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Abstract
We present an algorithm based on convex optimization for constructing
kernels for semi-supervised learning. The kernel matricesare derived
from the spectral decomposition of graph Laplacians, and combine la-
beled and unlabeled data in a systematic fashion. Unlike previous work
using diffusion kernels and Gaussian random field kernels, anonpara-
metric kernel approach is presented that incorporates order constraints
during optimization. This results in flexible kernels and avoids the need
to choose among different parametric forms. Our approach relies on
a quadratically constrained quadratic program (QCQP), andis compu-
tationally feasible for large datasets. We evaluate the kernels on real
datasets using support vector machines, with encouraging results.

1 Introduction
Semi-supervised learning has been the focus of considerable recent research. In this learn-
ing problem the data consist of a set of points, with some of the points labeled and the
remaining points unlabeled. The task is to use the unlabeleddata to improve classification
performance. Semi-supervised methods have the potential to improve many real-world
problems, since unlabeled data are often far easier to obtain than labeled data.

Kernel-based methods are increasingly being used for data modeling and prediction be-
cause of their conceptual simplicity and good performance on many tasks. A promising
family of semi-supervised learning methods can be viewed asconstructing kernels by trans-
forming the spectrum of a “local similarity” graph over labeled and unlabeled data. These
kernels, or regularizers, penalize functions that are not smooth over the graph [7]. Infor-
mally, a smooth eigenvector has the property that two elements of the vector have similar
values if there are many large weight paths between them on the graph. This results in the
desirable behavior of the labels varying smoothly over the graph, as sought by, e.g., spectral
clustering approaches [2], diffusion kernels [5], and the Gaussian random field approach
[9]. However, the modification to the spectrum, called a spectral transformation, is often
a function chosen from some parameterized family. As examples, for the diffusion kernel
the spectral transformation is an exponential function, and for the Gaussian field kernel the
transformation is a smoothed inverse function.

In using a parametric approach one faces the difficult problem of choosing an appropriate
family of spectral transformations. For many familes the number of degrees of freedom
in the parameterization may be insufficient to accurately model the data. In this paper



we propose an effective nonparametric method to find an optimal spectral transformation
using kernel alignment. The main advantage of using kernel alignment is that it gives
us a convex optimization problem, and does not suffer from poor convergence to local
minima. A key assumption of a spectral transformation is monotonicity, so that unsmooth
functions over the data graph are penalized more severly. Werealize this property by
imposing order constraints. The optimization problem in general is solved using semi-
definite programming (SDP) [1]; however, in our approach theproblem can be formulated
in terms of quadratically constrained quadratic programming (QCQP), which can be solved
more efficiently than a general SDP.

This paper is structured as follows. In Section 2 we review some graph theoretic concepts
and relate them to the construction of kernels for semi-supervised learning. In Section 3
we introduce convex optimization via QCQP and relate it to the more familiar linear and
quadratic programming commonly used in machine learning. Section 4 poses the problem
of kernel based semi-supervised learning as a QCQP problem with order constraints. Ex-
perimental results using the proposed optimization framework are presented in Section 5.
The results indicate that the semi-supervised kernels constructed from the learned spectral
transformations perform well in practice.

2 Semi-supervised Kernels from Graph Spectra
We are given a labeled dataset consisting of input-output pairs {(x1, y1), . . . , (xl, yl)} and
a (typically much larger) unlabeled dataset{xl+1, . . . , xn} wherex is in some general
input space andy is potentially from multiple classes. Our objective is to construct a kernel
that is appropriate for the classification task. Since our methods use both the labeled and
unlabeled data, we will refer to the resulting kernels assemi-supervised kernels. More
specifically, we restrict ourselves to thetransductive setting where the unlabeled data also
serve as the test data. As such, we only need to find a good Gram matrix on the points
{x1, . . . , xn}. For this approach to be effective such kernel matrices mustalso take into
account the distribution of unlabeled data, in order that the unlabeled data can aid in the
classification task. Once these kernel matrices have been constructed, they can be deployed
in standard kernel methods, for example support vector machines.

