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AbstractMany real world learning problems are best characterized by aninteraction of multiple independent causes or factors. Discover-ing such causal structure from the data is the focus of this paper.Based on Zemel and Hinton's cooperative vector quantizer (CVQ)architecture, an unsupervised learning algorithm is derived fromthe Expectation{Maximization (EM) framework. Due to the com-binatorial nature of the data generation process, the exact E-stepis computationally intractable. Two alternative methods for com-puting the E-step are proposed: Gibbs sampling and mean-�eldapproximation, and some promising empirical results are presented.1 IntroductionMany unsupervised learning problems fall under the rubric of factorial learning|that is, the goal of the learning algorithm is to discover multiple independent causes,or factors, that can well characterize the observed data (Barlow, 1989; Redlich,1993; Hinton and Zemel, 1994; Saund, 1995). Such learning problems often arisenaturally in response to the actual process by which the data have been generated.For instance, images may be generated by combining multiple objects, or varyingcolors, locations, and poses, with di�erent light sources. Similarly, speech signalsmay result from an interaction of factors such as the tongue position, lip aperture,glottal state, communication line, and background noises. The goal of factoriallearning is to invert this data generation process, discovering a representation thatwill both parsimoniously describe the data and reect its underlying causes.A recent approach to factorial learning uses the Minimum Description Length(MDL) principle (Rissanen, 1989) to extract a compact representation of the input(Zemel, 1993; Hinton and Zemel, 1994). This has resulted in a learning architecturecalled Cooperative Vector Quantization (CVQ), in which a set of vector quantiz-



ers cooperates to reproduce the input. Within each vector quantizer a competitivelearning mechanism operates to select an appropriate vector code to describe theinput. The CVQ is related to algorithms based on mixture models, such as softcompetitive clustering, mixtures of experts (Jordan and Jacobs, 1994), and hiddenMarkov models (Baum et al., 1970), in that each vector quantizer in the CVQ isitself a mixture model. However, it generalizes this notion by allowing the mixturemodels to cooperate in describing features in the data set, thereby creating a dis-tributed representations of the mixture components. The learning algorithm for theCVQ uses MDL to derive a cost function composed of a reconstruction cost (e.g.sum squared error), representation cost (negative entropy of the vector code), andmodel complexity (description length of the network weights), which is minimizedby gradient descent.In this paper we �rst formulate the factorial learning problem in the framework ofstatistical physics (section 2). Through this formalism, we derive a novel learningalgorithm for the CVQ based on the Expectation{Maximization (EM) algorithm(Dempster et al., 1977) (section 3). The exact EM algorithm is intractable for thisand related factorial learning problems|however, a tractable mean-�eld approxi-mation can be derived. Empirical results on Gibbs sampling and the mean-�eldapproximation are presented in section 4.2 Statistical Physics FormulationThe CVQ architecture, shown in Figure 1, is composed of hidden and observableunits, where the observable units, y, are real-valued, and the hidden units arediscrete and organized into vectors si, i = 1; : : : ; d. The network models a datageneration process which is assumed to proceed in two stages. First, a factor isindependently sampled from each hidden unit vector, si, according to its priorprobability density, �i. Within each vector the factors are mutually exclusive, i.e.if sij = 1 for some j, then sik = 0; 8k 6= j. The observable is then generated froma Gaussian distribution with meanPdi=1Wisi.
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Notation:d number of vectorsk number of hidden units per vectorp number of outputsN number of patternssij hidden unit j in vector isi vector i of units (si = [si1; : : : ; sik])Wi weight matrix from si to outputy network output (observable)Figure 1. The factorial learning architecture.De�ning the energy of a particular con�guration of hidden states and outputs asH(s;y) = 12ky � dXi=1Wisik2 � dXi=1 kXj=1 sij log�ij; (1)2



