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Abstract

Analogical reasoning depends fundamentally
on the ability to learn and generalize about
relations between objects. There are many
ways in which objects can be related, making
automated analogical reasoning very chal-
lenging. Here we develop an approach which,
given a set of pairs of related objects S =
{AV:BY, A%2:B? ..., AN:BN} measures how
well other pairs A:B fit in with the set S.
This addresses the question: is the relation
between objects A and B analogous to those
relations found in 8?7 We recast this classi-
cal problem as a problem of Bayesian analy-
sis of relational data. This problem is non-
trivial because direct similarity between ob-
jects is not a good way of measuring analo-
gies. For instance, the analogy between an
electron around the nucleus of an atom and
a planet around the Sun is hardly justified
by isolated, non-relational, comparisons of an
electron to a planet, and a nucleus to the Sun.
We develop a generative model for predicting
the existence of relationships and extend the
framework of Ghahramani and Heller (2005)
to provide a Bayesian measure for how anal-
ogous a relation is to other relations. This
sheds new light on an old problem, which we
motivate and illustrate through practical ap-
plications in exploratory data analysis.

1 CONTRIBUTION

Consider the following illustrative problems in ex-
ploratory data analysis:

Example 1 A researcher has a large collection of pa-
pers. She plans to use such a database in order to
write an comprehensive article about the evolution of
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her field through the past two decades. In particu-
lar, she has a collection organized as pairs of papers,
where one cites the other, i.e., a collection of pairs A:B
meaning A cites B. There are several reasons why a
paper might cite another: A is a big bibliographic sur-
vey, or B was written by the advisor of the author of
A, or B was given a best paper award, or the authors
were geographically close, or a combination of several
such features. Such combinations define a (potentially
very large) variety of subpopulations of pairs of papers.
While there might be relevant information about A
and B in the database, which subpopulations of cita-
tions A:B belongs to is never explicitly indicated in the
data. Yet the researcher is not completely in the dark:
she already has an idea of important subgroups of cita-
tions which are representative of the most interesting
subpopulations, although it might be difficult to char-
acterize any such set with a simple description. She
would like to know which other pairs of papers might
belong to such subgroups. Instead of worrying about
writing some simple query rules that explain the com-
mon properties of such subgroups, she would rather
have an intelligent information retrieval system that
is able to identify which other pairs in the database
are linked in an analogous way to those pairs in her
selected sets. [

Example 2 A scientist is investigating a population
of proteins, within which some pairs are known to in-
teract, while the remaining pairs are known not to
interact. In this study, it is known that recorded gene
expression profiles of the respective genes can be used
as a reasonable predictor of the existence or not of
an interaction. The current state of knowledge is still
limited regarding which subpopulations (i.e., classes)
of interactions exist, although a partial hierarchy of
such classes for some proteins is available. Given a se-
lected set of interacting proteins that are believed to
belong to a particular level of the class hierachy, the
researcher would like to query her database to discover
other plausible pairs of proteins whose mechanism of
linkage is of the same nature as in the selected set, i.e.,



to query for analogous relations. Ideally, she would like
to do it without being required to write down query
rules that explicitly describe the selected set. [

Such are problems of analogical reasoning, instantiated
as practical problems of information retrieval for ex-
ploratory data analysis. Even under the absence of
clear class labels for links such as paper citations and
protein interactions (what is recorded is which pairs
are linked and which are not), one might have at hand
a subpopulation of interest that is best described by a
sample of linked objects. The question to be asked is
of an exploratory nature: which other objects in my
relational database are linked in a similar way? In
both examples, one has a relational database, and it is
possible to create models for predicting the existence
or lack of a relationship using features such as paper
attributes and gene expression profiles. In both exam-
ples, it is not fully known how to explicitly describe
classes of relations that are believed to exist (and it
is a nuisance to select negative examples by hand to
learn a classifier).

