The EM-EP Algorithm for
Gaussian Process Classification

Hyun-Chul Kim* and Zoubin Ghahramani

Gatsby Computational Neuroscience Unit, UCL,
London, WCIN 3AR, UK,
{hckim, zoubin}@gatsby.ucl.ac.uk,
http://www.gatsby.ucl.ac.uk

Abstract. Gaussian process classifiers (GPCs) are fully statistical kernel clas-
sification models derived from Gaussian processes for regression. In GPCs, the
probability of belonging to a certain class at an input location is monotonically
related to the value of some latent function at that location. Starting from a prior
over this latent function, the data are used to infer both the posterior over the
latent function and the values of hyperparameters determining various aspects
of the function. GPCs can also be viewed as graphical models with latent vari-
ables. Based on the work of [1, 2], we present an approximate EM algorithm, the
EM-EP algorithm for learning both the latent function and the hyperparameters
of a GPC. The algorithm alternates the following steps until convergence. In the
E-step, given the hyperparameters, a density for the latent variables defining the
latent function is computed via the Expectation-Propagation (EP) algorithm [1,
2]. In the M-step, given the density for the latent values, the hyperparameters are
selected to maximize a variational lower bound on the marginal likelihood (i.e.
the model evidence). This algorithm is found to converge in practice and provides
an efficient Bayesian framework for learning hyperparameters of the kernel. We
examine the role of various different hyperparameters which model labeling er-
rors, the lengthscales (i.e. relevances) of different features, and sharpness of the
decision boundary. The added flexibility these provide results in significantly im-
proved performance. Experimental results on synthetic and real data sets show
that the EM-EP algorithm works well, with GPCs giving equal or better perfor-
mance than support vector machines (SVMs) on all data sets tested.

1 Introduction

Kernel classifiers have recently received much attention from the machine learning
community. Some popular kernel classifiers are the support vector machine (SVM),
Bayes point machine (BPM), and Gaussian process classifier (GPC). The SVM was
proposed as a classifier maximizing the margin, which is the smallest distance between
data points and the class boundary [3]. SVMs have been a popular tool and have re-
sulted in many successful applications. The BPM is a kernel classifier whose goal is to
approximate Bayes-optimal classification by finding the center of the mass of version
space, which is the set of hyperplanes in feature space that separate the data [4]. It was

* He was a visting PhD student from POSTECH, South Korea

also shown that SVMs can be viewed as a form of Bayes point machine which tries to
find the center of the largest ball to fit in version space. In contrast with the above two
classifiers, GPCs are a Bayesian kernel classifier derived from Gaussian process priors
over functions which were developed originally for regression [5-7].

Gaussian processes for regression [8,9,7] model the density of the target values
as a multivariate Gaussian density. Usually, the mean of this Gaussian is assumed to
be zero and the covariance between the targets at two different points is a decreasing
function of their distance in input space. This decreasing function is controlled by a
small set of hyperparameters which capture interpretable properties of the function,
such as the length scale of autocorrelation, the overall scale of the function, and the
amount of noise. The posterior distributions of these hyperparameters given the data can
be inferred in a Bayesian way via Markov Chain Monte Carlo (MCMC) methods [8, 7]
or they can be selected by maximizing the marginal likelihood (a.k.a. the evidence) [9].

In GPCs, the target values are discrete class labels and so it is not appropriate to
model them via a multivariate Gaussian density. However, we can use the Gaussian
process as a latent function whose sign determines the class label for binary classifi-
cation and for multiclass classification one can use multiple GPs or a multivariate GP.
GPCs can also be represented as graphical models which have random variables for in-
puts, latent functions and class labels. Since only the class labels are observed, we need
to integrate over both hyperparameters and latent values of these functions at the data
points. Williams and Barber (1998) used a Laplace approximation to integrate over the
latent values and Hybrid Monte Carlo (HMC) to integrate over the hyperparameters.
Neal (1997) used HMC to integrate over both latent values and hyperparameters. Gibbs
and Mackay (2000) used a variational approximation to integrate over latent values
and determined hyperparameters by maximizing the marginal likelihood. Opper and
Winther (2000) used the TAP approach originally proposed in Statistical Physics to
integrate over latent values.