In this paper we motivate the construction of semi-supervised kernel matrices from a
graph theoretic perspective. A graph is constructed where the nodes are the data instances
{1, . . . , n} and an edge connects nodesi andj if a “local similarity” measure betweenxi

andxj suggests they may have the same label. For example, the localsimilarity measure
can be the Euclidean distance between feature vectors ifx ∈ R

m, and each node can con-
nect to itsk nearest neighbors with weight value equal to 1. The intuition underlying the
graph is that even if two nodes are not directly connected, they should be considered similar
as long as there are many paths between them. Several semi-supervised learning algorithms
have been proposed under the general graph theoretic theme,based on techniques such as
random walks [8], diffusion kernels [5], and Gaussian fields[9]. Many of these methods
can be unified into the regularization framework proposed by[7], which forms the basis of
this paper.

The graph can be represented by ann× n weight matrixW = [wij ] wherewij is the edge
weight between nodesi andj, with wij = 0 if there is no edge. We require the entries ofW
to be non-negative, and assume that it forms a symmetric matrix; it is not necessary forW
itself to be positive semi-definite. In semi-supervised learning W is an essential quantity;
we assume it is provided by domain experts, and hence do not study its construction. Let
D be a diagonal matrix wheredii =

∑

j wij is the degree of nodei. This allows us
to define thecombinatorial graph Laplacian asL = D − W (the normalized Laplacian
L̃ = D−1/2LD−1/2 can be used as well). We denoteL’s eigensystem by{λi, φi}, so
that L =

∑n
i=1

λiφiφ
>
i where we assume the eigenvalues are sorted in non-decreasing

order. The matrixL has many interesting properties [3]; for instance, it is always positive



semi-definite, even ifW is not. Perhaps the most important property of the Laplacian
related to semi-supervised learning is the following: a smaller eigenvalueλ corresponds
to a smoother eigenvectorφ over the graph; that is, the value

∑

ij wij(φ(i) − φ(j))2 is
small. In a physical system the smoother eigenvectors correspond to the major vibration
modes. Assuming the graph structure is correct, from a regularization perspective we want
to encourage smooth functions, to reflect our belief that labels should vary slowly over the
graph. Specifically, [2] and [7] suggest a general principlefor creating a semi-supervised
kernelK from the graph LaplacianL: transform the eigenvaluesλ into r(λ), where the
spectral transformation r is a non-negative and decreasing function1

K =
n

∑

i=1

r(λi)φiφ
>
i (1)

Note that it may be thatr reverses the order of the eigenvalues, so that smoothφi’s have
larger eigenvalues inK. A “soft labeling” functionf =

∑

ciφi in a kernel machine has
a penalty term in the RKHS norm given byΩ(||f ||2K) = Ω(

∑

c2
i /r(λi)). Sincer is de-

creasing, a greater penality is incurred for those terms off corresponding to eigenfunctions
that are less smooth. In previous workr has often been chosen from a parametric family.
For example, the diffusion kernel [5] corresponds tor(λ) = exp(−σ2

2
λ) and the Gaussian

field kernel [10] corresponds tor(λ) = 1

λ+ε . Cross validation has been used to find the
hyperparametersσ or ε for these spectral transformations. Although the general principle
of equation (1) is appealing, it does not address question ofwhich parametric family to use
for r. Moreover, the number of degrees of freedom (or the number ofhyperparameters)
may not suit the task at hand, resulting in overly constrained kernels. The contribution of
the current paper is to address these limitations using a convex optimization approach by
imposing an ordering constraint onr but otherwise not assuming any parametric form for
the kernels.