We propose a method for retrieving relations based
on the Bayesian scoring function as proposed in the
Bayesian sets method (Ghahramani and Heller, 2005):
given a set of related items that are postulated to come
from a subpopulation of interest, the goal is to rank
existing links according to a measure of similarity with
respect to this set. We interpret this problem as the
classical problem of analogical reasoning. That is, sup-
pose we have a pair (or set of pairs) of objects A:B.
Which other pairs of objects in relational database
best reflect a relation analogous to A:B? This pa-
per provides a novel and probabilistically sound solu-
tion to this problem. Moreover, this work extends the
Bayesian sets method to discriminative models.

We will focus solely on finding pairwise relations. The
idea can be extended to more complex relations, but
we will not pursue this here.

In Section 2 we discuss related work while describing
the difference between analogical reasoning and stan-
dard retrieval tasks. The approach is introduced in
Section 3 and evaluated in Section 4.

2 RELATED WORK

To define an analogy is to define a measure of simi-
larity between structures of related objects (pairs, in
our case). The key aspect is that, typically, we are not
interested in how each individual object in a candidate
pair is similar to individual objects in the query pairs.
As an illustration, consider an analogical reasoning
question from a SAT-like exam where for a given pair
(say, water:river) we have to choose (out of 5 pairs)

the one that best matches the type of relation implicit
in such a “query.” In this case, it is reasonable to say
car:traffic would be a better match than (the some-
what nonsensical) soda:ocean, since cars flow through
traffic, and so does water through a river. Notice that
if we were to measure the similarity between objects in-
stead of relations, it now seems reasonable to say that
soda:ocean in this case would be a much closer pair.
In the examples given in the previous section, similar-
ity between pairs of objects is only meaningful to the
extent by which such features are useful to predict the
existence of the relationships.

There is a large literature on analogical reasoning in ar-
tificial intelligence and psychology. We refer to French
(2002) for a survey, as well as to some recent machine
learning papers on clustering (Marx et al., 2002), pre-
diction (Turney and Littman, 2005) and dimensional-
ity reduction (Memisevic and Hinton, 2005). Here we
will use a Bayesian framework for inferring similarity
of relations. Given a set of relations, our goal will
be to score others as relevant or not. The score is a
Bayesian model comparison generalizing the “Bayesian
sets” score (Ghahramani and Heller, 2005) to discrim-
inative models over pairs of objects.

The graphical model formulation of Getoor et al.
(2002) incorporates models of link existence in rela-
tional databases, an idea used explicitly in Section 3 as
the first step of our problem formulation. In the clus-
tering literature, the probabilistic approach of Kemp
et al. (2006) is motivated by principles similar to those
in our formulation: the idea is that there is an infinite
mixture of subpopulations that generates the observed
relations. Our problem, however, is to retrieve other
elements of a subpopulation described by elements of
a query set, a goal that is also closer to the classical
paradigm of analogical reasoning.

To emphasize once more, our focus here is not on pre-
dicting the presence or absence of links, as in, e.g.,
(Popescul and Ungar, 2003) but rather on retrieving
similar links from among those already known to ex-
ist in the relational database. Neither is our focus to
provide a fully unsupervised clustering of the whole
database of pairs (as in, e.g., Kemp et al., 2006), nor
to use relational information to improve classification
of other attributes (as in, e.g., Getoor et al., 2002).

3 FUNCTIONS AS ANALOGIES

We now describe the analogical reasoning principle
more formally. Let A and B represent object spaces.
To say that an interaction A:B is analogous to S =
{AV:BY A%2:B2% ... AN:BN} is to define a measure
of similarity between the pair and the set of pairs.
However, this similarity is not (directly) given by the



information contained in the distribution of objects
{A"} C A, {B'} C B, but by the mappings classifying
such pairs as being linked:

Bayesian analogical reasoning formulation:
Consider a space of latent functions in A x B —
{0,1}. Assume that A and B are two objects
classified as linked by some unknown function
f(A,B), ie., f(A,B) =1. We want to quantify
how similar the function f(A, B) is to the func-
tion g(-,-), which classifies all pairs (A%, BY) € S
as being linked, i.e., g(A%, BY) = 1. The similarity
should be a function of the observations {S, A, B}
and our prior distribution over f(-,-) and g(-, ).