It turns out that the TAP approach for GPCs is equivalent to the Expectation Propa-
gation (EP) algorithm for approximate inference in Bayes point kernel machines [1]. In
these previous papers, the focus has been on approximate inference rather than deter-
mining hyperparameters. Two potential methods for determining the hyperparameters
have been proposed in [10]. The first method, which they called mean field method I,
is to maximize the variational lower bound of the evidence under the assumption that
the densities of latent values are independent and Gaussian. The second method, which
they called mean field method II, is to maximize the evidence approximated by Fourier
transformation of the likelihood and a saddle point approximation.

In this paper, we propose and investigate a conceptually simple EM-like algorithm
to learn the hyperparameters which we call EM-EP. In the E-step, we use EP to estimate
the joint density of latent values under the assumption that the joint density is multivari-
ate Gaussian. This multivariate approximation is better than factorized approximations
such as the mean field method I. In the M-step, we maximize with respect to the hy-
perparameters the variational lower bound on the marginal likelihood given by using
the density of latent values obtained from the E-step. These two steps are repeated un-
til convergence. The idea of using the variational lower bound for model selection in
GPC was suggested in [11]. Here we use a slightly different formulation for GPC and

provide experimental results. Another emphasis of this paper is examining the role of
the different hyperparameters and comparing these algorithms with several variants of
SVMs. Finally, although improving computational complexity of GPC learning through
sparsification methods is an important research problem ([12—14]), we will not address
this problem in this paper.

The paper is organized as follows. Section 2 introduces Gaussian process classifica-
tion. In section 3, we introduce the EP/TAP method for approximate inference. In sec-
tion 4, we derive the EM-EP algorithm. In section 5, we show experimental results on
both synthetic and real data sets, comparing our approach with SVMs. In section 6, we
discuss our approach and related work. Software implementing the EM-EP algorithm
is available at http://www.gatsby.ucl.ac.uk/ hckim/software/.

2 Gaussian Process Classifiers

Let us assume that we have a data set D of data points x; with binary class labels
yi € {-1,1}: D ={(x5,y:)|i =1,2,...,n}, X ={x4/i = 1,2,...,n},Y = {y;|i =
1,2,...,n}. Given this data set, we wish to find the correct class label for a new data
point X. We do this by computing the class probability p(§|%, D). The graphical model
for GPCs is shown in Fig 1.

We assume that the class label is obtained by

transforming some real valued latent variable f ,
which is the value of some latent function f(-)
evaluated at X. We put a Gaussian process prior
on this function, meaning that any number of
points evaluated from the function have a multi-
variate Gaussian density (see Williams and Ras-
mussen, 1995 for a review of GPs). Assume that
this GP prior is parameterized by © which we
will call the hyperparameters. We can write the

probability of interest given O as: Fig. 1. Graphical model for GPCs
with n training data points and one

ol _ 7 Flm = 7 test data point. x; and y; are ob-
p(§|%, D, O) —/P(Z/|f, O)p(f|D,%,0) df(1) served, X is given, is what should
be predicted, f; and f are latent
and jointly Gaussian, hence have
the undirected edges.

The second part of Eq 1 is obtained by further
integration over f = [f1f2--- fp], the values of
the latent function at the data points.

wjiD.%6) = [pe.fD.x.0)dt = [p(fix.L.OpED. O
where p(f[%, £, 0) = p(f, %, {x;},0) /p(E|{x:}, 6) and

p(f|D,) o p(Y|f, X, O)p(£|X, 0) = {] [p(y:l /s> ©)}p(£|X, O). 3)

i=1

The first term is the likelihood for each observed class given the latent function value,
while the second term is the GP prior over functions evaluated at the data and X. One
form for the likelihood term p(y;|fi, ©), which relates f(z;) monotonically to proba-
bility of y; = +1, is

2

1 i f(xi) 2
p(yilfi, ©) = \/—2_7r/ eXP(—E)dZ = erf(y; f(x;)). (€]

Writing the dependence of £ on x implicitly, the GP prior over functions can be written

1

1
amicge O3 (- #) 1 CeN(E —), 5)

p(f|@) =
where the mean g is usually assumed to be the zero vector 0 and each term of a covari-
ance matrix Cj; is a function of x; and x;, i.e. ¢(x;,X;).

