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Abstract

When learning a mixture model, we suffer from the local optima and model structure determination problems. In this paper, we present a
method for simultaneously solving these problems based on the variational Bayesian (VB) framework. First, in the VB framework, we derive
an objective function that can simultaneously optimize both model parameter distributions and model structure. Next, focusing on mixture
models, we present a deterministic algorithm to approximately optimize the objective function by using the idea of the split and merge
operations which we previously proposed within the maximum likelihood framework. Then, we apply the method to mixture of expers
(MoE) models to experimentally show that the proposed method can find the optimal number of experts of a MoE while avoiding local

maxima. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The aim of statistical learning is to estimate a generative
model behind observed data. Recently, there has been an
emphasis on using mixture models to analyze complex
phenomena. However, when learning a mixture model, we
are confronted by two difficulties in practice. The first is the
local optima problem. That is, a learning algorithm can be
trapped in poor local optima near an initial parameter value.
The second is the problem of determining an appropriate
model structure. If the model structure is too complicated,
then learning results tends to overfit the noisy training data.
Solving these problems is, therefore, of considerable
importance for obtaining accurate predictions for unknown
data.

As for the first problem mentioned above, we recently
proposed the split and merge Expectation Maximization
(SMEM) algorithm for mixture models within the maxi-
mum likelihood framework by simultaneously splitting and
merging model components (Ueda, Nakano, Ghaharamani,
& Hinton, 1999, 2000). The model structure (i.e. the number
of mixture components), however, was fixed there since the
ML framework suffers from the fact that the likelihood in

* Corresponding author. Tel.: 4+81-774-93-5130; fax: +81-774-93-5155.
E-mail address: uveda@cslab.kecl.ntt.co.jp (N. Ueda).

general increases as the model structure becomes complex.
The SMEM algorithm, therefore, cannot find the optimal
model structure since the likelihood function is used as its
objective function.

Within the ML framework, for linear models, we can
utilize well known information criteria such as AIC
(Akaike, 1974) and TIC (Takeuchi, 1983) to determine
the model structure. These criteria are based on asymptotic
normality assumption. Therefore, when the number of
training data is small, these criteria are not valid due to the
failure of the assumption. Computationally heavy cross-
validation procedures (Stone, 1974) also becomes unreli-
able in the small sample case.

Bayesian approach, on the other hand, can theoretically
determine the model structure through a posterior distri-
bution over the model structure, conditional on the training
data. Moreover, the Bayesian approach yields a posterior
distribution over the model parameters and provides not a
single prediction as in the ML approach, but a predictive
distribution. The Bayesian approach, therefore, can mitigate
the over-fitting problem.

In the Bayesian approach, however, we have to compute
expectations which include difficult integrals. Recently,
Waterhouse, MacKay, and Robinson (1995) proposed the
Variational Bayesian (VB) method of avoiding overfitting
by incorporating the variational approximation technique
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(Jaakkola, 1997) into Bayesian inference. The VB method
can be more accurate than the Laplace approximation
(MacKay, 1992a,b) in that it does not assume Gaussian
distribution of the posterior. Moreover, it is much more
efficient than Markov chain Monte Carlo (MCMC) methods
(Gamerman, 1997) in that it results in a deterministic
learning algorithm.

The VB method presented in Waterhouse et al. (1995),
however, does not optimize the model structure. Moreover,
as in the ML approach, it often suffers from the local
maxima problem in practice. Attias (1999) have extended
the VB to perform model selection by introducing a
posterior over model structures to the VB formulation.
The local optimum problem, however, has not been solved
yet. Recently, Ghahramani and Beal (2001) have success-
fully applied the VB to state space models.

One of the authors have already presented a basic idea to
solve the local optima problem for mixture of factor
analyzers (Ghahramani & Beal, 2000) within the VB
framework. However, an explicit objective function for
finding the optimal model structure has not been shown
there. In contrast, in this paper, for general nonlinear
models, we formally derive an objective function that can
optimize a model over parameter distributions and model
structure simultaneously within the VB framework. Then,
focusing on mixture models, we devise a Bayesian SMEM
algorithm to efficiently optimize the objective function. We
also apply the proposed method to the learning of a mixture
of experts model and show that unlike the conventional
methods, it can automatically find the optimal number of
experts without being trapped in poor local optima. One of
the authors has already published a short paper (Ueda, 2000)
related to the same topic as the present paper. In the present
paper, however, we formally derive VB formulae and
moreover give complete derivations of VB algorithm for
mixture of experts model, which is quite informative to
readers. That is, this paper can be regarded as an extended
version of the previous short paper.

The organization of the rest of the paper is as follows. In
Section 2 we will first review the VB approach. In Section 3,
we derive an objective function for simultaneous optimiz-
ation over the distributions and model structure. Then we
apply the method to the training of a mixture of experts
model in Section 4 and show some experimental results to
demonstrate the proposed algorithm in Section 5. Final
remarks are presented in Section 6.