Functions f(-) and g(-) are unobserved, hence the need
for a prior that will be used to integrate over the func-
tion space. The resulting similarity metric will be de-
fined through a Bayes factor, as explained next. For
simplicity, we will consider a family of latent functions
that is parameterized by a finite-dimensional vector:
the logistic regression function with multivariate Gaus-
sian priors for its parameters.

For a particular pair (A" € A, BY € B), let X¥ =
[@1(A?, BY) ®y(A?, BY)... (A%, B7)]T be a point on
a feature space defined by the mapping ® : A x B —
RE. Let C¥ € {0,1} be an indicator of the existence
of a link between A® and B7 in the database. Let © =
[01,...,0K]T be the parameter vector for our logistic
regression model

P(CY =1|X%,0) = logistic(®T X7) (1)

where logistic(z) = (1+e~%)71. Our measure of simi-
larity for a pair (A%, BY) with respect to a query set S
is the probabilistic similarity measure of Bayesian sets
(Ghahramani and Heller, 2005) on a log-scale:
score(A, BY) = log P(CY =1|X%,S,CS =1)
— log P(CY =1|X%)
2)

where CS is the vector of link indicators for S: i.e.,
C'=1,C?=1,...,CN =1 indicates that all pairs in
S are linked.

The general framework is as follows. We are given a re-
lational database (D4,Dp,Lag), where the first two
components of this database are sampled respectively
from A and B. Relationship table L 4 is a binary ma-
trix assumed to be generated by a logistic regression
model of link existence. A query proceeds according
to the folllwing steps:

1. the user selects a set of pairs S that are linked in
the database;
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Figure 1: (a) Graphical plate representation for the
relational Bayesian logistic regression, where N4, Np
and N¢ are the number of objects of each class. (b)
Extra dependencies induced by further conditioning
on C are represented by undirected edges.

2. the system performs Bayesian inference to ob-
tain the corresponding posterior distribution for
0, P(0]S, C8), given a Gaussian prior P(0);

3. the system iterates through all linked pairs, com-
puting the following for each pair

P(Ci =1|X%,8,CS =1) =
[ P(CY =1]|X%,0)P(©]S,CS =1)d0 (3)

as well as P(CY = 1|X%) by integration over
P(©), and then sorts them according to the score
in Equation (2);

The corresponding plate model is illustrated in Figure
1(a). Latent parameter vector © = {61,0s,...,0k}7
and objects A and B are ancestors of link indicator
C. By conditioning on C' = 1, elements of © will be
connected to and share information from input data
{4, B}, as in Figure 1(b). This information can be
passed forward to evaluate other points. The sug-
gested setup scales as O(K?) due to the matrix in-
versions necessary for (variational) Bayesian logistic
regression (Jaakkola and Jordan, 2000). If necessary,
a further approximation for P(©|S, CS) might be im-
posed if the dimensionality of © is too high.

3.1 Choice of features and relational
discrimination

Our setup assumes that the feature space ® provides
a reasonable classifier to predict the existence of links.
It is evident that the proposed framework could be

!Since the integral used in the Bayesian logistic function
does not have a closed formula, in all of these expressions
we use the Bayesian variational approximation by Jaakkola
and Jordan (2000). A short summary of this approach is
given by Silva et al. (2007).



used for non-relational problems with arbitrary classi-
fication functions. However, our analogical reasoning
formulation is a relational model to the extent that it
models presence and absence of interactions between
objects: by conditioning on the link indicators, the
similarity score between A:B and C:D is always a func-
tion of pairs (4, B) and (C, D) that is not in general
decomposable as similarities between A and C, B and
D. Again, this is illustrated by Figure 1. One might
also have records of pairwise information on other re-
lational tables D 4p besides the targeted one. For in-
stance, one might have a measure in a protein database
that is a binary indicator of both proteins being pro-
duced in the same area in the cell or not, or the num-
ber of common proteins that interact with the pair.
Our method then learns to rank similarity of relations
based on features extracted for a relational database,
and such features have a role similar to the latent vari-
ables in block-models, as discussed in the sequel. Use-
ful predictive features can also be generated automati-
cally with a variety of algorithms (e.g., the “structural
logistic regression” of Popescul and Ungar, 2003). See
also Dzeroski and Lavra¢ (2001). Jensen and Neville
(2002) discuss shortcomings of automated methods for
automated feature selection in relational classification.

