3.2. Exact inferenceUnfortunately, the exact E step for factorial HMMs is computationally intractable.This fact can best be shown by making reference to standard algorithms for prob-



FACTORIAL HIDDEN MARKOV MODELS 7abilistic inference in graphical models (Lauritzen & Spiegelhalter, 1988), althoughit can also be derived readily from direct application of Bayes rule. Consider thecomputations that are required for calculating posterior probabilities for the fac-torial HMM shown in Figure 1 (b) within the framework of the Lauritzen andSpiegelhalter algorithm. Moralizing and triangulating the graphical structure forthe factorial HMM results in a junction tree (in fact a chain) with T (M + 1)�Mcliques of sizeM+1. The resulting probability propagation algorithmhas time com-plexity O(TMKM+1) for a single observation sequence of length T . We present aforward{backward type recursion that implements the exact E step in Appendix B.The naive exact algorithm which consists of translating the factorial HMM into anequivalent HMM with KM states and using the forward{backward algorithm, hastime complexity O(TK2M ). Like other models with multiple densely-connectedhidden variables, this exponential time complexity makes exact learning and infer-ence intractable.Thus, although the Markov property can be used to obtain forward{backward-like factorizations of the expectations across time steps, the sum over all possiblecon�gurations of the other hidden state variables within each time step is unavoid-able. This intractability is due inherently to the cooperative nature of the model:for the Gaussian output model, for example, the settings of all the state variablesat one time step cooperate in determining the mean of the observation vector.3.3. Inference using Gibbs samplingRather than computing the exact posterior probabilities, one can approximate themusing a Monte Carlo sampling procedure, and thereby avoid the sum over expo-nentially many state patterns at some cost in accuracy. Although there are manypossible sampling schemes (for a review see Neal, 1993), here we present one of thesimplest|Gibbs sampling (Geman & Geman, 1984). For a given observation se-quence fYtg, this procedure starts with a random setting of the hidden states fStg.At each step of the sampling process, each state vector is updated stochasticallyaccording to its probability distribution conditioned on the setting of all the otherstate vectors. The graphical model is again useful here, as each node is condition-ally independent of all other nodes given its Markov blanket, de�ned as the set ofchildren, parents, and parents of the children of a node. To sample from a typicalstate variable S(m)t we only need to examine the states of a few neighboring nodes:S(m)t sampled from P (S(m)t jfS(n)t : n 6= mg; S(m)t�1; S(m)t+1 ; Yt)/ P (S(m)t jS(m)t�1) P (S(m)t+1 jS(m)t ) P (YtjS(1)t ; : : : ; S(m)t ; : : : ; S(M)t ):Sampling once from each of the TM hidden variables in the model results in anew sample of the hidden state of the model and requires O(TMK) operations.The sequence of overall states resulting from each pass of Gibbs sampling de�nesa Markov chain over the state space of the model. Assuming that all probabilitiesare bounded away from zero, this Markov chain is guaranteed to converge to the



8 Z. GHAHRAMANI AND M.I. JORDANposterior probabilities of the states given the observations (Geman & Geman, 1984).Thus, after some suitable time, samples from the Markov chain can be taken asapproximate samples from the posterior probabilities. The �rst and second-orderstatistics needed to estimate hS(m)t i, hS(m)t S(n)0t i and hS(m)t�1S(m)0t i are collected usingthe states visited and the probabilities estimated during this sampling process areused in the approximate E step of EM.43.4. Completely factorized variational inferenceThere also exists a second approximation of the posterior probability of the hiddenstates that is both tractable and deterministic. The basic idea is to approximate theposterior distribution over the hidden variables P (fStgjfYtg) by a tractable distri-bution Q(fStg). This approximation provides a lower bound on the log likelihoodthat can be used to obtain an e�cient learning algorithm.The argument can be formalized following the reasoning of Saul, Jaakkola, andJordan (1996). Any distribution over the hidden variables Q(fStg) can be used tode�ne a lower bound on the log likelihoodlogP (fYtg) = logXfStgP (fSt; Ytg)= logXfStgQ(fStg) �P (fSt; Ytg)Q(fStg) �� XfStgQ(fStg) log �P (fSt; Ytg)Q(fStg) � ;where we have made use of Jensen's inequality in the last step. The di�erencebetween the left-hand side and the right-hand side of this inequality is given by theKullback-Leibler divergence (Cover & Thomas, 1991):KL(QkP ) = XfStgQ(fStg) log� Q(fStg)P (fStgjfYtg)� : (6)The complexity of exact inference in the approximation given by Q is determinedby its conditional independence relations, not by its parameters. Thus, we can choseQ to have a tractable structure|a graphical representation that eliminates someof the dependencies in P . Given this structure, we are free to vary the parametersof Q so as to obtain the tightest possible bound by minimizing (6).We will refer to the general strategy of using a parameterized approximating dis-tribution as a variational approximation and refer to the free parameters of thedistribution as variational parameters. To illustrate, consider the simplest varia-tional approximation, in which the state variables are assumed independent giventhe observations (Figure 2 (a)). This distribution can be written as
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Figure 2. (a) The completely factorized variational approximation assumes that all the state vari-ables are independent (conditional on the observation sequence). (b) The structured variationalapproximation assumes that the state variables retain their Markov structure within each chain,but are independent across chains.Q(fStgj�) = TYt=1 MYm=1Q(S(m)t j�(m)t ): (7)The variational parameters, � = f�(m)t g, are the means of the state variables, where,as before, a state variable S(m)t is represented as a K-dimensional vector with a 1in the kth position and 0 elsewhere, if the mth Markov chain is in state k at time t.The elements of the vector �(m)t therefore de�ne the state occupation probabilitiesfor the multinomial variable S(m)t under the distribution Q:Q(S(m)t j�(m)t ) = KYk=1��(m)t;k �S(m)t;k where S(m)t;k 2 f0; 1g; KXk=1S(m)t;k = 1: (8)This completely factorized approximation is often used in statistical physics, whereit provides the basis for simple yet powerful mean �eld approximations to statisticalmechanical systems (Parisi, 1988).To make the bound as tight as possible we vary � separately for each observationsequence so as to minimize the KL divergence. Taking the derivatives of (6) withrespect to �(m)t and setting them to zero, we obtain the set of �xed point equations(see Appendix C) de�ned by�(m) newt = '�W (m)0C�1 ~Y (m)t � 12�(m) + (logP (m)) �(m)t�1 + (logP (m))0 �(m)t+1� (9a)where ~Y (m)t is the residual error in Yt given the predictions from all the statevariables not including m:~Y (m)t � Yt � MX̀6=mW (`)�(`)t ; (9b)