In general, the class probability is obtained by integrating over the hyperparame-
ters p(§|x, D) = [p(§|%, D,O0)p(O|D) dO. This integral can be costly and there are
usually many fewer hyperparameters than data points. Therefore, in this paper, rather
than integrating over the hyperparameters we fit them by maximizing the marginal like-
lihood: @ = argmaxg p(D|O). Since p(f|D,O) in Eq 3 is intractable due to the
nonlinearity in Eq 4, we use EP to approximate it.

3 EP for Gaussian Process Classifiers

The Expectation-Propagation (EP) algorithm is an approximate Bayesian inference
method [1]. We review EP in its general form before describing its application to GPCs.

Consider a Bayesian inference problem where the posterior over some parameter ¢
is proportional to the prior times likelihood terms for an i.i.d. data set

n

P(ly1,---»yn) < p(8) [[p(yile) 6)
i=1
We approximate this by
a(9) < to(¢) [#i(9) (7)
i=1

where each term (and therefore g) is assumed to be in the exponential family. EP suc-
cessively solves the following optimization problem
a(9) -
(@) ti (¢)) (®)

(q(¢)
£ (¢) ()

Where KL is the Kullback-Leibler divergence. Since ¢ is in the exponential family,
this minimization is solved by matching moments of the approximated distribution. EP
iterates over ¢ until convergence. The algorithm is not guaranteed to converge although
it did in practice in all our examples. Assumed Density Filtering (ADF) is a special
online form of EP where only one pass through the data is performed (: = 1,...n).

t2ev (¢) = argmin KL
ti(9)

p(yiw)‘

We describe EP for GPC referring to [1,2, 14]. The latent function f plays the role
of the parameter ¢ above. The form of the likelihood we use in the GPC is

p(yilfi) = € + (1 — 2€)H(y: fi), &)

where H(z) = 1if £ > 0, and otherwise 0. The hyperparameter, € in Eq 9 mod-
els labeling error outliers. The EP algorithm approximates the posterior p(f|D) =
p(f)p(D|f)/p(D) as a Gaussian having the form ¢(f) ~ N (mg, V¢), where the GP
prior p(f) ~ N(0, C) has covariance matrix C with elements C;; defined by the co-
variance function

d
1 ..
Cij = ¢(x4,%x5) =g exp{—é E Imdm (2", 27")} +v1 +v26(i,5), (10)
m=1

where 27" is the mth element of x;, and d, (27", 27*) = (2" —*)* if ™ is continous;

otherwise, 1 — 6 (21", x?”) The hyperparameter v specifies the overall vertical scale of
variation of the latent values, v; the overall bias of the latent values from zero mean, vs
the latent noise variance, and [,,, the (inverse) lengthscale for feature dimension m. The
erf likelihood term 4 is equivalent to using the threshold function in Eq 9 with € = 0
and non-zero latent noise vs.

EP tries to approximate p(f| D) = p(f)/p(D) [T, p(yi|f), where p(f) ~ N(0, C).
p(yilf) = ti(f) is approximated by #;(f) = s; exp(—g,- (fi — m;)?). From this initial
setting, we can derive EP for GPC by applying the general idea described above. The
resulting EP procedure is virtually identical to the one derived for BPMs in [1]. We
define the following notation!: A = diag(vy,...,v,); hi = E[fi]; h}’ = E[fz.\’],
where h)’ and fz-\z are ones obtained from a whole set except for x;. The EP algorithm
is as follows which we repeat for completeness—please refer to [1] for the details of
the derivation. After the initialization v; = oo, m; = 0,8; = 1, h; = 0, \; = Cj;, the
following process is performed until all (m;, v;, s;) converge:

Loopi=1,2,...,n:

1. Remove the approximate density #; (for 5th data point) from the posterior to get an
‘old’ posterior: h}z =h; +)\ivi_l(hi —my;)

i
2. Recompute part of the new posterior: z = y’j\ 3 Zi =€+ (1 —2¢)erf(2) a; =
ﬁ %; h; = h}i + A\, where erf(z) is a cumulative normal density
function.