Our analogical reasoning formulation also assumes all
subpopulations of interest are measured on the same
feature space. This allows for comparisons between,
e.g., cells from different species, or webpages from dif-
ferent web domains, as long as ®(-, ) is the same. The
most general analogical reasoning formulation would
not have this requirement, but for the problem to be
well-defined, features from the different spaces must be
related somehow. A hierarchical Bayesian formulation
for linking different feature spaces is one possibility
which might be treated in a future work.

3.2 Priors

The choice of prior is based on the observed data, in
a way that is analogous to the choice of priors used in
the original formulation of Bayesian sets (Ghahramani
and Heller, 2005). Let © be the maximum likelihood
estimator of ©. Since the number of possible pairs
grows at a quadratic rate with the number of objects,
we do not use the whole database for maximum like-
lihood estimation. Also, since most databases have a
sparse link matrix, to get © we use all linked pairs as
members of the positive class (C' = 1), and sample un-
linked pairs as members of the negative class (C' = 0)2.

2In our experiments, we sample 10 “negative” pairs for
each “positive” one, and weight them to reflect the pro-
portion in the database (e.g., if we sample 10 negatives for
each positive, while in the database there are 200 negatives
for each positive, we count each negative case as being 20

We use the prior P(©) = N(O,(cT)™'), where
N (m, V) is a normal of mean m and variance V. Ma-
trix T is the empirical second moments matrix of the
linked object features in X, a measure of their variabil-
ity. Constant ¢ is a smoothing parameter set by the
user. In our experiments, we selected it to be twice
the total number of links.

Empirical priors are a sensible choice, since this is a
retrieval, not a predictive, task. Basically, the entire
data set is the population. A data-dependent prior
based on the population is quite important for an ap-
proach like Bayesian sets, since deviances from the “av-
erage” behaviour in the data are useful to discriminate
between subpopulations.

Silva et al. (2007) present several illustrations of the
score function behavior under different choices of pri-
ors and query sets.

3.3 Connections to Bayesian sets and block
models

The model in Figure 1(a) is a typical conditional rela-
tional model, i.e., conditioned on objects and param-
eters the resulting relations are i.i.d. Under the orig-
inal Bayesian sets formulation, the score function can
be described by (the logarithm of) the Bayes factor
comparing the models in Figure 2.

In contrast, consider the following direct modification
of the Bayesian sets formulation to this problem: flat-
ten the data, creating for each pair (A%, B/) a row in
the database with an extra binary indicator of rela-
tionship existence. Create a joint model for pairs by
using the marginal models for A and B and treating
different rows as being independent. This ignores the
fact that the resulting flattened data points are not
really i.i.d. under such a model, because the same ob-
ject might appear in multiple relations (DzZeroski and
Lavrag, 2001). The model also fails to capture the de-
pendency between A* and B’ that arises from condi-
tioning on C%, even if A® and B’ are marginally inde-
pendent. Nevertheless, heuristically this approach can
sometimes produce some good results, and for several
types of probability families it is very computationally
efficient.

A different approach for modeling relational data is
the block-model used for years by statisticians and so-
ciologists for modeling social networks (Kemp et al.,
2006; Airoldi et al., 2006). The basic idea is to use
hidden variables® in place of our feature vector X%:
this is partially motivated by the fact that typically,

cases replicated.)