10 Z. GHAHRAMANI AND M.I. JORDAN�(m) is the vector of diagonal elements ofW (m)0C�1W (m), and 'f�g is the softmaxoperator, which maps a vector A into a vector B of the same size, with elementsBi = expfAigXj expfAjg ; (10)and logP (m) denotes the elementwise logarithm of the transition matrix P (m).The �rst term of (9a) is the projection of the error in reconstructing the ob-servation onto the weights of state vector m|the more a particular setting of astate vector can reduce this error, the larger its associated variational parameter.The second term arises from the fact that the second order correlation hS(m)t S(m)t ievaluated under the variational distribution is a diagonal matrix composed of theelements of �(m)t . The last two terms introduce dependencies forward and backwardin time.5 Therefore, although the posterior distribution over the hidden variables isapproximated with a completely factorized distribution, the �xed point equationscouple the parameters associated with each node with the parameters of its Markovblanket. In this sense, the �xed point equations propagate information along thesame pathways as those de�ning the exact algorithms for probability propagation.The following may provide an intuitive interpretation of the approximation beingmade by this distribution. Given a particular observation sequence, the hiddenstate variables for the M Markov chains at time step t are stochastically coupled.This stochastic coupling is approximated by a system in which the hidden variablesare uncorrelated but have coupled means. The variational or \mean-�eld" equa-tions solve for the deterministic coupling of the means that best approximates thestochastically coupled system.Each hidden state vector is updated in turn using (9a), with a time complexityof O(TMK2) per iteration. Convergence is determined by monitoring the KLdivergence in the variational distribution between successive time steps; in practiceconvergence is very rapid (about 2 to 10 iterations of (9a)). Once the �xed pointequations have converged, the expectations required for the E step can be obtainedas a simple function of the parameters (equations (C.6){(C.8) in Appendix C).3.5. Structured variational inferenceThe approximation presented in the previous section factors the posterior proba-bility such that all the state variables are statistically independent. In contrast tothis rather extreme factorization, there exists a third approximation that is bothtractable and preserves much of the probabilistic structure of the original system. Inthis scheme, the factorial HMM is approximated by M uncoupled HMMs as shownin Figure 2 (b). Within each HMM, e�cient and exact inference is implementedvia the forward{backward algorithm. The approach of exploiting such tractablesubstructures was �rst suggested in the machine learning literature by Saul andJordan (1996).



FACTORIAL HIDDEN MARKOV MODELS 11Note that the arguments presented in the previous section did not hinge on thethe form of the approximating distribution. Therefore, more structured variationalapproximations can be obtained by using more structured variational distributionsQ. Each such Q provides a lower bound on the log likelihood and can be used toobtain a learning algorithm.We write the structured variational approximation asQ(fStgj�) = 1ZQ MYm=1Q(S(m)1 j�) TYt=2Q(S(m)t jS(m)t�1 ; �); (11a)where ZQ is a normalization constant ensuring that Q integrates to one andQ(S(m)1 j�) = KYk=1�h(m)1;k �(m)k �S(m)1;k (11b)Q(S(m)t jS(m)t�1 ; �) = KYk=10@h(m)t;k KXj=1P (m)k;j S(m)t�1;j1AS(m)t;k= KYk=10@h(m)t;k KYj=1�P (m)k;j �S(m)t�1;j1AS(m)t;k ; (11c)where the last equality follows from the fact that S(m)t�1 is a vector with a 1 in one po-sition and 0 elsewhere. The parameters of this distribution are � = f�(m); P (m); h(m)t g|the original priors and state transition matrices of the factorial HMM and a time-varying bias for each state variable. Comparing equations (11a){(11c) to equa-tion (1), we can see that the K � 1 vector h(m)t plays the role of the probability ofan observation (P (YtjSt) in (1)) for each of the K settings of S(m)t . For example,Q(S(m)1;j = 1j�) = h(m)1;j P (S(m)1;j = 1j�) corresponds to having an observation at timet = 1 that under state S(m)1;j = 1 has probability h(m)1;j .Intuitively, this approximation uncouples the M Markov chains and attaches toeach state variable a distinct �ctitious observation. The probability of this �ctitiousobservation can be varied so as to minimize the KL divergence between Q and P .Applying the same arguments as before, we obtain a set of �xed point equationsfor h(m)t that minimize KL(QkP ), as detailed in Appendix D:h(m) newt = exp�W (m)0C�1 ~Y (m)t � 12�(m)� ; (12a)where �(m) is de�ned as before, and where we rede�ne the residual error to be~Y (m)t � Yt � MX̀6=mW (`)hS(`)t i: (12b)