3. Getanewt;: v; =)\i(ﬁ—); mi = hitviau; si = Zin/1+ ’Ui_l)\i exp(’\z"—hai")
4. Now that v; is updated, finish recomputing the new posterior: A = (C~! +

AN~ Foralli, h; = 2 Aij%? Ai = (A1 - v%‘)_l

Our approximated posterior over the latent values is:
q(f) ~ N(Cer, A), (1n

! diag(v1, ..., vn) means a diagonal matrix whose diagonal elements are v1, . . ., vp,. Similarly
for diag(v).

where Cy; = y;jc(x;,x;) (or C = Cdiag(y)) The approximate evidence can obtained
in the same way as for BPMs:

AlL/2 n
p(D|O) ~ |C|+|W exp(B/2) H 8i (12)

i=1

where B = 37, A;; mu’—umji -> "J;. The approximate evidence in 12 can be used to
evaluate the feasibility of kernels or their hyperparameters to the data. But, it is tricky
to get a updating rule from Eq 12. In the following section, we derive the algorithm
to find the hyperparameters automatically based not on Eq 12 but a variational lower

bound of the evidence. Classification of a new data point X can be done according to
argman;p(§|%) = sgn(E[f]) = sgn(C 1, awic(xi, %)).

4 The EM-EP Algorithm

We tackle the problem of learning the classifier hyperparameters as one of optimzing
hyperparameters for Gaussian process regression with hidden target values. This idea
makes it possible to apply an EM-like algorithm. In the E-step, we infer the approximate
(Gaussian) density for latent function values ¢(f) using EP. In the M-step, using ¢(f)
obtained in the E-step, we maximize the variational lower bound of p(D|®). The E-step
and M-step are alternated until convergence.

E-step EP iterations are performed given the hyperparameters. p(f|y) is approximated
as a Gaussian density ¢(f) given by Eq 11.

M-step Given g(f) obtained from the E-step, find the hyperparameters which max-
imize the variational lower bound of p(y|@). We define y = [y1,%2,---,Yn] T,
0=0_U{e}, 0., ={v,vi,v2}U{lplp=1,2,...,d}. Then we get p(y|@) =

S p(yl|f,e)p(f]O,.,) df. Since the above integral is intractable, we use a variational
approximation technique. We take a variational lower bound F’ as follows.

log p(y|©) =log / p(ylf,e)p(flO,,,) df

p(y|f, e)p(f|0...) ..
Z/q(f) log o df = F (13)

Using the E-step result Eq 11 and the definition of C, we obtain the following
gradient update rule with respect to the covariance hyperparameters

cov

oF 1 .. . dC
50 ~ 2% dlag()’)@dmg(}’)a
1 ,a8C . 1. ... 8C |

We update €* to maximize F' by €* = r/n, where r is the number of errors on the
training data. (See The Appendix for the derivation of the M-step.)

We found that in practice EM-EP always converged and the local maxima were
good solutions. EM-EP has a complexity of O(n®) due to the matrix inversion in EP.

5 Experimental Results

One of the goals of this paper is to demonstrate the usefulness of learning the hyperpa-
rameters used to control the kernel and label noise for classification. The EM-EP pro-
cedure is a relatively straightforward procedure for doing this in GPCs. Two synthetic
data sets are used to show the usefulness of a labeling noise (€) and lengthscale hyper-
parameters ([,,), respectively. We used real world data sets to compare the proposed
algorithm with SVMs and other classification methods. In the M-step, we used the con-
jugate gradient method with line searches?. All covariance function hyperparameters
are optimized in log transformed spaces so as to avoid constrained optimization.