3Such hidden variables are usually discrete indicators
of some latent cluster membership for objects. The model
typically requires a cross-clustering for object membership
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Figure 2: The score of a new data point {A, B, C} is given by the Bayes factor that compares models (a) and
(b). Node « represents the hyperparameters for ©. In (a), the generative model is the same for both the new
point and the query set represented in the rectangle. Notice that our conditioning set S of pairs in {A*} x {B7}
might contain repeated instances of a same point, i.e., some A or B might appear multiple times in different
relations, as illustrated by nodes A? with multiple outgoing edges. In (b), the new point and the query set do

not share the same parameters.

in social network analysis, there are no easily avail-
able features of the population that are recorded. To
compute quantities such as the marginal likelihood of
the model one has to integrate out a large number of
hidden variables.

For a moderate number of objects straight evalua-
tion of all pairs might be computationally infeasible in
the block-model setup. Our discriminative model only
needs the unlinked pairs when setting a prior, which
is accomplished by sampling when the total number of
unlinked pairs is too large. Throwing part of the infor-
mation from unlinked pairs is arguably less harmful to
our goals than to the clustering procedure performed
with block-models.

Our model assumes link indicators are independent
given object features, which might not be the case for
particular choices of feature space. In theory, block-
models sidestep this issue by learning all the neces-
sary latent features that account for link dependence.
An important future extension of our work would con-
sist of tractably accounting for residual link association
that is not intermediated by our observed features.

3.4 On continuous relations

Although we focus on measuring similarity of quali-
tative relationships, the same idea could be extended
to continuous measures of relationship. For instance,
Turney and Littman (2005) measure relations between
words by their co-occurrences in texts next to a set of
joining terms, such as the two words being connected
by a specific preposition. Several similarity metrics
can be defined on this vector of continuous relation-
ship (e.g., cosine distance). However, given data on
word features and a predictive model for such quanti-
tative relations, one can directly adapt our model?.

and relation membership.
“Notice that our approach would still not be directly
comparable to the one by Turney and Littman, since unlike

4 EXPERIMENTS

We now describe two experiments on analogical re-
trieval using the proposed model. Evaluation of the
significance of retrieved items often relies on subjec-
tive assessments (Ghahramani and Heller, 2005). To
simplify our study, we will focus on particular setups
where objective measures of success can be derived.

Our main standard of comparison will be a “flattened
Bayesian sets” algorithm (which we will call “standard
Bayesian sets,” SBSETS, in constrast to the relational
model, RBSETS). Using a multivariate independent
Bernoulli model as in the original paper (Ghahramani
and Heller, 2005), we join linked pairs into single rows,
and then apply the original algorithm directly on this
joined data. This algorithm serves the purpose of both
measuring the loss of not treating relational data as
such, as well as the limitations of treating similarity
of pairs through the generative models of A and B in-
stead of the generative model for the latent predictive
function g(-, ).

In both experiments, objects are of the same type, and
therefore, dimensionality. The feature vector X% for
each pair of objects { A%, B/} consists of the V features
for object A%, the V features of object B?, and mea-
sures {Z1,...,Zv}, where Z, = (Al x BI)/(||AY| x
|B7]), ||A?| being the Euclidean norm of the V-
dimensional representation of A*. We also use a con-
stant value (1) as part of the feature set as an intercept
term for the logistic regression. The Z features are ex-
actly the ones used in the cosine distance measure, a
common and practical measure widely used in informa-
tion retrieval (Manning et al., 2007). They also have
the important advantage of scaling well with the num-
ber of variables in the database. Moreover, adopting
such features will make our comparisons in the next

them we would make use of some external data source for
the features of the words.
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Figure 3: Precision/recall curves for four different random queries of size 10 for the three algorithms: relational
Bayesian sets (RBSETS), regular Bayesian sets with Bernoulli model (SBSETS-B) and cosine distance.

sections more fair, since we evaluate how well cosine
distance performs in our task. Notice X% represents
asymmetric relationships as required in our applica-
tions. For symmetric relationships, features such as
|A? — BJ| could be used instead.