12 Z. GHAHRAMANI AND M.I. JORDANThe parameter h(m)t obtained from these �xed point equations is the observationprobability associated with state variable S(m)t in hidden Markov model m. Usingthese probabilities, the forward{backward algorithm is used to compute a new setof expectations for hS(m)t i, which are fed back into (12a) and (12b). This algorithmis therefore used as a subroutine in the minimization of the KL divergence.Note the similarity between equations (12a){(12b) and equations (9a){(9b) for thecompletely factorized system. In the completely factorized system, since hS(m)t i =�(m)t , the �xed point equations can be written explicitly in terms of the variationalparameters. In the structured approximation, the dependence of hS(m)t i on h(m)tis computed via the forward{backward algorithm. Note also that (12a) does notcontain terms involving the prior, �(m), or transition matrix, P (m). These termshave cancelled by our choice of approximation.3.6. Choice of approximationThe theory of the EM algorithm as presented in Dempster et al. (1977) assumesthe use of an exact E step. For models in which the exact E step is intractable,one must instead use an approximation like those we have just described. Thechoice among these approximations must take into account several theoretical andpractical issues.Monte Carlo approximations based on Markov chains, such as Gibbs sampling,o�er the theoretical assurance that the sampling procedure will converge to thecorrect posterior distribution in the limit. Although this means that one can comearbitrarily close to the exact E step, in practice convergence can be slow (especiallyfor multimodal distributions) and it is often very di�cult to determine how closeone is to convergence. However, when sampling is used for the E step of EM, thereis a time tradeo� between the number of samples used and the number of EMiterations. It seems wasteful to wait until convergence early on in learning, whenthe posterior distribution from which samples are drawn is far from the posteriorgiven the optimal parameters. In practice we have found that even approximateE steps using very few Gibbs samples (e.g. around ten samples of each hiddenvariable) tend to increase the true likelihood.Variational approximations o�er the theoretical assurance that a lower bound onthe likelihood is being maximized. Both the minimization of the KL divergence inthe E step and the parameter update in the M step are guaranteed not to decreasethis lower bound, and therefore convergence can be de�ned in terms of the bound.An alternative view given by Neal and Hinton (1993) describes EM in terms of thenegative free energy, F , which is a function of the parameters, �, the observations,Y , and a posterior probability distribution over the hidden variables, Q(S):F (Q;�) = EQ flogP (Y; Sj�)g � EQ flogQ(S)g ;where EQ denotes expectation over S using the distribution Q(S). The exact Estep in EM maximizes F with respect to Q given �. The variational E steps used



FACTORIAL HIDDEN MARKOV MODELS 13here maximize F with respect to Q given �, subject to the constraint that Q isof a particular tractable form. Given this view, it seems clear that the structuredapproximation is preferable to the completely factorized approximation since itplaces fewer constraints on Q, at no cost in tractability.4. Experimental resultsTo investigate learning and inference in factorial HMMs we conducted two experi-ments. The �rst experiment compared the di�erent approximate and exact methodsof inference on the basis of computation time and the likelihood of the model ob-tained from synthetic data. The second experiment sought to determine whetherthe decomposition of the state space in factorial HMMs presents any advantage inmodeling a real time series data set that we might assume to have complex internalstructure|Bach's chorale melodies.4.1. Experiment 1: Performance and timing benchmarksUsing data generated from a factorial HMM structure with M underlying Markovmodels withK states each, we compared the time per EM iteration and the trainingand test set likelihoods of �ve models:� HMM trained using the Baum-Welch algorithm;� Factorial HMM trained with exact inference for the E step, using a straight-forward application of the forward{backward algorithm, rather than the moree�cient algorithm outlined in Appendix B;� Factorial HMM trained using Gibbs sampling for the E step with the numberof samples �xed at 10 samples per variable;6� Factorial HMM trained using the completely factorized variational approxima-tion; and� Factorial HMM trained using the structured variational approximation.All factorial HMMs consisted of M underlying Markov models with K states each,whereas the HMM had KM states. The data were generated from a factorial HMMstructure with M state variables, each of which could take on K discrete values.All of the parameters of this model, except for the output covariance matrix, weresampled from a uniform [0; 1] distribution and appropriately normalized to satisfythe sum-to-one constraints of the transition matrices and priors. The covariancematrix was set to a multiple of the identity matrix C = 0:0025I.The training and test sets consisted of 20 sequences of length 20, where the observ-able was a four-dimensional vector. For each randomly sampled set of parameters, aseparate training set and test set were generated and each algorithm was run once.



14 Z. GHAHRAMANI AND M.I. JORDANFifteen sets of parameters were generated for each of the four problem sizes. Algo-rithms were run for a maximumof 100 iterations of EM or until convergence, de�nedas the iteration k at which the log likelihood L(k), or approximate log likelihood ifan approximate algorithmwas used, satis�ed L(k)�L(k�1) < 10�5(L(k�1)�L(2)).At the end of learning, the log likelihoods on the training and test set were com-puted for all models using the exact algorithm. Also included in the comparisonwas the log likelihood of the training and test sets under the true model that gen-erated the data. The test set log likelihood for N observation sequences is de�nedas PNn=1 logP (Y (n)1 ; : : : ; Y (n)T j�); where � is obtained by maximizing the log likeli-hood over a training set that is disjoint from the test set. This provides a measureof how well the model generalizes to a novel observation sequence from the samedistribution as the training data.Results averaged over 15 runs for each algorithm on each of the four problem sizes(a total of 300 runs) are presented in Table 1. Even for the smallest problem size(M = 3 and K = 2), the standard HMM with KM states su�ers from over�tting:the test set log likelihood is signi�cantly worse than the training set log likelihood.As expected, this over�tting problem becomes worse as the size of the state spaceincreases; it is particularly serious for M = 5 and K = 3.For the factorial HMMs, the log likelihoods for each of the three approximateEM algorithms were compared to the exact algorithm. Gibbs sampling appearedto have the poorest performance: for each of the three smaller size problems itslog likelihood was signi�cantly worse than that of the exact algorithm on both thetraining sets and test sets (p < 0:05). This may be due to insu�cient sampling.However, we will soon see that running the Gibbs sampler for more than 10 samples,while potentially improving performance, makes it substantially slower than thevariational methods. Surprisingly, the Gibbs sampler appears to do quite well onthe largest size problem, although the di�erences to the other methods are notstatistically signi�cant.The performance of the completely factorized variational approximation was notstatistically signi�cantly di�erent from that of the exact algorithm on either thetraining set or the test set for any of the problem sizes. The performance of thestructured variational approximation was not statistically di�erent from that of theexact method on three of the four problem sizes, and appeared to be better on one ofthe problem sizes (M = 5; K = 2; p < 0:05). Although this result may be a 
ukearising from random variability, there is another more interesting (and speculative)explanation. The exact EM algorithm implements unconstrained maximization ofF , as de�ned in section 3.6, while the variational methods maximize F subject toa constrained distribution. These constraints could presumably act as regularizers,reducing over�tting.There was a large amount of variability in the �nal log likelihoods for the modelslearned by all the algorithms. We subtracted the log likelihood of the true generativemodel from that of each trained model to eliminate the main e�ect of the randomlysampled generative model and to reduce the variability due to training and testsets. One important remaining source of variance was the random seed used in