the Boltzmann distributionp(s;y) = 1Zfree expf�H(s;y)g; (2)exactly recovers the probability model for the CVQ. The causes or factors are repre-sented in the multinomial variables si and the observable in the multivariate Gaus-sian y. The unclamped partition function, Zfree, can be evaluated by summingand integrating over all the possible con�gurations of the system to obtainZfree =Xs Zy expf�H(s;y)gdy = (2�)p=2; (3)which is constant, independent of the weights. This constant partition functionresults in desirable properties, such as the lack of a Boltzmann machine-like sleepphase (Neal, 1992), which we will exploit in the learning algorithm.The system described by equation (1)1 can be thought of as a special form of theBoltzmann machine (Ackley et al., 1985). Expanding out the quadratic term we seethat there are pairwise interaction terms between every unit. The evaluation of thepartition function (3) tells us that when y is unclamped the quadratic term can beintegrated out and therefore all si are independent. However, when y is clampedall the si become dependent.3 The EM AlgorithmGiven a set of observable vectors, the goal of the unsupervised learning algorithmis to �nd weight matrices such that the network is most likely to have generatedthe data. If the hidden causes for each observable where known, then the weightmatrices could be easily estimated. However, the hidden causes cannot be inferredunless these weight matrices are known. This chicken-and-egg problem can be solvedby iterating between computing the expectation of the hidden causes given thecurrent weights and maximizing the likelihood of the weights given these expectedcauses|the two steps forming the basis of the Expectation{Maximization (EM)algorithm (Dempster et al., 1977).Formally, from (2) we obtain the expected log likelihood of the parameters �0:Q(�; �0) = h�H(s;y) � logZfreeic;� (4)where � denotes the current parameters, � = fWigdi=1, and h�ic;� denotes expecta-tion given � and the clamped observables. The E-step of EM consists of computingthis expected log likelihood. As the only random variables are the hidden causes,this simpli�es to computing the hsiic and hsisTj ic terms appearing in the quadraticexpansion of H. Once these terms have been computed, the M-step consists ofmaximizing Q with respect to the parameters. Setting the derivatives to zero weobtain a linear system, @Q@Wj = yhsjiTc � dXi=1WihsisTj ic = 0;1For the remainder of the paper we will ignore the second term in (1), thereby assumingequal priors on the hidden states. Relaxing this assumption and estimating priors fromthe data is straightforward. 3



which can be solved via the normal equations,cW(d�k�p) = "XN hssT ihssT i#�1(d�k)2 "XN hssT ihsiyT#(d�k�p)where s is the vector of concatenated si and the subscripts denote matrix size.For models in which the observable is a monotonic di�erentiable function ofPiWisi,i.e. generalized linear models, least squares estimates of the weights for the M-stepcan be obtained iteratively by the method of scoring (McCullagh and Nelder, 1989).3.1 E-step: ExactThe di�culty arises in the E-step of the algorithm. The expectation of hidden unitj in vector i given pattern y is:hsijic = P (sij = 1jy;W ) / P (yjsij = 1;W )�ij/ kXj1=1: : : kXjh 6=i=1: : : kXjd=1P (yjsij = 1; s1j1 = 1;: : : ;sd jd = 1;W )�ijTo compute this expectation it is necessary to sum over all possible con�gurations ofthe other hidden units. If each vector quantizer has k hidden units, each expectationhas time complexity of O(kd�1), i.e. O(Nkd) for a full E-step. The exponential timeis due inherently to the cooperative nature of the model|the setting of one vectoronly determines the observable if all the other vectors are �xed.3.2 E-step: Gibbs samplingRather than summing over all possible hidden unit patterns to compute the ex-act expectations, a natural approach is to approximate them through a MonteCarlo method. As with Boltzmann machines, the CVQ architecture lends itselfwell to Gibbs sampling (Geman and Geman, 1984). Starting from a clampedobservable y and a random setting of the hidden units fsjg, the setting of eachvector is updated in turn stochastically according to its conditional distributionsi � p(sijy; fsjgj 6=i;W ). Each conditional distribution calculation requires k for-ward passes through the network, one for each possible state of the vector beingupdated, and k Gaussian distance calculations between the resulting predicted andclamped observables. If all the probabilities are bounded away from zero this pro-cess is guaranteed to converge to the equilibrium distribution of the hidden unitsgiven the observable. The �rst and second-order statistics, for hsiic and hsisTj ic re-spectively, can be collected using the sij 's visited and p(sijy; fsjgj 6=i;W ) calculatedduring this sampling process. These estimated expectations are then used in theE-step.3.3 E-step: Mean-�eld approximationAlthough Gibbs sampling is generally much more e�cient than exact calculations,it too can be computationally demanding. A more promising approach is to ap-proximate the intractable system with a tractable mean-�eld approximation (Parisi,1988), and perform the E-step calculation on this approximation. We can write the4