3 Convex Optimization using QCQP
Let Ki = φiφ

>
i , i = 1 · · ·n be the outer product matrices of the eigenvectors. The semi-

supervised kernelK is a linear combinationK =
∑n

i=1
µiKi, whereµi ≥ 0. We formulate

the problem of finding the spectral transformation as one that finds the interpolation coeffi-
cients{r(λi) = µi} by optimizing some convex objective function onK. To maintain the
positive semi-definiteness constraint onK, one in general needs to invoke SDPs [1]. Semi-
definite optimization can be described as the problem of optimizing a linear function of a
symmetric matrix subject to linear equality constraints and the condition that the matrix be
positive semi-definite. The well-known linear programmingproblem can be generalized
to a semi-definite optimization by replacing the vector of variables with a symmetric ma-
trix, and replacing the non-negativity constraints with a positive semi-definite constraints.
This generalization inherits several properties: it is convex, has a rich duality theory and
allows theoretically efficient solution algorithms based on iterating interior point methods
to either follow a central path or decrease a potential function. However, a limitation of
SDPs is their computational complexity [1], which has restricted their application to small
scale problems [6]. However, an important special case of SDPs arequadratically con-
strained quadratic programs (QCQP) which are computationally more efficient. Here both
the objective function and the constraints are quadratic asillustrated below,

minimize
1

2
x>P0x + q>0 x + r0 (2)

subject to
1

2
x>Pix + q>i x + ri ≤ 0 i = 1 · · ·m (3)

Ax = b (4)

1We use a slightly different notation wherer is the inverse of that in [7].



wherePi ∈ Sn
+, i = 1, . . . ,m, whereSn

+ defines the set of square symmetric positive
semi-definite matrices. In a QCQP, we minimize a convex quadratic function over a feasible
region that is the intersection of ellipsoids. The number ofiterations required to reach the
solution is comparable to the number required for linear programs, making the approach
feasible for large datasets. However, as observed in [1], not all SDPs can be relaxed to
QCQPs. For the semi-supervised kernel learning task presented here solving an SDP would
be computationally infeasible.

Recent work [4, 6] has proposedkernel target alignment that can be used not only to assess
the relationship between the feature spaces generated by two different kernels, but also to
assess the similarity between spaces induced by a kernel andthat induced by the labels
themselves. Desirable properties of the alignment measurecan be found in [4]. The cru-
cial aspect of alignnement for our purposes is that its optimization can be formulated as a
QCQP. The objective function is the empirical kernel alignment score:

Â(Ktr, T ) =
〈Ktr, T 〉F

√

〈Ktr,Ktr〉F 〈T, T 〉F
(5)

whereKtr is the kernel matrix restricted to the training points,〈M,N〉F denotes the Frobe-
nius product between two square matrices〈M,N〉F =

∑

ij mijnij = Tr(MN>), andT
is the target matrix on training data, with entryTij set to+1 if yi = yj and−1 otherwise.
Note for binary{+1,−1} training labelsy this is simply the rank one matrixT = yy

>. K
is guaranteed to be positive semi-definite by constrainingµi ≥ 0. Previous work using ker-
nel alignment did not take into account that theKi’s were derived from the graph Laplacian
with the goal of semi-supervised learning. As such, theµi’s can take arbitrary values and
there is no preference to penalize components that do not vary smoothly over the graph.
This can be rectified by requiring smoother eigenvectors to receive larger coefficients, as
shown in the next section.

4 Semi-Supervised Kernels with Order Constraints
As stated above, we would like to maintain a decreasing orderon the spectral transforma-
tion µi = r(λi) to encourage smooth functions over the graph. This motivates the set of
order constraints

µi ≥ µi+1, i = 1 · · ·n − 1 (6)

And we can specify the desired semi-supervised kernel as follows.

Definition 1 An order constrained semi-supervised kernel K is the solution to the follow-
ing convex optimization problem:

maxK Â(Ktr, T ) (7)

subject to K =
∑n

i=1
µiKi (8)

µi ≥ 0 (9)

trace(K) = 1 (10)

µi ≥ µi+1, i = 1 · · ·n − 1 (11)

whereT is the training target matrix,Ki = φiφ
>
i andφi’s are the eigenvectors of the graph

Laplacian.