FACTORIAL HIDDEN MARKOV MODELS 15Table 1. Comparison of the factorial HMM on four problems of varying size. The negative loglikelihood for the training and test set, plus or minus one standard deviation, is shown for eachproblem size and algorithm, measured in bits per observation (log likelihood in bits divided byNT ) relative to the log likelihood under the true generative model for that data set.7 True isthe true generative model (the log likelihood per symbol is de�ned to be zero for this model byour measure); HMM is the hidden Markov model with KM states; Exact is the factorial HMMtrained using an exact E step; Gibbs is the factorial HMM trained using Gibbs sampling; CFVAis the factorial HMM trained using the completely factorized variational approximation; SVA isthe factorial HMM trained using the structured variational approximation.M K Algorithm Training Set Test Set3 2 True 0.00 � 0.39 0.00 � 0.39HMM 1.19 � 0.67 2.29 � 1.02Exact 0.88 � 0.80 1.05 � 0.72Gibbs 1.67 � 1.23 1.78 � 1.22CFVA 1.06 � 1.20 1.20 � 1.11SVA 0.91 � 1.02 1.04 � 1.013 3 True 0.00 � 0.19 0.00 � 0.20HMM 0.76 � 0.67 9.81 � 2.55Exact 1.02 � 1.04 1.26 � 0.99Gibbs 2.21 � 0.91 2.50 � 0.87CFVA 1.24 � 1.50 1.50 � 1.53SVA 0.64 � 0.88 0.90 � 0.845 2 True 0.00 � 0.60 0.00 � 0.57HMM 0.83 � 0.82 11.57 � 3.71Exact 2.29 � 1.19 2.51 � 1.21Gibbs 3.25 � 1.17 3.35 � 1.14CFVA 1.73 � 1.34 2.07 � 1.74SVA 1.34 � 1.07 1.53 � 1.055 3 True 0.00 � 0.30 0.00 � 0.29HMM -4.80 � 0.52 175.35 � 84.74Exact 4.23 � 2.28 4.49 � 2.24Gibbs 3.63 � 1.13 3.95 � 1.14CFVA 4.85 � 0.68 5.14 � 0.69SVA 3.99 � 1.57 4.30 � 1.62
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Figure 3. Learning curves for �ve runs of each of the four learning algorithms for factorial HMMs:(a) exact; (b) completely factorized variational approximation; (c) structured variational approx-imation; and (d) Gibbs sampling. A single training set sampled from theM = 3; K = 2 problemsize was used for all these runs. The solid lines show the negative log likelihood per observation(in bits) relative to the true model that generated the data, calculated using the exact algorithm.The circles denote the point at which the convergence criterion was met and the run ended. Forthe three approximate algorithms, the dashed lines show an approximate negative log likelihood.8each training run, which determined the initial parameters and the samples used inthe Gibbs algorithm. All algorithms appeared to be very sensitive to this randomseed, suggesting that di�erent runs on each training set found di�erent local maximaor plateaus of the likelihood (Figure 3). Some of this variability could be eliminatedby explicitly adding a regularization term, which can be viewed as a prior on theparameters in maximuma posteriori parameter estimation. Alternatively, Bayesian(or ensemble) methods could be used to average out this variability by integratingover the parameter space.The timing comparisons con�rm the fact that both the standard HMM and the ex-act E step factorial HMM are extremely slow for models with large state spaces (Fig-
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State space size (K  )MFigure 4. Time per iteration of EM on a Silicon Graphics R4400 processor running Matlab.ure 4). Gibbs sampling was slower than the variational methods even when limitedto ten samples of each hidden variable per iteration of EM. Since one pass of thevariational �xed point equations has the same time complexity as one pass of Gibbssampling, and since the variational �xed point equations were found to convergevery quickly, these experiments suggest that Gibbs sampling is not as competitivetime-wise as the variational methods. The time per iteration for the variationalmethods scaled well to large state spaces.4.2. Experiment 2: Bach choralesMusical pieces naturally exhibit complex structure at many di�erent time scales.Furthermore, one can imagine that to represent the \state" of the musical pieceat any given time it would be necessary to specify a conjunction of many di�erentfeatures. For these reasons, we chose to test whether a factorial HMM would providean advantage over a regular HMM in modeling a collection of musical pieces.The data set consisted of discrete event sequences encoding the melody lines ofJ. S. Bach's Chorales, obtained from the UCI Repository for Machine LearningDatabases (Merz & Murphy, 1996) and originally discussed in Conklin and Wit-ten (1995). Each event in the sequence was represented by six attributes, describedin Table 2. Sixty-six chorales, with 40 or more events each, were divided into atraining set (30 chorales) and a test set (36 chorales). Using the �rst set, hiddenMarkov models with state space ranging from 2 to 100 states were trained untilconvergence (30 � 12 steps of EM). Factorial HMMs of varying sizes (K rangingfrom 2 to 6; M ranging from 2 to 9) were also trained on the same data. To