negative log likelihood minimized by the original system as a di�erence between theclamped and unclamped free energies:Cost = � log p(yjW ) = � logXs p(y; sjW )= � logXs expf�H(y; s)g+ logXs Zy expf�H(y; s)gdy= Fcl � FfreeThe mean-�eld approximation allows us to replace each free energy in this cost withan upper bound approximation CostMF = FMFcl �FMFfree. Unfortunately, a di�erenceof two upper bounds is not generally an upper bound, and therefore minimizingCostMF in, for example, mean-�eld Boltzmann machines does not guarantee thatwe are minimizing an upper bound on Cost. However, for the factorial learningarchitectures described in this paper we have the property that Ffree is constant,and therefore the mean-�eld approximation of the cost is an upper bound on theexact cost.The mean-�eld approximation can be obtained by approximating the probabilitydensity given by (1) and (2) by a completely factorized probability density:~p(s;y) = 1(2�)p=2 expf�12ky � �k2gYi;j msijijIn this approximation all units are independent: the observables are Gaussian dis-tributed with mean � and each hidden unit is binomially distributed with meanmij . To obtain the mean-�eld approximation we solve for the mean values thatminimize the Kullback-Leibler divergence KL(p; ~p) � E~p[log ~p]�E~p[logp].Noting that: E~p[sij] = mij , E~p[s2ij] = mij , E~p[sijskl] = mijmkl, and E~p[sijsik] = 0,we obtain the mean-�eld �xed point equationsmi = softmax (WTi (y � ŷ) +W Ti Wi(mi � 1=2)); (5)where ŷ � PiWimi. The softmax function is the exponential normalized overthe k hidden units in each mi vector. The �rst term inside the softmax has anintuitive interpretation as the projection of the error in the observable onto theweights of the hidden unit vector i. The more a hidden unit can reduce this error,the higher its mean. The second term arises from the fact that E~p[s2ij] = mij andnot E~p[s2ij] = m2ij . The means obtained by iterating equation (5) are used in theE-step by substituting mi for hsiic and mimTj for hsisTj ic.4 Empirical ResultsTwo methods, Gibbs sampling and mean-�eld, have been provided for computingthe E-step of the factorial learning algorithm. There is a key empirical questionthat needs to be answered to determine the e�ciency and accuracy of each method.For Gibbs sampling it is important to know how many samples will provide ro-bust estimates of the expectations required for the E-step. It is well known thatfor stochastic Boltzmann machines the number of samples needed to obtain good5



estimates of the gradients is generally large and renders the learning algorithm pro-hibitively slow. Will this architecture su�er from the same problem? For mean-�eldit is important to know the loss incurred by approximating the true likelihood. Weexplore these questions by presenting empirical results on two small unsupervisedlearning problems.The �rst benchmark problem consists of a data set of 4� 4 greyscale images gener-ated by a combination of two factors: one producing a single horizontal line and theother, a vertical line (Figure 2a; cf. Zemel, 1993). Using a network with 2 vectorsof 4 hidden units each, both the Gibbs sampling and mean-�eld EM algorithmsconverge on a solution after about a dozen steps (Figure 2b). The solutions foundresemble the generative model of the data (Figure 2c & d).
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Figure 2. Lines Problem. a) Complete data set of 160 patterns. b) Learningcurves for Gibbs (solid) and mean-�eld (dashed) forms of the algorithm. c) Asample output weight matrix after learning (MSE=1.20). The top vector of hid-den units has come to represent horizontal lines, and the bottom, vertical lines.d) Another typical output weight matrix (MSE=1.78).The second problem consists of a data set of 6�6 images generated by a combinationof three shapes|a cross, a diagonal line, and an empty square|each of which canappear in one of 16 locations (Figure 3a). The data set of 300 out of 4096 possibleimages was presented to a network with the architecture shown in Figure 3b. After30 steps of EM, each consisting of 5 Gibbs samples of each hidden unit, the networkreconstructed a representation that approximated the three underlying causes ofthe data|dedicating one vector mostly to diagonal lines, one to hollow squares,and one to crosses (Figure 3c).To assess how many Gibbs samples are required to obtain accurate estimates of theexpectations for the E-step we repeated the lines problem varying the number ofsamples. Clearly, as the number of samples becomes large the Gibbs E-step becomesexact. Therefore we expect performance to asymptote at the performance of theexact E-step. The results indicate that, for this problem, 3 samples are su�cientto achieve ceiling performance (Figure 4). Surprisingly, a single iteration of the6
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Figure 3. Shapes Problem. a) Sample images from the data set. b) Learningarchitecture used. c) Output weight matrix after learning.mean-�eld equations also performs quite well.5 DiscussionThe factorial learning problem for cooperative vector quantizers has been formu-lated in the EM framework, and two learning algorithms, based on Gibbs samplingand mean-�eld approximation, have been derived. Unlike the Boltzmann machine,Gibbs sampling for this architecture seems to require very few samples for adequateperformance. This may be due to the fact that, whereas the Boltzmann machinerelies on di�erences of noisy estimates for its weight changes, due to the constantpartition function the factorial learning algorithm does not. The mean-�eld approx-imation also seems to perform quite well on all problems tested to date. This mayalso be a consequence of the constant partition function which guarantees that themean-�eld cost is an upper bound on the exact cost.The framework can be extended to hidden Markov models (HMMs), showing thatsimple HMMs are a special case of dynamical CVQs, with the general case corre-sponding to parallel, factorial HMMs. The two principal advantages of such archi-tectures are (1) unlike the traditional HMM, the state space can be represented asa combination of features, and (2) time series generated by multiple sources canbe modeled. Simulation results on the Gibbs and mean-�eld EM algorithms forfactorial HMMs are also promising (Ghahramani, 1995).7
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