The formulation is an extension to [6] with order constraints, and with special components
Ki’s from the graph Laplacian. Sinceµi ≥ 0 andKi’s are outer products,K will auto-
matically be positive semi-definite and hence a valid kernelmatrix. The trace constraint is
needed to fix the scale invariance of kernel alignment. It is important to notice the order
constraints are convex, and as such the whole problem is convex. Letvec(A) be the column



vectorization of a matrixA. DefiningM =
[

vec(K1,tr) · · · vec(Km,tr)
]

, it is not hard to
show that the problem can then be expressed as

maxµ vec(T )>Mµ (12)

subject to ||Mµ|| ≤ 1 (13)

µi ≥ 0 (14)

µi ≥ µi+1, i = 1 · · ·n − 1 (15)

The objective function is linear inµ, and there is a simple cone constraint, making it a
quadratically constrained quadratic program (QCQP).

An improvement of the above order constrained semi-supervised kernel can be obtained
by studying the Laplacian eigenvectors with zero eigenvalues. For a graph Laplacian there
will be k zero eigenvalues if the graph hask connected subgraphs. Thek eigenvectors are
piecewise constant over individual subgraphs, and zero elsewhere. This is desirable when
k > 1, with the hope that subgraphs correspond to different classes. However ifk = 1, the
graph is connected. The first eigenvectorφ1 is a constant vector. The correspondingK1 is
a constant matrix, and acts as a bias term. In this situation we do not want to impose the
order constraintµ1 ≥ µ2 on the constant bias term. Instead we letµ1 vary freely during
optimization.

Definition 2 An improved order constrained semi-supervised kernel K is the solution to
the same problem in Definition 1, but the order constraints (11) apply only to non-constant
eigenvectors:

µi ≥ µi+1, i = 1 · · ·n − 1, andφi not constant (16)

In practice we do not need alln eigenvectors of the graph Laplacian, or equivalently alln
Ki’s. The firstm < n eigenvectors with the smallest eigenvalues work well empirically.
Also note we could have used the fact thatKi’s are from orthogonal eigenvectorsφi to
further simplify the expression. However we neglect this observation, making it easier to
incorporate other kernel components if necessary.

It is illustrative to compare and contrast the order constrained semi-supervised kernels to
other semi-supervised kernels with different spectral transformation. We call the original
kernel alignment solution in [6] amaximal-alignment kernel. It is the solution to Defini-
tion 1 without the order constraints (11). Because it does not have the additional constraints,
it maximizes kernel alignment among all spectral transformation. The hyperparametersσ
andε of the Diffusion kernel and Gaussian fields kernel (described earlier) can be learned
by maximizing the alignment score also, although the optimization problem is not neces-
sarily convex. These kernels use different information from the original Laplacian eigen-
valuesλi. The maximal-alignment kernels ignoreλi altogether. The order constrained
semi-supervised kernels only use theorder of λi and ignore their actual values. The diffu-
sion and Gaussian field kernels use the actual values. In terms of the degree of freedom in
choosing the spectral transformationµi’s, the maximal-alignment kernels are completely
free. The diffusion and Gaussian field kernels are restrictive since they have an implicit
parametric form and only one free parameter. The order constrained semi-supervised ker-
nels incorporates desirable features from both approaches.

5 Experimental Results
We evaluate the order constrained kernels on seven datasets. baseball-hockey(1993 in-
stances / 2 classes),pc-mac(1943/2) andreligion-atheism (1427/2) are document catego-
rization tasks taken from the 20-newsgroups dataset. The distance measure is the standard
cosine similarity between tf.idf vectors.one-two (2200/2),odd-even (4000/2) andten
digits (4000/10) are handwritten digits recognition tasks.one-two is digits “1” vs. “2”;
odd-evenis the artificial task of classifying odd “1, 3, 5, 7, 9” vs. even “0, 2, 4, 6, 8” digits,