5.1 Synthetic Data Sets

The labeling error hyperparameter € helps deal with label outliers in a training set. A
labeling error cannot be guaranteed to be located near a decision boundary. So even
though a classifier might provide a soft decision boundary, it might not deal with a
mislabeled data point properly.

We generated a simple 2-class 2-dimensional data set whose input features x; and
zo are random numbers between —1 and 1. The class +1 or —1 is determined by the
22 4+ 22 > 0.5 decision rule. We generated 1000 data points and selected 40 data points
as the training set and added labeling errors to two randomly selected data points in the
training set. Fig 2 (a) and Fig 2 (b) shows the training set and the test set. We compared
a version of our algorithm with fixed (¢ = 0) labeling error hyperparamter to one where
€ was adpated’. All other covariance function hyperparameters were updated.

Fig 2: (a) Training set, (b)
Test set, (c) Classification
result with fixed labeling er-
ror hyperparamter (¢ = 0),
(d) Classification result with
adapted labeling error hy-
perparameter €

The classification results for the test set with adapted and fixed labeling error hy-
perpramter are shown in Fig 2 (c) and Fig 2 (d), respectively. The figures show that

2 The code is available from www.gatsby.ucl.ac.uk/ edward/code/minimize/.
3 Initial values: €© = 0.01 (adpated), v = 1,v? =107%,»3 =107%,1 =13 = 0.1.

with fixed labeling error hyperparameter GPC cannot deal with outliers properly even
though it has the latent function noise hyperparameter, vo which controls the softness
of the decision boundary. The outliers affected the hyperparameter learning and made
a more complex model. The lengthscale-related parameters are larger in the GPC with
fixed labeling error hyperparameter than the one with it. The log approximate evidences
log p(D|©) * for the case € = 0 and adapted € are -23.2358 and -22.9487, repectively.
The classification error rates for the case € = 0 and adapted € are 0.0740 and 0.0281,
respectively. GPC with adapted labeling error hyperparameter clearly outperforms the
one with it fixed by both approximate evidence and classification test error rate. The €
obtained from EM-EP was the real labeling error 0.05.

Lengthscale hyperparameters help to select relevant features.’ Irrelevant features
can have a devastating effect on classifier performance. We can select irrelevant fea-
tures before learning a classifier, or try to learn classifiers with many combinations
of features. The first approach is not easy because it is hard to find a good measure
to evaluate the relevance for general classification problems. The second approach is
computationally intractable if the data set has many features. Moreover, it can lead to
overfitting in the choice of feature subsets. If we learn lengthscale hyperparameters of
the kernel, we can learn the classifier and relevance of each feature simultaneously.

We generated a simple data set with 6 features distributed as follows: 1, 22,23 ~
N(y,1) and z4, x5, 76 ~ N(0,1). Thatis, 2, z2, T3 are relevant features while x4, xs,
zg¢ are irrelevant to the classification problem. We generated 300 data samples for a
training set and 100 data samples for a test set. We tried the EM-EP algorithm with a
single lengthscale hyperparameter for all dimensions or with multiple lengthscale hy-
perparameters. In the case of mutiple lengthscale hyperparameters, as would be hoped,
we see that the lengthscale parameters for the irrelevant features (z4,z5,2¢) went down
to near zero. The approximate log evidences for the single and multiple cases are -55.45
and -35.41, respectivley. The classification error rates for the single and mutliple cases
are 0.06 and 0.04, respectively. The result show that GPC with multiple lengthscale hy-
perparameters was significantly better than one with a single lengthscale as measured
both by classification error rates as well as log evidence.

5.2 Real World Data Sets

We applied the proposed algorithm to several real world data sets. The real world data
sets we used are from the UCI Machine Learning Repository and PRNN sites®. The
detailed information for the data sets is in Table 1. Thyroid, Heart disease, Ionosphere
data sets were obtained from UCI MLR and Crabs and Pima data sets were obtained
from the PRNN site.

Table 2 shows classification error rates of various methods. Each data set was di-
vided into 10 folds. Each fold were subsequently used as a test set, while the other 9

4 The approximate evidence was obtained from Eq 12

5 In our parameterization, relevant features should have larger values of the hyperparameter,
which actually means the underlying function has shorter lengthscales.