18 Z. GHAHRAMANI AND M.I. JORDANTable 2. Attributes in the Bach chorale data set. The keysignature and time signature attributes were constant over theduration of the chorale. All attributes were treated as realnumbers and modeled as linear-Gaussian observations (4a).Attribute Description Representationpitch pitch of the event int [0;127]keysig key signature int [�7; 7]timesig time signature (1/16 notes)fermata event under fermata? binaryst start time of event int (1/16 notes)dur duration of event int (1/16 notes)approximate the E step for factorial HMMs we used the structured variational ap-proximation. This choice was motivated by three considerations. First, for the sizeof state space we wished to explore, the exact algorithms were prohibitively slow.Second, the Gibbs sampling algorithm did not appear to present any advantagesin speed or performance and required some heuristic method for determining thenumber of samples. Third, theoretical arguments suggest that the structured ap-proximation should in general be superior to the completely factorized variationalapproximation, since more of the dependencies of the original model are preserved.The test set log likelihoods for the HMMs, shown in Figure 5 (a), exhibited thetypical U-shaped curve demonstrating a trade-o� between bias and variance (Ge-man, Bienenstock, & Doursat, 1992). HMMs with fewer than 10 states did notpredict well, while HMMs with more than 40 states over�t the training data andtherefore provided a poor model of the test data. Out of the 75 runs, the highesttest set log likelihood per observation was �9:0 bits, obtained by an HMM with 30hidden states.9The factorial HMM provides a more satisfactory model of the chorales from threepoints of view. First, the time complexity is such that it is possible to considermodels with signi�cantly larger state spaces; in particular, we �t models with up to1000 states. Second, given the componential parametrization of the factorial HMM,these large state spaces do not require excessively large numbers of parameters rel-ative to the number of data points. In particular, we saw no evidence of over�ttingeven for the largest factorial HMM as seen in Figures 5 (c) & (d). Finally, thisapproach resulted in signi�cantly better predictors; the test set likelihood for thebest factorial HMM was an order of magnitude larger than the test set likelihoodfor the best HMM, as Figure 5 (d) reveals.While the factorial HMM is clearly a better predictor than a single HMM, itshould be acknowledged that neither approach produces models that are easilyinterpretable from a musicological point of view. The situation is reminiscent ofthat in speech recognition, where HMMs have proved their value as predictivemodels of the speech signal without necessarily being viewed as causal generativemodels of speech. A factorial HMM is clearly an impoverished representation of
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Figure 5. Test set log likelihood per event of the Bach chorale data set as a function of number ofstates for (a) HMMs, and factorial HMMs with (b) K = 2, (c) K = 3, and (d) K = 4 (�'s; heavydashed line) andK = 5 (�'s; solid line). Each symbol represents a single run; the lines indicate themean performances. The thin dashed line in (b){(d) indicates the log likelihood per observationof the best run in (a). The factorial HMMs were trained using the structured approximation. Forboth methods the true likelihood was computed using the exact algorithm.musical structure, but its promising performance as a predictor provides hope thatit could serve as a step on the way toward increasingly structured statistical modelsfor music and other complex multivariate time series.5. Generalizations of the modelIn this section, we describe four variations and generalizations of the factorial HMM.5.1. Discrete observablesThe probabilistic model presented in this paper has assumed real-valued Gaus-sian observations. One of the advantages arising from this assumption is that theconditional density of a D-dimensional observation, P (YtjS(1)t ; : : : ; S(M)t ), can becompactly speci�ed through M mean matrices of dimensionD�K, and one D�Dcovariance matrix. Furthermore, the M step for such a model reduces to a set ofweighted least squares equations.The model can be generalized to handle discrete observations in several ways.Consider a singleD-valued discrete observation Yt. In analogy to traditional HMMs,the output probabilities could be modeled using a matrix. However, in the case of afactorial HMM, this matrix would have D�KM entries for each combination of thestate variables and observation. Thus the compactness of the representation wouldbe entirely lost. Standard methods from graphical models suggest approximatingsuch large matrices with \noisy-OR" (Pearl, 1988) or \sigmoid" (Neal, 1992)modelsof interaction. For example, in the softmax model, which generalizes the sigmoidmodel to D > 2, P (YtjS(1)t ; : : : ; S(M)t ) is multinomial with mean proportional to



20 Z. GHAHRAMANI AND M.I. JORDANexpnPmW (m)S(m)t o. Like the Gaussian model, this speci�cation is again com-pact, using M matrices of size D�K. (As in the linear-Gaussian model, the W (m)are overparametrized since they can each model the overall mean of Yt, as shown inAppendix A.) While the nonlinearity induced by the softmax function makes boththe E step and M step of the algorithm more di�cult, iterative numerical methodscan be used in the M step whereas Gibbs sampling and variational methods canagain be used in the E step (see Neal, 1992; Hinton et al., 1995; and Saul et al.,1996, for discussions of di�erent approaches to learning in sigmoid networks).5.2. Introducing couplingsThe architecture for factorial HMMs presented in Section 2 assumes that the un-derlying Markov chains interact only through the observations. This constraint canbe relaxed by introducing couplings between the hidden state variables (cf. Saul &Jordan, 1997). For example, if S(m)t depends on S(m)t�1 and S(m�1)t�1 , equation (3) isreplaced by the following factorizationP (StjSt�1) = P (S(1)t jS(1)t�1) MYm=1P (S(m)t jS(m)t�1 ; S(m�1)t�1 ): (13)Similar exact, variational, and Gibbs sampling procedures can be de�ned for thisarchitecture. However, note that these couplings must be introduced with caution,as they may result in an exponential growth in parameters. For example, the abovefactorization requires transition matrices of size K2 � K. Rather than specifyingthese higher-order couplings through probability transition matrices, one can intro-duce second-order interaction terms in the energy (log probability) function. Suchterms e�ectively couple the chains without the number of parameters incurred bya full probability transition matrix.10 In the graphical model formalism these cor-respond to symmetric undirected links, making the model a chain graph. Whilethe Jensen, Lauritzen and Olesen (1990) algorithm can still be used to propagateinformation exactly in chain graphs, such undirected links cause the normalizationconstant of the probability distribution|the partition function|to depend on thecoupling parameters. As in Boltzmann machines (Hinton & Sejnowski, 1986), botha clamped and an unclamped phase are therefore required for learning, where thegoal of the unclamped phase is to compute the derivative of the partition functionwith respect to the parameters (Neal, 1992).5.3. Conditioning on inputsLike the hidden Markov model, the factorial HMM provides a model of the uncon-ditional density of the observation sequences. In certain problem domains, some ofthe observations can be better thought of as inputs or explanatory variables, and