such that each class has several well defined internal clusters; ten digits is 10-way clas-
sification. isolet (7797/26) is isolated spoken English alphabet recognitionfrom the UCI
repository. For these datasets we use Euclidean distance onraw features. We use 10NN
unweighted graphs on all datasets except isolet which is 100NN. For all datasets, we use
the smallestm = 200 eigenvalue and eigenvector pairs from the graph Laplacian.These
values are set arbitrarily without optimizing and do not create a unfair advantage to the
proposed kernels. For each dataset we test on five different labeled set sizes. For a given
labeled set size, we perform 30 random trials in which a labeled set is randomly sampled
from the whole dataset. All classes must be present in the labeled set. The rest is used as
unlabeled (test) set in that trial. We compare 5 semi-supervised kernels (improved order
constrained kernel, order constrained kernel, Gaussian field kernel, diffusion kernel2 and
maximal-alignment kernel), and 3 standard supervised kernels (RBF (bandwidth learned
using 5-fold cross validation),linear and quadratic). We compute the spectral transforma-
tion for order constrained kernels and maximal-alignment kernels by solving the QCQP
using standard solvers (SeDuMi/YALMIP). To compute accuracy we use a standard SVM.
We choose the the bound on slack variablesC with cross validation for all tasks and ker-
nels. For multiclass classification we perform one-against-all and pick the class with the
largest margin.

The results3 are shown in Table 1, which has two rows for each cell: The upper row is
the averagetest set accuracy with one standard deviation; The lower row is the average
training set kernel alignment, and in parenthesis the averagerun time in seconds for Se-
DuMi/YALMIP on a 3GHz Linux computer. Each number is averaged over 30 random
trials. To assess the statistical significance of the results, we perform pairedt-test on test
accuracy. We highlight the best accuracy in each row, and those that can not be determined
as different from the best, with pairedt-test at significance level 0.05. The semi-supervised
kernels tend to outperform standard supervised kernels. The improved order constrained
kernels are consistently among the best. Figure 1 shows the spectral transformationµi of
the semi-supervised kernels for different tasks. These arefor the 30 trials with the largest
labeled set size in each task. Thex-axis is in increasing order ofλi (the original eigenvalues
of the Laplacian). The mean (thick lines) and±1 standard deviation (dotted lines) of only
the top 50µi’s are plotted for clarity. Theµi values are scaled vertically for easy compari-
son among kernels. As expected the maximal-alignment kernels’ spectral transformation is
zigzagged, diffusion and Gaussian field’s are very smooth, while order constrained kernels’
are in between. The order constrained kernels (green) have largeµ1 because of the order
constraint. This seems to be disadvantageous — the spectraltransformation tries to balance
it out by increasing the value of otherµi’s so that the constantK1’s relative influence is
smaller. On the other hand the improved order constrained kernels (black) allowµ1 to be
small. As a result the restµi’s decay fast, which is desirable.

6 Conclusions

We have proposed and evaluated a novel approach for semi-supervised kernel construction
using convex optimization. The method incorporates order constraints, and the resulting
convex optimization problem can be solved efficiently usinga QCQP. In this work thebase
kernels were derived from the graph Laplacian, and no parametric form for the spectral
transformation was imposed, making the approach more general than previous approaches.
Experiments show that the method is both computationally feasible and results in improve-
ments to classification performance when used with support vector machines.

2The hyperparametersσ2 andε are learned with thefminbnd() function in Matlab to maximize
kernel alignment.