® Available from http://www.ics.uci.edu/ mlearn/MPRepository.html and
http://www.stats.ox.ac.uk/pub/PRNN, respectively

Table 1. Detailed information on the real world data sets

Data set|# of discrete variables|# of continous variables|# of classes|# of data points
Thyroid 0 5 3 (to2) 215
Heart disease 7 6 2 294
Tonosphere 0 34 2 351
Crabs 2 5 2 200

Pima (Tr) 0 7 2 200

folds were used as a training set. The numbers in Table 2 are the means of those 10 error
rates and standard deviations of the mean estimators. We tried three versions of the EM-
EP Gaussian Process Classifier: GPC-EP(s,soft) used a single lengthscale hyperparam-
eter for all feature dimensions, while GPC-EP(m,soft) used a different lengthscale hy-
perparameter for each feature dimension’. Finally, GPC-EP(s,hard) was a GPC with a
single lengthscale hyperparameter where the decision boundary was “hard” in the sense
that the latent function noise parameter vy was fixed to zero or a very small number. All
GPC models adpated e.

We compared our results to several variants of SVMs®. In SVM-EP(s,soft) the
kernel, (i.e. covariance function) had the same hyperparameters as the corresponding
GPC-EP(s,soft) trained using EM-EP except for the latent noise variance va which was
omitted because it caused degradation in the SVM performance. Instead, the penalty
parameter C' allowing training errors (i.e. penalizing the SVM slack variables) was se-
lected by 5-fold cross-validation.’

We also applied both hard and soft-margin SVMs with a Gaussian kernel with a
single lengthscale hyperparameter (without vg, v1 and wva) selected by 5-fold cross-
validation.'® For hard-margin SVM, SVM-CV (hard), we only needed to do a 2-level
grid search for /. For soft-margin SVMs, SVM-CV (soft), we also had to determine the
penalty parameter C, so we did a 2-level grid search over a 2-dimensional parameter
space (C,1)!!. Finally, for comparison to baseline methods we also examined the per-
formance of One Nearest Neighbour (1-NN) and linear discriminant analysis(LDA).

The experimental results for the three versions of EM-EP applied to GPC mod-
els provide interesting insights. GPC with latent function noise (GPC-EP(s,soft)), i.e.
which explicitly allows soft boundaries, is better than or as good as the harder version

7 The initial values of hyperparameters for GPC-EP(s,soft) for the first fold were as follows:
e =0,v3 = 1,49 =0.0001, v3 = 0.001, 1%, = 0.05, Ym, and those for subsequent folds are
the results for the former fold. For GPC-EP(m,soft), the initial values of the hyperparameters
for every fold were the results learned for the same fold in GPC-EP(s,soft).

8 Using the MATLAB Support Vector Machine Toolbox available from
http://theoval.sys.uea.ac.uk/ gcc/svm/toolbox with modified kernels.

? Firstly, we did a coarse grid search over {C|log;, C = 0,0.5,1,1.5,2,2.5,3} to obtain Cj.
Then did a finer search over {C|log,, C = log C1 — 0.4,log C1 — 0.3, ...,log C1 + 0.4}.
' Similarly to the selection of C, we did a 2-level grid search over {I|log,,l =

—3,—2.5,—2,...,0} and {I|log,y ! =log,ql1 — 0.4,l0gl; —0.3,...,logl; + 0.4}.

"' The same grids as above for parameters C, I were used.