2. Variational Bayesian framework
2.1. Bayesian approach

Let d be a random variable in some statistical model to be
considered. d can be a scalar, vector, or matrix. Let ¢, =

{p(d|6, .#)} denote a class of probability distributions with
parameter 6 under a fixed model structure .#. The model

structure is the complexity of a model. More specifically, in
the case of mixture model, it corresponds to the number of
mixture components. Note that although the parameter 0
depends on the model structure, we just write 6 for
notational simplicity. Then, the ML approach estimates
the optimal hypothesis that maximizes the log—likelihood
function logp(210, .#) using given training data &.That is,
in the ML approach, the best hypothesis is p(d| 6, .4), where
6 represents the ML estimate. However, as pointed out by
many researchers, the ML approach often overfits the
training data, which decreases generalization ability.

In contrast, the Bayesian approach tries not to estimate
the parameter value like in the ML approach, but to estimate
posterior predictive distribution p(d*|9,.#) for a new
observation d * defined by

P19 = [ pd 164090617100 M

The RHS of Eq. (1) represents an average weighted by a
posterior distribution of 6, say, p(019, 4#). Thus, the
Bayesian approach can mitigate overfitting since the
parameters are integrated out. In this sense, the Bayesian
approach can provide a more reliable prediction than the
ML approach. Moreover, in the Bayesian approach, by
regarding .# as a random variable, we can introduce a
model posterior distribution P(.#1%). The best model
structure .#" can be identified by

M = arg max P(H\D).

Also, we can consider a model structure averaging

pC12) = > p(12, M)P(MD). )
M

The Bayesian approach, however, requires integrals that are
in general hard to compute. There have been two kinds of
approaches that approximate the integral: the Laplace
approximation methods and Markov chain Monte Carlo
(MCMC) methods. Recently, a new approach called vari-
ational Bayesian (VB) approach, which have been proposed
and successfully applied to several inference problems
(Attias, 1999; Ghahramani & Beal, 2000; Waterhouse et al.,
1995).

In Section 2.2, we will describe the VB approach for
general nonlinear models including mixture models.

2.2. Basic principle of the VB method

Now consider a Directed Acyclic Graph (DAG) shown in
Fig. 1 for a nonlinear model including mixture models.
Circles denote the unknowns (random variables) and double
square box represents observed data. As shown in Fig. 1, Z,
0, ¥ and # are treated as random variables. DAG
graphically shows the conditional independence between
two random variables. For example, in Fig. 1, observed data
2 is independent of ¥ given 6. Namely, once 6 has been
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Fig. 1. Graphical model (directed acyclic graph) for a general model.
Circles denote the unknowns and double square box represents observed
data.

known, 2 does not depend on 7, but depends on 6. Zis a set
of latent (unobserved) variables. 6 denotes a set of
parameters with prior distributions, and ¢ a set of
hyperpriors (i.e. prior of prior) with hyperprior distributions.
Of course, top level random variables, .# and ¢ usually
have hyperparameters (usually predefined as some con-
stants). However, for notational simplicity, we omit the
hyperparamters in this section.'

Then, the complete data likelihood of the nonlinear
model paramterized by 6 with a fixed model structure .# is
represented by p(2,Z16,.4). In the VB approach, we
consider the log marginal likelihood in which all random
quantities are marginalized:

(D) = log p(2)
=log> > J J (D, 716, 4 )p(01, M )p(IH M)
M Z

X P(4)d6 4.

Here p(6l9,.#) and P(.#) are priors for 6 and .#, and
p(9.4) is a hyperprior.

Next, by introducing a new distribution Q(Z, 6, 9, .4 for
all random quantities and using Jensen’s inequality for the
convex function log(+), ¥ can be bounded as

IZZEDIDY J JQ(Z, 0,9, .4)
M Z

(9,210, )P0 S, M (4P
g O(Z. 6, 9. .40

=710l 3)

Xlo dodd

where Q is an approximation of the true posterior,
p(Z,0,9, #412), and is termed the variational posterior.2
The quantity & [Q] provides a rigorous lower bound
on the log marginal likelihood and it can be shown that
the following important relationship between ¥ and &

' In an application to mixture of experts model in Section 4, we explicitly
describe the hyperparameters.

2 Note that we should write O(-|2), but to make the notation simple, the
dependence of the variational posterior on the data & is hereafter omitted.

holds:

L(D)= F[0(Z, 0,0, .4)]
+KL[Q(Z, 6,9, 4)p(Z, 0,8, #1D)].