3Results on baseball-hockey and odd-even are similar and omitted for space. Full results can be
found athttp://www.cs.cmu.edu/˜zhuxj/pub/ocssk.pdf
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Figure 1: Comparison of spectral transformation for the 5 semi-supervised kernels.
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semi-supervised kernels standard kernels
Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic
set size Order Field

pc-mac
10 87.0± 5.0 84.9± 7.2 56.4± 6.2 57.8±11.5 71.1± 9.7 51.6± 3.4 63.0± 5.1 62.3± 4.2

0.71 ( 1) 0.57 ( 1) 0.32 0.35 0.90 ( 1) 0.11 0.30 0.25
30 90.3± 1.3 89.6± 2.3 76.4± 6.1 79.6±11.2 85.4± 3.9 62.6± 9.6 71.8± 5.5 71.2± 5.3

0.68 ( 8) 0.49 ( 8) 0.19 0.23 0.74 ( 6) 0.03 0.18 0.13
50 91.3± 0.9 90.5± 1.7 81.1± 4.6 87.5± 2.8 88.4± 2.1 67.8± 9.0 77.6± 4.8 75.7± 5.4

0.64 (31) 0.46 (31) 0.16 0.20 0.68 (25) 0.02 0.14 0.10
70 91.5± 0.6 90.8± 1.3 84.6± 2.1 90.5± 1.2 89.6± 1.6 74.7± 7.4 80.2± 4.6 74.3± 8.7

0.63 (70) 0.46 (56) 0.14 0.19 0.66 (59) 0.01 0.12 0.08
90 91.5± 0.6 91.3± 1.3 86.3± 2.3 91.3± 1.1 90.3± 1.0 79.0± 6.4 82.5± 4.2 79.1± 7.3

0.63 (108) 0.45 (98) 0.13 0.18 0.65 (84) 0.01 0.11 0.08
religion-atheism

10 72.8±11.2 70.9±10.9 55.2± 5.8 60.9±10.7 60.7± 7.5 55.8± 5.8 60.1± 7.0 61.2± 4.8
0.50 ( 1) 0.42 ( 1) 0.31 0.31 0.85 ( 1) 0.13 0.30 0.26

30 84.2± 2.4 83.0± 2.9 71.2± 6.3 80.3± 5.1 74.4± 5.4 63.4± 6.5 63.7± 8.3 70.1± 6.3
0.38 ( 8) 0.31 ( 6) 0.20 0.22 0.60 ( 7) 0.05 0.18 0.15

50 84.5± 2.3 83.5± 2.5 80.4± 4.1 83.5± 2.7 77.4± 6.1 69.3± 6.5 69.4± 7.0 70.7± 8.5
0.31 (28) 0.26 (23) 0.17 0.20 0.48 (27) 0.04 0.15 0.11

70 85.7± 1.4 85.3± 1.6 83.0± 2.9 85.4± 1.8 82.3± 3.0 73.1± 5.8 75.7± 6.0 71.0±10.0
0.29 (55) 0.25 (42) 0.16 0.19 0.43 (51) 0.03 0.13 0.10

90 86.6± 1.3 86.4± 1.5 84.5± 2.1 86.2± 1.6 82.8± 2.6 77.7± 5.1 74.6± 7.6 70.0±11.5
0.27 (86) 0.24 (92) 0.15 0.18 0.40 (85) 0.02 0.12 0.09

one-two
10 96.2± 2.7 90.6±14.0 58.2±17.6 59.4±18.9 85.4±11.5 78.7±14.3 85.1± 5.7 85.7± 4.8

0.87 ( 2) 0.66 ( 1) 0.43 0.53 0.95 ( 1) 0.38 0.26 0.30
20 96.4± 2.8 93.9± 8.7 87.0±16.0 83.2±19.8 94.5± 1.6 90.4± 4.6 86.0± 9.4 90.9± 3.7

0.87 ( 3) 0.64 ( 4) 0.38 0.50 0.90 ( 3) 0.33 0.22 0.25
30 98.2± 2.1 97.2± 2.5 98.1± 2.2 98.1± 2.7 96.4± 2.1 93.6± 3.1 89.6± 5.9 92.9± 2.8

0.84 ( 8) 0.61 ( 7) 0.35 0.47 0.86 ( 6) 0.30 0.17 0.24
40 98.3± 1.9 96.5± 2.4 98.9± 1.8 99.1± 1.4 96.3± 2.3 94.0± 2.7 91.6± 6.3 94.9± 2.0