4.1 Synthetic experiment

We first discuss a synthetic experiment where there is
a known ground truth. We generate data from a simu-
lated model with six classes of relations represented by
six different instatiations of ©, {©g, ©1,...,05}. This
simplified setup defines a multiclass logistic softmax
classifier that outputs a class label out of {0,1,...,5}.
Object spaces A and B are the same, and defined by
a multivariate Bernoulli distribution of 20 dimensions,
where each attribute has independently a probability
1/2 of being 1. We generate 500 objects, and consid-
ered all 5002 pairs to generate 250,000 feature vectors
X. For each X we evaluate our logistic classifier to
generate a class label. If this class is zero, we label the
corresponding pair as “unlinked.” Otherwise, we label
it as “linked.” The intercept parameter for parameter
vector ©y was set manually to make class 0 appear
in at least 99% the data®, thus corresponding to the
usual sparse matrices found in relational data.

The algorithms we evaluate do not know which of the
5 classes the linked pairs originally corresponded to.
However, since the labels are known through simula-
tion, we are able to tell how well ranked are points of
a particular class given a query of pairs from the same
class. Our evaluation is as follows. We generate preci-
sion/recall curves for three algorithms: our relational
Bayesian sets RBSETS, “flattened” standard Bayesian
sets with Bernoulli model (SBSETS) and cosine dis-
tance (summing over all elements in the query). For
each query, we randomly sampled 10 elements out of
the pool of elements of the least frequent class (about

®Values for vectors 01,0, ...,05 were otherwise gen-
erated by independent multivariate Gaussian distributions
with zero mean and standard deviation of 10

1% of the total number of links), and ranked the re-
maining 2320 linked pairs. We counted an element as
a hit if it was originally from the selected class.

RBSETS gives consistently better results for the top
50% retrievals. As an illustration, we depicted four
random queries of 10 items in Figure 3. Notice that
sometimes SBSETS can do reasonably, often achiev-
ing better precision at the bottom 40% recalls: by the
virtue of having few objects in the space of elements
of this class, a few of them will appear in pairs both
in the query and outside of it, facilitating matching by
object similarity since half of the pair is already given
as input. We conjecture this explains the seemingly
strong results of feature-based approaches on the bot-
tom 40%. However, when this does not happen the
problem can get much harder, making SBSETS much
more sensitive to the query than RBSETS, as illus-
trated in some of the runs in Figure 3.

4.2 The WebKB experiment

The WebKB data is a collection of webpages from sev-
eral universities, where relations are directed and given
by hyperlinks (Craven et al., 1998). Webpages are
classified as being of type course, department, faculty,
project, staff, student and other. Documents from four
universities (cornell, texas, washington and wisconsin)
are also labeled as such. Binary data was generated
from this database using the same methods of Ghahra-
mani and Heller (2005). A total of 19,450 binary vari-
ables per object are generated. To avoid introduc-
ing extra approximations into RBSETS, we reduced
dimensionality in the original representation using sin-
gular value decomposition, obtaining 25 measures per
object. This also improved the results of our algo-
rithm and cosine distance. For SBSETS, this is a way
of creating correlations in the original feature space.

To evaluate the gain of our model over competitors,
we will use the following setup. In the first query, we
are given the pairs of webpages of the type student —
course from three of the labeled universities, and eval-
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Figure 5: Results for faculty — project relationships.

uate how relations are ranked in the fourth university.
Because we know class labels (while the algorithm does
not), we can use the class of the returned pairs to label
a hit as being “relevant” or “irrelevant.” We label a
pair (A%, B7) as relevant if and only if A’ is of type
student and B is of type course, and A links into B7.

This is a very stringent criterion, since other types
of relations could also be valid (e.g., staff — course
appears to be a reasonable match). However, this fa-
cilitates objective comparisons of algorithms. Also,
the other class contains many types of pages, which
allows for possibilities such as a student — “hobby”
pair. Such pairs might be hard to evaluate (e.g., is
that particular hobby incrementally demanding in a
way that coursework is? Is it as fun as taking a ma-
chine learning course?) As a compromise, we omit all
pages from the category other in order to better clarify
differences between algorithmsS.