Here KL[-I] denotes the Kullback—Leibler divergence
defined by

KL[Q(Z, 6,9, 4)p(Z, 6,9, 4\ D)]

= 0Z.6.9,.4)
= % ; UQ(Z, 0.0, Mlog == 4040,

That is, since % is a constant under a fixed &, maximizing
Z[Q] wr.t. Q is equivalent to minimizing the Kullback—
Leibler divergence between (Q and the true posterior
distribution. In other words, the optimal Q that maximizes
& is the best approximation of the true posterior under
whatever constraints are imposed on Q. Unlike the Laplace
approximation, we do not assume any particular functional
form for Q, but we only assume the factorizing form as Q =
OZI4)YQO| )OS YQ(M) as a practical requirement. In
addition, we further assume that the model priors and
hyperpriors factorize:

1
p(01S, . 4) =[] p(0\0;,.4)  and
i=1

“4)

1

pddty = [p(S;1.4).
i=1

Note that 6 = {6,}._, and O = {9;}'_,, where I is the number
of independent parameters. Correspondingly, we assume that
00l.4) and Q(9.#) can be factorized as Q(Ol.%)=

I o)y and QO4) =TI, Q(|.4). Here,
o0l.a), QN.A), Q(Z\4) and Q(#) are approximations
of the true posterior distributioins p(812,.#4), p() @,.4),
P(Z|9,.4), and P(#\Z), respectively. They are called
variational posteriors.

From these assumtions, % [Q ] is rewritten as

2,710, 4
Fo1=> Q(%)«Klogp()

W ozl.u) >Q(z./z), ﬁ 06,14

i=1

p(O,19:,) >
+ log=——=
i:Zl < Q(O"L%) 0(6;1.4),009;1.40)

P }

1

P(ﬁl"ﬂ)
+ log——+— +log —"7
§< RGN >Q<,9,,L/m )

®)

Here the notation { f' (x)}l,(x) represents the expectation of f(x)
w.r.t. the distribution p(x) :

FMpy = Jf(x)p(x)dx
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In the case of a discrete random variable z, the notation

(f(2)p( represents (f(2))pe) = > . f(2).

2.3. Inference of optimal variational posteriors and model
structure

According to the method of the variational calculus by
differentiating & [Q ] w.r.t. each of Q distributions and setting
them to zero, an EM-like procedure presented below for
estimating the optimal variational posteriors can be obtained.
We call them Variational Bayesian (VB) EM steps. That is, at
the (# 4+ 1)th iteration.

VB E-step computes:
QZ1.4)"*V oc expl(log p(Z, Z16, .4)) gig1. sry0 - (6)

VB M-step updates: Fori = 1,...,1,
00,14+ oc exp{(log p(Z, Z16, M) ozt a0 001y

+(log p(0,10;, ) g1 010} (N

OQ(;1.4)™ P oc p(S;1.4)exp{(log p(O,1 %, M) g1 ye0}-
3

The symbol 6_;in Eq. (7) denotes all parametes in 6 other than
0;. By alternately and repeatedly performing the VB EM steps
above until the convergence, we can obtain the local optimum
estimates of Q(Z|.4), Q(6;|.4) and Q(9;|.4).

Note that if we were remove Q(6) and Q(1}) from Eq. (6),
we would get

OZ1. "™V oc p(2,Z167, 41),

which is the same as the posterior distribution computed at the
E-step in usual EM algorithm based (Dempster, Laird, &
Rubin, 1977) on the ML approach. This means that the VB
EM steps above include the ML-based EM algorithm as a
special case where 6 and ¥ are not random variables, but
mathematical variables. This is a reason why we call the above
algorithm the VB EM algorithm.

Let QZI.#)*, Q(6,1.4)", and Q(¥;|.#)* denote the
estimated posteriors. Then, according to Attias (1999),
using these estimated posteriors, the optimal posterior over
the model structure can be obtained in a closed form as

(2,210, 1)
oIty

1
p(6,10;.4)
2 <l°g 001y

QY o eprmg >
o1y 001y

>Q(6,-L/Z/)*,Q(1?,J/)*

1
p(S;|.4) > }
+» (log +log P(M) §. 9)
Z < Q(ﬁllﬂ) Q(t‘),»L//Z)*

i=1

The optimal model structure in the MAP sense can be found
as:

M = arg max oy

However, since Q(0;l.#), Q(%;|.#), and Q(Z|.#) are
iteratively optimized by using the steepest ascent procedure
given by the VB EM steps presented above, we suffer from
the local maxima problem as in the ML approach. That is, if
these posteriors converge to poor local maxima, we no
longer find the appropriate model structure since Q(.#)"
value depends on these converged values. In other words,
we cannot find the optimal model structure without solving
this local optimum problem in the VB learning.

3. Optimal model search
3.1. An objective function

Let #,, denote all terms independent of Q(.#) of Z#[Q].
That is

(D, 210, )pO| M )p(. 1)
OOt O(I )

Ty = <log > .
QL) Q01.4),Q(.4)

(10)
Then, using %, the lower bound can be rewritten as:

FIOZ, 0,9, 401 =T y)o.u) — KLIQUOIP(A)).  (11)

Since %, does not depend on O(#)? and the KL term
depends only on Q(.#), the conventional VB learning
mentioned in Section 2.3 is equivalent to the following
steps:

[Conventional VB learning algorithm]

Step 1. For each ., setting Q(ZI.#)®, Q(6l.4)® and
t +— 0, perform below until convergence.