0.84 (13) 0.61 (15) 0.36 0.48 0.86 (11) 0.29 0.18 0.21
50 98.4± 1.9 95.6± 9.0 99.4± 0.5 99.6± 0.3 96.6± 2.3 96.1± 2.4 93.0± 3.6 95.8± 2.3

0.83 (31) 0.60 (37) 0.35 0.46 0.84 (25) 0.28 0.17 0.20
Ten digits (10 classes)

50 76.6± 4.3 71.5± 5.0 41.4± 6.8 49.8± 6.3 70.3± 5.2 57.0± 4.0 50.2± 9.0 66.3± 3.7
0.47 (26) 0.21 (26) 0.15 0.16 0.51 (25) -0.62 -0.50 -0.25

100 84.8± 2.6 83.4± 2.6 63.7± 3.5 72.5± 3.3 80.7± 2.6 69.4± 1.9 56.0± 7.8 77.2± 2.3
0.47 (124) 0.17 (98) 0.12 0.13 0.49 (100) -0.64 -0.52 -0.29

150 86.5± 1.7 86.4± 1.3 75.1± 3.0 80.4± 2.1 84.5± 1.9 75.2± 1.4 56.2± 7.2 81.4± 2.2
0.48 (310) 0.18 (255) 0.11 0.13 0.50 (244) -0.66 -0.53 -0.31

200 88.1± 1.3 88.0± 1.3 80.4± 2.5 84.4± 1.6 86.0± 1.5 78.3± 1.3 60.8± 7.3 84.3± 1.7
0.47 (708) 0.16 (477) 0.10 0.11 0.49 (523) -0.65 -0.54 -0.33

250 89.1± 1.1 89.3± 1.0 84.6± 1.4 87.2± 1.3 87.2± 1.3 80.4± 1.4 61.3± 7.6 85.7± 1.3
0.47 (942) 0.16 (873) 0.10 0.11 0.49 (706) -0.65 -0.54 -0.33

isolet (26 classes)
50 56.0± 3.5 42.0± 5.2 41.2± 2.9 29.0± 2.7 50.1± 3.7 28.7± 2.0 30.0± 2.7 23.7± 2.4

0.27 (26) 0.13 (25) 0.03 0.11 0.31 (24) -0.89 -0.80 -0.65
100 64.6± 2.1 59.0± 3.6 58.5± 2.9 47.4± 2.7 63.2± 1.9 46.3± 2.4 46.6± 2.7 42.0± 2.9

0.26 (105) 0.10 (127) -0.02 0.08 0.29 (102) -0.90 -0.82 -0.69
150 67.6± 2.6 65.2± 3.0 65.4± 2.6 57.2± 2.7 67.9± 2.5 57.6± 1.5 57.3± 1.8 53.8± 2.2

0.26 (249) 0.09 (280) -0.05 0.07 0.27 (221) -0.90 -0.83 -0.70
200 71.0± 1.8 70.9± 2.3 70.6± 1.9 64.8± 2.1 72.3± 1.7 63.9± 1.6 64.2± 2.0 60.5± 1.6

0.26 (441) 0.08 (570) -0.07 0.06 0.27 (423) -0.91 -0.83 -0.72
250 71.8± 2.3 73.6± 1.5 73.7± 1.2 69.8± 1.5 74.2± 1.5 68.8± 1.5 69.5± 1.7 66.2± 1.4

0.26 (709) 0.08 (836) -0.07 0.06 0.27 (665) -0.91 -0.84 -0.72

Table 1: Accuracy, alignment scores, and run times on the datasets. The table compares 8
kernels. Each cell has two rows: The upper row is test set accuracy with standard error;
the lower row is training set alignment (SeDuMi/YALMIP run time in seconds is given in
parentheses). All numbers are averaged over 30 random trials. Accuracies in boldface are
the best as determined by a pairedt-test at the 0.05 significance level.