FACTORIAL HIDDEN MARKOV MODELS 21the others as outputs or response variables. The goal, in these cases, is to modelthe conditional density of the output sequence given the input sequence. In ma-chine learning terminology, unconditional density estimation is unsupervised whileconditional density estimation is supervised.Several algorithms for learning in hidden Markov models that are conditioned oninputs have been recently presented in the literature (Cacciatore & Nowlan, 1994;Bengio & Frasconi, 1995; Meila & Jordan, 1996). Given a sequence of input vectorsfXtg, the probabilistic model for an input-conditioned factorial HMM isP (fSt; YtgjfXtg) = MYm=1P (S(m)1 jX1)P (Y1jS(m)1 ; X1)� TYt=2 MYm=1P (S(m)t jS(m)t�1 ; Xt)P (YtjS(m)t ; Xt): (14)The model depends on the speci�cation of P (YtjS(m)t ; Xt) and P (S(m)t jS(m)t�1 ; Xt),which are conditioned both on a discrete state variable and on a (possibly con-tinuous) input vector. The approach used in Bengio and Frasconi's Input Out-put HMMs (IOHMMs) suggests modeling P (S(m)t jS(m)t�1 ; Xt) as K separate neuralnetworks, one for each setting of S(m)t�1 . This decomposition ensures that a validprobability transition matrix is de�ned at each point in input space if a sum-to-oneconstraint (e.g., softmax nonlinearity) is used in the output of these networks.Using the decomposition of each conditional probability into K networks, infer-ence in input-conditioned factorial HMMs is a straightforward generalization of thealgorithms we have presented for factorial HMMs. The exact forward{backwardalgorithm in Appendix B can be adapted by using the appropriate conditionalprobabilities. Similarly, the Gibbs sampling procedure is no more complex whenconditioned on inputs. Finally, the completely factorized and structured approx-imations can also be generalized readily if the approximating distribution has adependence on the input similar to the model's. If the probability transition struc-ture P (S(m)t jS(m)t�1 ; Xt) is not decomposed as above, but has a complex dependenceon the previous state variable and input, inference may become considerably morecomplex.Depending on the form of the input conditioning, the Maximization step of learn-ing may also change considerably. In general, if the output and transition prob-abilities are modeled as neural networks, the M step can no longer be solved ex-actly and a gradient-based generalized EM algorithm must be used. For log-linearmodels, the M step can be solved using an inner loop of iteratively reweightedleast-squares (McCullagh & Nelder, 1989).5.4. Hidden Markov decision treesAn interesting generalization of factorial HMMs results if one conditions on aninput Xt and orders the M state variables such that S(m)t depends on S(n)t for
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Figure 6. The hidden Markov decision tree.1 � n < m (Figure 6). The resulting architecture can be seen as a probabilisticdecision tree with Markovian dynamics linking the decision variables. Consider howthis probabilistic model would generate data at the �rst time step, t = 1. Giveninput X1, the top node S(1)1 can take on K values. This stochastically partitions Xspace into K decision regions. The next node down the hierarchy, S(2)1 , subdivideseach of these regions intoK subregions, and so on. The output Y1 is generated fromthe input X1 and the K-way decisions at each of the M hidden nodes. At the nexttime step, a similar procedure is used to generate data from the model, except thatnow each decision in the tree is dependent on the decision taken at that node in theprevious time step. Thus, the \hierarchical mixture of experts" architecture (Jordan& Jacobs, 1994) is generalized to include Markovian dynamics for the decisions.Hidden Markov decision trees provide a useful starting point for modeling timeseries with both temporal and spatial structure at multiple resolutions. We explorethis generalization of factorial HMMs in Jordan, Ghahramani, and Saul (1997).6. ConclusionIn this paper we have examined the problem of learning for a class of generalizedhidden Markov models with distributed state representations. This generalizationprovides both a richer modeling tool and a method for incorporating prior struc-tural information about the state variables underlying the dynamics of the systemgenerating the data. Although exact inference in this class of models is generallyintractable, we provided a structured variational approximation that can be com-puted tractably. This approximation forms the basis of the Expectation step in anEM algorithm for learning the parameters of the model. Empirical comparisonsto several other approximations and to the exact algorithm show that this approx-imation is both e�cient to compute and accurate. Finally, we have shown that