OZ|ay+h
= arg max F,102).40), 004, Q(.4)P], (12)
.

(ZI..

o(O:1.4)"

= arg max Tyl Q1) , 0014, Q.4
6;1.4)

i=1,..1 (13)

OO, 1)t
=arg max FulQZ).) "™V, 0(61.4) 1, (.,
QO 1.4)

i=1,..,0, t—t+1 (14)

Step 2. For each .#, maximize %, w.r.t. /.

3 Note that %, does not depend on Q(.#), but depends on ..
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Note that the re-estimate equations for Q(ZI.#),
Q(6,1.4), and Q(3;1.4) derived at Step 1 are equivalent to
Egs. (6)—(8).

Let &7, represent the optimal value of %, obtained
by Step 1 above. Then, from Eq. (6), the optimal model
posterior, denoted by Q(.#)", obtained at Step 2 is
given by

Q(AM)" o< P(M)exp{Z 4} (15)

Note that Eq. (15) is equivalent to Eq. (9). The

important point to note that from Eq. (15), the optimal

model structure .#" that maximizes Q(.#) is equivalent

to the one that maximizes %, + log P(.#). Since P(M)

is assumed to be uniform, the optimal model structure

can be found by #, without computation of Q(.#)".
That is, letting

0 _ <10 (2,216, 4)p(6l9, ,W)p(ﬂ|//)>
o g OZ1.4) Q014D QM) [ gz1.0000 0001.00y0 Q.00
(16)

and assuming that P(.#) is uniform, we can show the
following monotonicity property:

If 7% = 79, then Q") = Q(#)" holds

This indicates that by maximizing % , with respect to not
only Q(Z|.4) and Q(®|.#), but also .#, we can obtain the
optimal parameter distribution and model structure simul-

taneously, in the sense of the MAP estimate, by using % ,
instead of Z[Q].

3.2. Bayesian SMEM algorithm for mixture models

As mentioned before, the VB learning algorithm
often can get caught by local maxima. In the case of
mixture models, the local maxima often involve having
too many components in one part of the space and too
few in another. To escape from such configurations, we
employ the idea of the SMEM algorithm (Ueda et al.,
2000) that we previously developed within the ML
framework.

The application of the idea of the SMEM algorithm to
the VB is straightforward. In the case of mixture models,
M corresponds to the number of mixture components.
Let m denote the number of mixture components. Then,
the objective function %, can be represented in the form
of a direct sum

In = 2.7y

-M§
N

Il
=

J

where 7 ;) is the objective funtion corresponding to the
jth component model of a mixture model with m
components. After the conventional VB learning algor-
ithm has converged, the objective function can be

rewitten as

uuFi, j .k

Here, 7 (;, denote the objective function value of Z;,
after the convergence. We then try to increase the first
three terms of the RHS of Eq. (17) by merging model
components i and j to produce a model component i and
by splitting the model component k into two model
components j and k.

In the SMEM algorithm, since the likelihood value
monotonically increases as the number of models increases,
we repeatedly and simultaneously perform split and merge
operations during the learning processes to fix the number
of components. On the other hand, in VB since %,
can be optimized w.r.t. both m and Q(6,Zlm), here we
employ either the split or merge operation alone in
addition to the simultaneous split and merge operation.
Clearly, since the split (merge) operation alone means
m <« m + 1(m < m — 1), these three kinds of operations
(split, merge, split and merge) play a role not only to avoid
the local maxima but also to search for the optimal number
of models.

The variational posteriors of these newly generated
models are initialized and reestimated with the other
models. If the %, value is improved, then we accept the
new estimate. Otherwise, we reject it and try another
candidate. This procedure is repeatedly performed until the
objective function value, %, is no longer improved.

By iteratively maximizing %, w.r.t. Q(Zlm ), Q(6lm) and
m, we can expect to simultaneously solve both the local
maxima and the optimal model structure selection prob-
lems. The criteria for choosing split and merge candidates
and the process of initialization for newly generated models
can be straight forwardly defined as those in the SMEM
algorithm by using the MAP estimates. Since these points
are not essential in this paper, we will omit them here. See
Ueda et al. (2000).

[Variational Bayesian SMEM Algorithm]

Step 1. Perform the conventional VB updates presented

in Egs. (12)—(14). Let Q(Zlm)*, Q(6lm)" and Q(Im)"*

denote the estimated variational posteriors. Let F — %,

and m™ «— m.

Step 2. Sort the split and merge candidates by computing

split and merge criteria based on the MAP estimates of

the posteriors obtained at Step 1.