Precision/recall curves for the student — course
queries are shown in Figure 4. There are four queries,
each corresponding to a search over a specific univer-
sity given all valid student — course pairs from the
other three. There are four algorithms on each eval-
uation: the standard Bayesian sets with the original
19,450 binary variables for each object, plus another

SAs an extreme example, querying student — course
pairs from the wisconsin university returned student —
other pairs at the top four. However, these other
pages were for some reason course pages - such as
http://www.cs.wisc.edu/~markhill/cs752.html

19,450 binary variables, each corresponding to the
product of the respective variables in the original pair
of objects (SBSETS1); the standard Bayesian sets with
the original binary variables only (SBSETS2); a stan-
dard cosine distance measure over the 25-dimensional
representation (COSINE 1); a cosine distance measure
using the 19,450-dimensional text data with TF-IDF
weights (COSINE 2); our approach, RBSETS.

In Figure 4, RBSETS demonstrates consistently supe-
rior or equal precision-recall. Although SBSETS per-
forms well when asked to retrieve only student items
or only course items, it falls short of detecting what
features of student and course are relevant to predict
a link. The discriminative model within RBSETS con-
veys this information through the parameters.

We also did an experiment with a query of type fac-
ulty — project, shown in Figure 5. This time results
between algorithms were closer. To make differences
more evident, we adopt a slightly different measure of
success: we count as a 1 hit if the pair retrieved is a
faculty — project pair, and count as a 0.5 hit for pairs
of type student — project and staff — project. Notice
this is a much harder query. For instance, the structure
of the project webpages in the texas group was quite
distinct from the other universities: they are mostly
very short, basically containing links for members of
the project and other project webpages.

Although the precision/recall curves convey a global
picture of performance for each algorithm, they might




Table 1: Area under the precision/recall curve for each algorithm and query.

Cl [C2 [RB [SBI[SB2[CI

[C2 [RB [ SBI[SB?

student — course

faculty — project

cornell | 0.87 | 0.61 | 0.87 | 0.84
texas | 0.55 | 0.54 | 0.77 | 0.62
washington | 0.67 | 0.64 | 0.76 | 0.69
wisconsin | 0.75 | 0.73 | 0.88 | 0.77

0.80 {| 0.19 | 0.04 | 0.24 | 0.18 | 0.18
0.48 || 0.24 | 0.07 | 0.29 | 0.07 | 0.12
0.44 || 0.40 | 0.11 | 0.48 | 0.29 | 0.18
0.55 || 0.28 | 0.07 | 0.27 | 0.20 | 0.21

not be completely clear way of ranking approaches for
cases where curves intersect on several points. In or-
der to summarize individual performances with a sin-
gle statistic, we computed the area under each pre-
cision/recall curve (with linear interpolation between
points). Results are given in Table 1. Numbers in
bold indicate the algorithm with the highest area. The
dominance of RBSETS should be clear.

Silva et al. (2007) describe another application of RB-
SETS, in this case for symmetric protein-protein in-
teractions. In this application, there are no individual
object features on which COSINE and SBSETS can rely
(every X% measures a pairwise feature), and RBSETS
performs substantially better.

5 CONCLUSION

We have emphasized the process of analogical reason-
ing as a retrieval of similar relationships, and presented
a probabilistically sound approach for this problem.
There is of course much more to analogical reasoning
than calculating the similarity of complex relational
structures. For instance, there is the issue of judging
how significant the similarity is. Considering that the
retrieved objects might be of a very different nature
than those in the query set, one might also want to
explain why the relations are judged to be similar. Ul-
timately, in case-based reasoning and planning prob-
lems (Kolodner, 1993), one might have to adapt the
similar structures to solve a new case or plan.

One should see the contribution of this paper as a
step towards a formal measure of analogical similarity.
Much remains to be done to create a complete analog-
ical reasoning system, but the described approach has
immediate applications to information retrieval and
exploratory data analysis.
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