FACTORIAL HIDDEN MARKOV MODELS 23the factorial HMM representation provides an advantage over traditional HMMs inpredictive modeling of the complex temporal patterns in Bach's chorales.Appendix AThe M stepThe M step equations for each parameter are obtained by setting the derivativesof Q with respect to that parameters to zero. We start by expanding Q usingequations (1){(4b):Q = �12 TXt=1 "Y 0tC�1Yt � 2 MXm=1Y 0tC�1W (m)hS(m)t i+ MXm=1 MXn=1 trnW (m)0C�1W (n)hS(n)t S(m)0t io#+ MXm=1hS(m)01 i log�(m) + TXt=2 MXm=1 trn(logP (m))hS(m)t�1S(m)0t io� logZ; (A.1)where tr is the trace operator for square matrices and Z is a normalization termindependent of the states and observations ensuring that the probabilities sum toone.Setting the derivatives of Q with respect to the output weights to zero, we obtaina linear system of equations for the W (m):@Q@W (m) = TXt=1 " MXn=1W (n)hS(n)t S(m)0t i � YthS(m)0t i# = 0: (A.2)Assuming Yt is aD�1 vector, let St be theMK�1 vector obtained by concatenatingthe S(m) vectors, and W be the D � MK matrix obtained by concatenating theW (m) matrices (of size D �K). Then solving (A.2) results inW new =  TXt=1 YthS0ti! TXt=1hStS0ti!y ; (A.3)where y is the Moore-Penrose pseudo-inverse. Note that the model is overparame-terized since the D�1 means of each of the W (m) matrices add up to a single mean.Using the pseudo-inverse removes the need to explicitly subtract this overall meanfrom each W (m) and estimate it separately as another parameter.To estimate the priors, we solve @Q=@�(m) = 0 subject to the constraint thatthey sum to one, obtaining�(m) new = hS(m)1 i: (A.4)



24 Z. GHAHRAMANI AND M.I. JORDANSimilarly, to estimate the transition matrices we solve @Q=@P (m) = 0, subject tothe constraint that the columns of P (m) sum to one. For element (i; j) in P (m),P (m) newi;j = PTt=2hS(m)t;i S(m)t�1;jiPTt=2hS(m)t�1;ji : (A.5)Finally, the re-estimation equations for the covariance matrix can be derived bytaking derivatives with respect to C�1@Q@C�1 = T2C + TXt=1" MXm=1 YthS(m)0t iW (m)0 � 12YtY 0t � 12 MXm;n=1W (n)hS(n)t S(m)0t iW (m)0# :(A.6)The �rst term arises from the normalization for the Gaussian density function: Z isproportional to jCjT=2 and @jCj=@C�1 = C . Substituting (A.2) and re-organizingwe getCnew = 1T TXt=1 YtY 0t � 1T TXt=1 MXm=1W (m)hS(m)t i Y 0t : (A.7)For M = 1, these equations reduce to the Baum-Welch re-estimation equationsfor HMMs with Gaussian observables. The above M step has been presented forthe case of a single observation sequence. The extension to multiple sequences isstraightforward.Appendix BExact forward{backward algorithmHere we specify an exact forward{backward recursion for computing the posteriorprobabilities of the hidden states in a factorial HMM. It di�ers from a straightfor-ward application of the forward{backward algorithm on the equivalent KM stateHMM, in that it does not depend on a KM � KM transition matrix. Rather, itmakes use of the independence of the underlying Markov chains to sum over Mtransition matrices of size K �K.Using the notation fY�grt to mean the observation sequence Yt; : : : ; Yr, we de�ne�t = P (S(1)t ; S(2)t ; : : :S(M)t ; fY�gt1j�)�(0)t = P (S(1)t ; S(2)t ; : : :S(M)t ; fY�gt�11 j�)�(1)t = P (S(1)t�1; S(2)t ; : : :S(M)t ; fY�gt�11 j�)...�(M)t = P (S(1)t�1; : : :S(M)t�1 ; fY�gt�11 j�) = �t�1 :



FACTORIAL HIDDEN MARKOV MODELS 25Then we obtain the forward recursions�t = P (YtjS(1)t ; : : : ; S(M)t ; �)�(0)t (B.1)and �(m�1)t = XS(m)t�1 P (S(m)t jS(m)t�1)�(m)t : (B.2)At the end of the forward recursions, the likelihood of the observation sequence isthe sum of the KM elements in �T .Similarly, to obtain the backward recursions we de�ne�t = P (fY�gTt+1jS(1)t ; : : :S(M)t ; �)�(M)t�1 = P (fY�gTt jS(1)t ; : : :S(M)t ; �)...�(1)t�1 = P (fY�gTt jS(1)t ; S(2)t�1 : : :S(M)t�1 ; �)�(0)t�1 = P (fY�gTt jS(1)t�1; S(2)t�1 : : : S(M)t�1 ; �) = �t�1;from which we obtain�(M)t�1 = P (YtjS(1)t ; : : : ; S(M)t ; �)�t (B.3)�(m�1)t�1 = XS(m)t P (S(m)t jS(m)t�1)�(m)t�1 : (B.4)The posterior probability of the state at time t is obtained by multiplying �t and�t and normalizing:
t = P (StjfY�gT1 ; �) = �t�tPSt �t�t : (B.5)This algorithm can be shown to be equivalent to the Jensen, Lauritzen and Ole-sen algorithm for probability propagation in graphical models. The probabilitiesare de�ned over collections of state variables corresponding to the cliques in theequivalent junction tree. Information is passed forwards and backwards by sum-ming over the sets separating each neighboring clique in the tree. This results inforward{backward-type recursions of order O(TMKM+1).Using the �t, �t, and 
t quantities, the statistics required for the E step arehS(m)t i = XS(n)t (n6=m)
t (B.6)hS(m)t S(n)0t i = XS(r)t (r 6=m^r 6=n)
t (B.7)