Step 3. Perform the following steps independently:
(3-D
Merge option. For each of the C.x merge
candidates, perform merge operation and reestimate
the posteriors in order. If a candidate that improves
F™ has been found, then set the objective function
value to F1* and ignore the other candidates. If all
candidates could not improve F™, then set
" —F".
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(3-2)
Split and merge option. For each of the C,,,x merge
candidates, perform split and merge operations and
reestimate the posteriors in order. If a candidate
that improves F* as been found, then set the
objective function value to F>* and ignore the
other candidates. If all candidates could not
improve F”, then set F5" — F™.
(3-3)
Split option. For each of the C.x merge candi-
dates, perform split and merge operations and
reestimate the posteriors in order. If a candidate
that improves F* has been found, then set the
objective function value to F3  and ignore the
other candidates. If all candidates could not
improve F ", then set F3* — F ™.
Step 4. If there is no candidate that improves F
then halt with the current posteriors and m ™ as the
final solution. Otherwise, let F ™« max{F,,F,,F5}. If
F*=F", then accept the result of (3-1), set
m*“—m*—1 and go to Step 2. If F*=F,", then
accept the result of (3-2) and go to Step 2. If F* =
F3*, then accept the result of (3-3), set m™ —m™ + 1
and go to Step 2.

Note that in each of steps (3-1), (3-2) and (3-3),
when a certain candidate which improves the objective
function is found, the other successive candidates are
excluded. There is no guarantee therefore that the
chosen candidates will give the largest possible
improvement in the objective function. This is not a
major problem, because the split and merge operations
are performed repeatedly.

Clearly, since Step 3 is a greedy search, the algorithm
above tries to find a better local maximum of .%,,. In this
sense, we cannot theoretically guarantee the global
optimality of the algorithm. However, since the objective
function value is monotonically improved, we can effi-
ciently obtain a better local maximum. Each of steps (3-1),
(3-2) and (3-3) corresponds to the search of better posterior
under a fixed m ™ and step 4 selects the best model structure
m”. By repeatedly performing these steps, we can find a
better model parameter distribution and model structure,
simultaneously.

4. Application to mixture of experts
4.1. Probability model

Our probability formulation of a MoE is based on the
random-regressor (RR) model in which both input and
output are treated as random variables. In other words,
the input variable is also measured with error (see e.g.
Seber & Wild, 1989). Using this model enables us to
derive all variational posteriors without approximation.

On the other hand, in Waterhouse et al. (1995),
Gaussian approximation is forced to be used to derive
a variational posterior on the gating network parameter
since their formulation is based on the fixed-regressor
model where only output value is treated as a random
variable. Moreover, in our formulation, unlike the
formulation by Waterhouse et al. (1995), the model
structure (i.e. the number of experts) is also treated as a
random variable and therefore it can be automatically
optimized. Due to the lack of space, we only describe
our Bayesian formulation for a MoE below.

Let x € %9 be a d-dimensional input and f;(x,w;) € Z
be the corresponding output® of expert i. Accordingly,
the output value of a MoE for an input x is given by

Y= GixlI®)fi(x,w)). (18)
i=1

We restrict each expert to a linear funtion, fi(x,w,) =
w,-T)'(, where w; € 2! is an unknown parameter. Here,
x=x'1)T € #7'. As a gating network, we use a
normalized Gaussian function (Xu, Jordan, & Hinton,

1994) defined by
@ir/V(X|MiSi_l)

gontf(x||Lj, Sj*l) .

G(xl®) = (19)

M:

j=1

Here, ® = {¢;, n;,S;,i =1,...,m} is a set of unknown
parameters, and ¢; is a mixing proportion satisfying
©;=0 and 3", ¢ =1. The notation A (xIp,S7")
denotes the d-dimensional Gaussian distribution with
mean vector p and covariance matrix S~'. Note that S is
called a precision matrix.

The probability model for a MoE is given by

pOIX, ®, 0,m) = > Pilx, ®)p(ylx, i, 6;), (20)
i=1

where P(ilx,®) is the conditional probability of select-
ing expert i given input x, that is, P(ilx, ®) = G;(x/®).
p(yIx,i,0,) is the generative model of the ith expert and
is usually assumed to be Gaussian with mean f;(x,w;) =

w/% and variance B; ' (i.e. precision B,):

PO, i, 6) = (277)“23}’2exp{ - S0- w?x)z}. @1)

Here, 6, = (W;,3;). Let w; = (wfw,))", where w; € a
and w;y € Z. Then, as derived in Appendix A, the joint
density of the MoE based on the random regressor

4 In this paper we focus on the scalar output, but the results can be
extended to multivariate utput in a straight-forward way.
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Fig. 2. Graphical model (directed acyclic graph) for the MoE. Circles
denote the unknown, square boxed represents fixed quantities, and double
square boxes represent observed data.

model becomes a mixture of Gaussians given by

A0S (O )

T pw -l
. (Si + Biw;w; Biw; ) @
_BiWiT Bi

From these, we can compute the following complete
data likelihood:

(D, ZI®, O,m) =

=TT et (e

n=

P(Z,X|®, mp(Y'X,Z, O, m)

$7) (licslwo. ) @23)

l:li

i

Here, @ ={0}., ={w.B,i=1,...m}. Z={}" 1,1 |
denotes a set of latent allocation variables (latent
variables). N is the number of training data. That is,
if (x,y, was generated from the ith model, 7/ = 1;
otherwise z; = 0. Unlike the fixed regressor model
(Waterhouse et al., 1995), since Eq. (23) is factorizable
with respect to i, as shown later, all variational
posteriors can be derived analytically.
It follows that