Table 2. Classification error rates of various methods for real world data sets

Heart disease

Thyroid

Ionosphere

Crabs

Pima

GPC-EP(m,soft)

0.1559+0.0329

0.0277£0.0147

0.0514+0.0173

0.02510.0118

0.280£0.0510

GPC-EP(s,hard)

0.2043+0.0193

0.0277+0.0147

0.0513£0.0141

0.065+0.0158

0.325+0.0473

GPC-EP(s,soft)

0.1568+0.0212

0.0277+0.0147

0.0485+0.0156

0.065+0.0158

0.245+£0.0448

SVM-EP(s,soft)

0.2011+£0.0289

0.0229+0.0148

0.042910.0163

0.050£0.0176

0.255+0.0448

SVM-CV (hard)

0.2349+0.0241

0.0420+£0.0153

0.0568+0.0167

0.060£0.0205

0.340£0.0483

SVM-CV(soft)

0.1943+£0.0212

0.0366£0.0224

0.0598+0.0158

0.055+0.0146

0.275+0.0403

1-NN

0.3724+0.0421

0.0561+0.0177

0.1398+0.0159

0.075+0.0196

0.29540.0254

LDA

0.1664+0.0186

0.1251+0.0204

0.1256+0.0226

0.055+0.0166

0.255+0.0288

(GPC-EP(s,hard)). This shows that allowing ambiguity at the boundary is important.
For these size data sets, the model with multiple lengthscale hyperparameters (GPC-
EP(m,soft)) did not always outperform the single lenghscale model (GPC-EP(s,soft)).
However, multiple lengthscales did seem to be essential in learning the Crabs data set,
where its error rate was less than half the nearest competitor, and the multiple length-
scale model usually performed among the top methods. For higher dimensional data
sets, fitting too many lengthscale hyperparameters can clearly lead to overfitting.

The experimental results for the three variants of SVMs are also enlightening. The
SVM with the same hyperparameters as GPC trained by EM-EP (SVM-EP(s,soft))
is worse than (Heart disease, Crabs, Pima) or comparable to or slightly better than
(Thyroid, Ionosphere) the corresponding GPC (GPC-EP(s,soft)). Hard-margin SVM
with cross-validation is worse than GPC with a hard decision boundary on 4 out of 5
data sets. In all data sets, GPC with soft decision boundary (GPC-EP(m,soft) or GPC-
EP(s,s0ft)) is better than Soft-margin SVM (SVM-CV(soft)) with cross-validation. In
all cases, the EM-EP procedure seems to perform better than cross-validation, even
when it comes to fitting the SVM kernel hyperparameters. Moreover, cross-validation
would be computationally prohibitive for models with many hyperparameters, such as
the multiple lengthscale models.

GPC and SVM both have complexity of O(n?), but SVM is usually faster since it
uses a sparse scheme. SVM-CYV is slow because of cross validation.

6 Conclusion

Based on the work of [1,2], we presented an approximate EM algorithm, the EM-EP
algorithm, for hyperparameter learning in Gaussian process classifiers. Experiments on
synthetic real world data sets showed the usefulness of hyperparameters related to a
labeling error, lengthscales, and latent noise. GPC with EM-EP showed better perfor-
mances than SVM with cross-validation in all the data sets used in the experiment.
Viewing GPCs as probablistic graphical models, they can be incorporated into larger
graphs that also model the input variables, or a models of the conditional distribution
of discrete children given parents [15]. Gaussian Process Classifiers also have some
advantages over other kernel methods because they are fully statistical models. We can

use the evidence for model selection and kernel hyperparameter optimization. Also,
given new data, we can get a class probability rather than a hard decision. Even though
we did not use it in this paper, prior information can be used to inform learning of the
hyperparameters (for example, if some input features are thought to be more relevant or
the noise is thought to be high). Sparse approaches for GPC to reduce the computation
time have recently been developed [12, 14] that could be applied here. The relation
between GPCs and SVMs is elaborated in [16] where other sparse versions of GPCs
are also derived.

An important area of future work is a muti-class extension of GPC with the EM-EP
algorithm. GPC can provide a more fully statistical model for multi-class classifica-
tion than SVMs by making use of softmax parameterization of the multinomial distri-
bution [5]. Combined with sparse versions of EM-EP and parameterized kernels, this
could provide a very powerful general classification system.

Acknowledgement

This work was done while Hyun-Chul was a visiting PhD student at the Gatsby Unit,
through BK21 program at POSTECH, funded by the Education Ministry of Korea.