26 Z. GHAHRAMANI AND M.I. JORDANhS(m)t�1S(m)0t i = XS(n)t�1 ;S(r)t (n6=m^r 6=m)�t�1P (StjSt�1)P (YtjSt)�tXSt�1;St �t�1P (StjSt�1)P (YtjSt)�t : (B.8)Appendix CCompletely factorized variational approximationUsing the de�nition of the probabilistic model given by equations (1){(4b), theposterior probability of the states given an observation sequence can be written asP (fStgjfYtg; �) = 1Z expf�H(fSt; Ytg)g ; (C.1)where Z is a normalization constant ensuring that the probabilities sum to one andH(fSt; Ytg) = 12 TXt=1 Yt � MXm=1W (m)S(m)t !0C�1 Yt � MXm=1W (m)S(m)t !� MXm=1S(m)01 log�(m) � TXt=2 MXm=1 S(m)0t (logP (m))S(m)t�1 : (C.2)Similarly, the probability distribution given by the variational approximation (7){(8) can be written asQ(fStgj�) = 1ZQ expf�HQ(fStg)g ; (C.3)whereHQ(fStg) = � TXt=1 MXm=1S(m)0t log �(m)t : (C.4)Using this notation, and denoting expectation with respect to the variational dis-tribution using angular brackets h�i, the KL divergence isKL(QkP ) = hHi � hHQi � logZQ + logZ: (C.5)Three facts can be veri�ed from the de�nition of the variational approximation:hS(m)t i = �(m)t (C.6)hS(m)t�1S(m)0t i = �(m)t�1�(m)0t (C.7)hS(m)t S(n)0t i = ( �(m)t �(n)0t if m 6= ndiagf�(m)t g if m = n (C.8)



FACTORIAL HIDDEN MARKOV MODELS 27where diag is an operator that takes a vector and returns a square matrix withthe elements of the vector along its diagonal, and zeros everywhere else. The KLdivergence can therefore be expanded toKL = TXt=1 MXm=1 �(m)0t log �(m)t + 12 TXt=1 "Y 0tC�1Yt � 2 MXm=1Y 0tC�1W (m)�(m)t+ MXm=1 MXn6=m trfW (m)0C�1W (n)�(n)t �(m)0t g+ MXm=1 trnW (m)0C�1W (m)diagf�(m)t go35+ MXm=1 �(m)01 log�(m) + TXt=2 MXm=1 trf�(m)t�1�(m)0t logP (m)g � logZQ + logZ: (C.9)Taking derivatives with respect to �(m)t , we obtain@KL@�(m)t = log �(m)t �W (m)0C�1Yt + MXn6=mW (m)0C�1W (n)�(n)t + 12�(m)�(logP (m)) �(m)t�1 � (logP (m))0 �(m)t+1 + c ; (C.10)where �(m) is the vector of diagonal elements of W (m)0C�1W (m), and c is a termarising from logZQ, ensuring that the �(m)t sum to one. Setting this derivativeequal to 0 and solving for �(m)t gives equation (9a).Appendix DStructured approximationFor the structured approximation,HQ is de�ned asHQ(fStg) = � MXm=1 S(m)01 log�(m) � TXt=2 MXm=1 S(m)0t (logP (m))S(m)t�1� TXt=1 MXm=1 S(m)0t logh(m)t : (D.1)Using (C.2), we write the KL divergence asKL = TXt=1 MXm=1hS(m)t i logh(m)t + 12 TXt=1 "Y 0tC�1Yt � 2 MXm=1Y 0tC�1W (m)hS(m)t i+ MXm=1 MXn6=m trnW (m)0C�1W (n)hS(n)t ihS(m)0t io+ MXm=1 trnW (m)0C�1W (m)diagnhS(m)t ioo#� logZQ + logZ: (D.2)



28 Z. GHAHRAMANI AND M.I. JORDANSince KL is independent of �(m) and P (m), the �rst thing to note is that theseparameters of the structured approximation remain equal to the equivalent pa-rameters of the true system. Now, taking derivatives with respect to logh(n)� , weget@KL@ logh(n)� = hS(n)� i+ TXt=1 MXm=124logh(m)t �W (m)0C�1Yt + MX` 6=mW (m)0C�1W (`)hS(`)t i+12�(m)� @hS(m)t i@ logh(n)� � hS(n)� i: (D.3)The last term, which we obtained by making use of the fact that@ logZQ@ logh(n)� = hS(n)� i; (D.4)cancels out the �rst term. Setting the terms inside the brackets in (D.3) equal tozero yields equation (12a).AcknowledgmentsWe thank Lawrence Saul for helpful discussions and Geo�rey Hinton for support.This project was supported in part by a grant from the McDonnell-Pew Foundation,by a grant from ATR Human Information Processing Research Laboratories, by agift from Siemens Corporation, and by grant N00014-94-1-0777 from the O�ce ofNaval Research. Zoubin Ghahramani was supported by a grant from the OntarioInformation Technology Research Centre.Notes1. For related work on inference in distributed state HMMs, see Dean and Kanazawa (1989).2. In speech, neural networks are generally used to model P (StjYt); this probability is convertedto the observation probabilities needed in the HMM via Bayes rule.3. If the columns ofW (m) andW (n) are orthogonal for every pair of state variables,m and n, andC is a diagonal covariance matrix, then the state variables will no longer be dependent giventhe observation. In this case there is no \explaining away": each state variable is modeling thevariability in the observation along a di�erent subspace.4. A more Bayesian treatment of the learning problem, in which the parameters are also consid-ered hidden random variables, can be handled by Gibbs sampling by replacing the \M step"with sampling from the conditional distribution of the parameters given the other hiddenvariables (for example, see Tanner and Wong, 1987).5. The �rst term is replaced by log �(m) for t = 1 the second term does not appear for t = T .6. All samples were used for learning; that is, no samples were discarded at the beginning of therun. Although ten samples is too few to even approach convergence, it provides a run-timeroughly comparable to the variational methods. The goal was to see whether this \impatient"Gibbs sampler would be able to compete with the other approximate methods.
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