(log p(Z, ZI®, O, m))ozim)

oC

™=

N
Zz [log @ + loglS;|"
1 n=1

7

— 2T 05, — o, — )}

+log B* — Bi (yn ,T,wi)zil, (24)

<10g P(@, Z|(I), @’ m)>Q(Z\m)

M

I:Ni(log @ + loglS; 1" + log ,Bil/z)
1

L

- %Tr{si(ﬁi(“’i -

- E(Y Xw) V(Y — Xw,-)] (25)

)(w — %) + Ci)}

where

z = (2 owim>

N
= - %)(x, — %,)" € 27,
Z ’ (26)
V, = diag(z}, ....2") € 2™,
= (X, ...,iN)T e %N(d+l), and

= (yl,...,yN)T e #".

Here, diag(z},...,zﬁv ) denotes a diagonal matrix with N
diagonal elements z, ...,Z".

4.2. Priors

We assume a probabilistic structure for priors shown in
Fig. 2 and explain each of the priors as follows. Eq. (19)
indicates that an input variable x is assumed to be from a
mixture of Gaussians. It is well known that the natural
conjugate prior of a single multivariate normal density is a
normal-Wishart distribution (e.g. Bernardo & Smith, 1994).
Accordingly, we employ this distribution on the parameters
{1, S;} as follows:

i, Sitlm) = lﬂ!/‘/(p‘ih’o’(gOSi)I)W(Sih]O’BO)- (27)
The Wishart distribution is defined by
W (Silmg. By) = C‘Sf|(1/2)(m—d_l)eXP{_ %Tr{BOSi}},
where c is a normalization constant given by
IB, ™"

d N
2 0d/2 rd(d—1)4 l—[ F( Mo +21 ! )
i=1

Cc =

Here, I ) denotes the gamma function. The mean matrix is
E{S;} = (Si)os,im = m0Bo !, Note that variables with ‘0’
(v, &, etc.) are parameters of the prior distribution, called
hyperparameters. In this paper, we set them constants
(scalar, vector or matrix) which are predetermined in some
heuristic manner.

The prior on a set of mixture proportions ¢ will always
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output of expert i

X1 eee Xjooeo Xt
input variables

Fig. 3. ;; corresponds to the variance of w;; and therefore o; jl =0
indicates that x; is relevant to form the distribution of y;.

be taken as the Dirichlet distribution:
plelm) = Z({e}i18) = T e (28)
i=1

where the normalization constant is given by

d = F(Z <Pj)/l_[ I(e)).
=1 i=1

For the prior on (w;,3;), considering that 3; is the inverse of
variance and takes a positive real value, we assume normal—
Gamma distribution:

pliws, Biledm) = [T (wil0,(B:4) ™" )%(Biloy. Ao).
i=1
(29)

Here, a=(ay,...,o,), o = (a;1,...,%44) and A; =
diag(e; 1, ..., 0 441). o;; is the hyperprior on which w;;
depends, and corresponds to the inverse of the variance of
w; ;. o; controls the magnitude of the weight on connection
between the output of the ith expert and the input variable
X; € # in X. More specifically, o; jl = 0 indicates that x; is
irrelevant to form the distribution of the ith expert’s output
value y; as shown in Fig. 3. Using this hyperprior, relevant
input variables are automatically selected for each exprt and
therfore more flexible predictions would be expected. This
kind of hyperprior for input variable selection, called the
Automatic Relevance Determination (ARD), is proposed by
(MacKay, 1994; Neal, 1996) and has been successfully used
in several models (Bishop, 1999; Ghahramani & Beal, 2000;
Tipping, 2000). We assume that the distribution of ¢;; is a
Gamma, p(o; ;) = 9(o;, j\KO, {p)- The Gamma distribution is
defined by

ba
I(a)

a

x*lexp{ — bx}.

G(xla, b) =

Moreover, a prior on m is assumed to be uniform
(noninformative prior), P(m) = 1/M,.

4.3. Optimal variational posteriors

As for the variational posteriors, we assume the
following factorizing form:

0 = Q(m)Q(ZIm)Q(®m)Q(Olm)
= Q(mQ(ZIm)Q(@lm)Q(p, Slm)Q(W, Blm)Q(elm), (30)

Where ¢ = {goi};n:l’ = {p“l :'%:I» S = {Si}lm:h W = {Wi}lmzl’

B ={B}L. and o = {o; :’fo;l:l.Thus, the objective func-

tion shown in Eq. (10) is now specified as follows:

Ty = <10g >
O(Z,@,1,S,W.BIm)
+<log p(‘P|‘m) > +<log LSS”’”)>
O(¢lm) ot (., Slm) oS

p(W, Bla, m) > < plalm) >
+(log=—2m = +{10g
< O(W, Blm) OO Bl O(alm) o

&1y

p(2,ZI®, O, m)
O(Zlm)

Although the optimal variational posterior distributions can
be obtained by setting the functional derivative of %, w.r.t.
each of Q to zero, we can just use the results shown in Egs.
(6)—(8). The derived variational posterior distributions are
summarized below. The detailed derivations are provided in
Appendix B.