Appendix A

We take a variational lower bound F’ as follows. Starting from Eq 13,

F= / 4(£) log p(y |, €) df + / o(f)logp(FlO_,) df — / d®)logg(®)df (15)

We use F¢, Fg__,and H(Q), respectively, to denote the three integrals that make up F’

in Eq 15. Since H(Q) is independent of the hyperparamenter set @, and e is independent

of @, we optimize F for ©, by optimizing Fg__ and F for ©_,, and ¢, respectively.
By expanding Fg__, we get

Fo,,, = Eqllogp(y|f,€)]
1 1
= Eq[-5 log|2rC| - §fTC‘1f]

1 1
= —3 log|2nC] - 5EQ[fTC—lf]

~3log[2nC| — ZE[f]TCT B[] - 5tr(C'Cou(f) (16)

Differentiating Fig_ = for 6, using the E-step result Eq 11 and the definition of C, we
obtain

9Fe,,, _ 1 10C, 1 T-19C 4 1 _,0C 4
— _l —1 8C 1 T - 8C . 1 1 ac 1
= 2tr(C 20)+ 5 dla,g(y)—&9 diag(y)a + 2tr(C 50 C'A).

A7)

Using Eq 17, we find ©* which maximizes Fg___ .

For the labeling error hyperparameter €, since the integral in F, is also intractable,

it is simply approximated as

F, = / o(f)log p(y|f, €) df ~ q(E(F)) log p(y|E(E), &) AF, (18)

where Af is the width of the distribution ¢(f) at E(f) Then, only log p(y|E(f),€)
depends on ¢, and p(y|E(f),) is expressed as " (1 — €)(*~"), where r is the number of
errors when the sign of E(f) is treated as the predicted class labels. By differentiating
p(yle, E(f)) for € and equalizing the derivative to zero, we get e* = r/n.

References

10.

11.

12.

13.

14.

15.
16.

Minka, T.: A family of algorithms for approximate Bayesian inference. PhD thesis, MIT
(2001)

Opper, M., Winther, O.: Gaussian processes for classification: Mean field algorithms. Neural
Computation 12 (2000) 2655-2684

Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Herbrich, R., Graepel, T., Campbell, C.: Bayes point machines. Journal of Machine Learning
Research 1 (2001) 245-279

Williams, C.K.I., Barber, D.: Bayesian classification with Gaussian processes. IEEE Trans-
actions on PAMI 20 (1998) 1342-1351

Gibbs, M., MacKay, D.J.C.: Variational Gaussian process classifiers. IEEE Transactions on
NN 11 (2000) 1458

Neal, R.: Monte Carlo implementation of Gaussian process models for Bayesian regression
and classification. Technical Report CRG-TR-97-2, Dept. of Computer Science, University
of Toronto (1997)

Williams, C.K.I., Rasmussen, C.E.: Gaussian processes for regression. In Touretzky, D.S.,
Mozer, M.C., Hasselmo, M.E., eds.: NIPS. Volume 8., MIT Press (1995)

Gibbs, M., MacKay, D.J.C.: Efficient implementation of Gaussian processes. draft
manuscript (http:/citeseer.nj.nec.com/6489.html) (1997)

Csato, L., Fokoue, E., Opper, M., Schottky, B., Winther, O.: Efficient approaches to Gaussian
process classification. In: NIPS. Volume 13. (2000)

Seeger, M.: Notes on minka’s expectation propagation for Gaussian process classification.
Technical Report (2002)

Csato, L., Opper, M.: Sparse representation for Gaussian process models. In: NIPS. Vol-
ume 13. (2000)

Csato, L., Opper, M., Winther, O.: TAP Gibbs free energy, belief propagation and sparsity.
In: NIPS. Volume 14. (2001)

Seeger, M., Lawrence, N., Herbrich, R.: Sparse representation for Gaussian process models.
In: NIPS. Volume 15. (2002)

Tresp, V.: Mixtures of Gaussian processes. In: NIPS. Volume 13. (2000)

Chu, W.: Bayesian approach to support vector machines. PhD thesis, National University of
Singapore (2003)