Results. {@;}i~, follows a Dirichlet distribution:

Ole i Im) = Z({gH 8y + NYLY). (32)
W; follows a multivariate Student’s-T distribution:
O(wilm) = T (i, Sy ) (33)
where
_ Ni)__(i + &vo - 1 B.

' N+& MW+ &),
fo, =Ni+my+1—d, (34)
B, =B, +C; + ik (% — Vo)X — vp)'.

N+ &

Here, .7 () denotes a d-dimensional Student’s-7 distribution
defined by

1 —(v+d)/2
Txlp, 3, 9) oc {1 oS - u)} . (35)

with »(>0) degrees of freedom, mode ., and scale matrix
(a symmetric, positive-definite matrix”). Note that the mean
and covariance matrix of x € #“ following the Student’s-T
distribution are Ef{x}=pn and Var{x}= v/(v—2)3,
respectively.

5> When d = 1, the matrix reduces to a positive scalar value o.
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S, follows a Wishart distribution:

O(S;lm) = ' (S;Imy + N, B)).

B; follows a gamma distribution:

where

2

R, = (Y — Xw)"V,(Y — Xw,)

R)’

0im = 9( Bl + 520+ 5

_ -1
+ V_ViTXT(XTViX + <Ai>Q(ai\m)) (AD o, lmyWi-

Moreover

<Ai>Q(u,\m) = diag(<ai,l>Q(a_| lmys +=+» <ai,d+1>Q(a,Yd+l \m))

= diag(

284 24 a1 )

Here, {;; will be defined later.

w; follows a multivariate Student’s-T distribution:

Q(Wz|m) = e0/~(vvil‘7vi7Z“W,-vfw,-)7

where the parameters are given by

20+ 17777 269 + 1

_ -1 _
Wi = (XTVlX + <A1>Q(a,|m)) XTV[Y,

W,

B <2A0+R,-
2py + N;

i

fw,- = 2P0 +Nl

«;; follows a gamma distribution:

O(a;;lm) = g(al-jh(()

where

1

1
+ 57 {i,j)9

2p +Nl fw.
§i,j:évo+*( L ) —
2\ N7 =2

Finally,

7 =04 =1m) =

i

exp{v/}

m

;exp{u/ﬁ}’

)(XTV,-X + <A,<>Q(,,q.,,,))_1 ,

(Eme*‘W%)-

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

where

i=1

1 < n+N+1—j 1
>SSyl =2——L 71— _loglB|l
+2j:21 ( 2 2 OB

Ju, s

1 N -1
—-T N)B;
) I‘{(WO + z) i (fp,,. -2 1"

+(x, — lli)(xn_p'i)T)}
+2(1I’(p() + 2) - 1Og()\0 + 2))

_ 1 2[)0 +N,' I 2 fw, =T ~
2 ( 2)\0 +Ri ){(yn ani) +fw, — zxnzwixn .

(45)
Here, W(x) denotes the digamma function defined by
log I
W) = 2108 »)
ox

Note that the above equations are analytically derived, but
each distribution cannot be obtained analytically since these
posterior distributions are mutually dependent. Instead, as
shown in Eqgs. (6) and (7), these distributions are iteratively
estimated.

Since the joint distribution of x and y, as shown in Eq.
(22), becomes a mixture of Gaussians, we apply the split and
merge ciriteria used in density estimation problems (Ueda
et al., 2000a) to the joint distribution. From these settings,
we can perform the VB SMEM algorithm for optimal model
search of a MoE.

4.4. Prediction

Once we have the optimal variational posteriors, now
our goal is to estimate predictive posterior distribution of
yny1 corresponding to an unknown input Xy.;. In the
case of the random regressor models, the predictive
distribution is found by computing p(y,x|Z), then
substituting X = Xy into the distribution and rearrang-
ing it w.r.t. yyi1.

First, using Q as an approximation to the posterior over
parameters, the joint posterior distribution is given by

Py, x19) = Ji = G,»(X|(I))JV'(X|M,», s;l)m(ylw?x, 5;1)
i=1

X Q(®@Im)Q(w;, S;1m)Q(w;, B;lm)
X dd dl.l.l dSl dWl dBl’ (46)

where m denotes the optimal number of experts. Due to the
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nonlinearlity of the function G;, we approximate the
integration w.r.t. ® by the MAP estimate. That is

PO.x12) = Gi(xIDyap)

i=1

X JW(Xluivsi_l)Q(MhSi'm)dMi ds;

x [ (viwT o filmaw; . @)

Moreover, given Xy, 1, the first integral does not depend on
yy+1 and can be regarded as a constant. Therefore, the
predictive posterior distribution of yy, ; is

m

PON1IXN11: D) =D GiXy41 | Pyiap)
i=1

X [ (w1 B )OO Bl B 49

The integration of the R.H.S. of Eq. (48) can be analytically
computed and we can see that the distribution is a mixture of
univariate Student-7 distributions:

PO+ Xy 11, D)
m T _
= Z Gi(Xy111Prap) T 11 1W; 1, 03, 200 + N, (49)
i=1
where the scale parameter o; is given by
20 + R
g; = — = — = = . .
(2po + Ni){l = Ky (XTVIX + (A + Ry 1 K3y ) XN+1}
(50)

The definition of the Student-T distribution is presented in
Eq. (35). Note that the mean and variance of yy, are given
by

E{yyi} = Z Gi(Xy 41 [ Ppiap) W, Ry 1 (5D
i=1
(2py + N)o;

—_— = . 52
2p0 + N, — 2 (52)

Var{yy1} = D Gi(Xy411Pyiap)

i=1

The detailed derivations of these results are provided in
Appendix C.

5. Experiments

5.1. Synthetic data

To visually demonstrate the behavior of the proposed
algorithm, we first show the result of one-dimensional

input and output synthetic data. Fig. 4(a) shows the true
function and synthetically generated data (300 points)
with small noise. Clearly, the MoE with six linear
experts is optimum. We initialized a MoE with m =6
as shown in Fig. 4(b) and performed the conventional
VB learning. Clearly, it converged to a poor local
maxima shown in Fig. 4(c). Note that each straight line,
thick curve, and dotted line correspond to each expert
(v'v,»Ti), the expected prediction value, and the standard
deviation interval, respectively.

On the other hand, initializing an MoE model with
m=73 (Fig. 4(d), we successfully found the optimal
model structure (Fig. 4(h)). In this case, the split
operation was only accepted three times. That is, m
changed 4, 5, and 6 monotonically. Note that the
number of steps ¢ does not include rejected learning
steps.

Fig. 4(i) shows the trajectories of the objective
function value, %,,, and the mean squared error (MSE)
for independent test data (500 points) during the
learning process from Fig. 4(d)-(h). #, values
corresponding to Fig. 4(e)—(h) were —41.5, —15.8,
—1.6 and 1.2. One can see that the MSE values
decrease as the %, value increases. The %, value
corresponding to Fig. 4(c) was — 14.6, which is smaller
than that of Fig. 4(g). This indicates that it is possible
to develop a situation where it is hard to find the
optimum model structure by the conventional VB
learning algorithm due to the local maxima problem.

5.2. Realistic data

We also applied the proposed algorithm to ‘kin-8nm’
data in the DELVE database (Rasmussen et al., 1996) in
which the local optimum problem is more crucial. The
dataset is synthetically generated from a realistic
simulation of the forward kinematics of an eight-link
all-revolute robot arm. It consists of eight inputs and
one ouput with medium noise and highly nonlinearity.
The number of training (test) data was 256 (256). Table
1 except the last column shows maximum and minimum
values of %, and MSE obtained by performing the
conventional VB training with fixed m (i.e. without
model search) over 10 trials with different initialization.
One sees that due to the local optima, %, values for
each m were unstable and therefore, the batch type
model selection based on the %, value was unreliable.
Starting with m = 5,...,10, we performed the proposed
model search algorithm independently. For each starting
value m, we performed the proposed model search
algorithm just one trial. For all m=35,...,10, the
algorithm converged to the same m = 8 and maximum
and minimum %, and MSE values are shown in the
last column (marked by ‘#*’) in Table 1, which was
very stable. Our model search method found the best
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Fig. 4. Results for synthetic data.

results, although we performed just one trial at each
initial m.

6. Conclusions

We have proposed a novel method for simultaneously
solving the local optima and model structure opti-
mization problems for mixture models based on the
variational Bayesian framework. We have applied the
proposed method to the mixture of linear expert
models and demonstrated the usefulness of the method

through experimental results using synthetic and realis-
tic data.

In this paper, the formulation is based on the joint density
models. In the case of the fixed regressor models in which
only output value is random variable, we should use
conditional density models instead of the joint density
models. Recently, within the ML framework, the con-
ditional EM (CEM) algorithm has been proposed by (Jebra
& Pentland, 2000, 2002) to conditionally estimate the
density. Extensions of this technique to conditional
variational Bayesian methods should be used for the fixed
regressor models.

Table 1

Z;, and MSE values for each m and by the proposed model search ( * )

m 5 6 7 8 9 10 *

Frn Min —3002 —2985 —2911 —2821 —2969 —2927 —2401
Max —2671 —2590 —2587 —2514 —2567 —2715 —2381

MSE Min 0.481 0.498 0.476 0.465 0.475 0.480 0.457
Max 0.502 0.497 0.481 0.489 0.502 0.531 0.465
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Appendix A. Derivation of Eq. (22)

From our probability setting of a MoE, we have

()

m

@, @) = Z il (Xl ST N(IWRBT) = > @m (I8 g2
i=1

i=1

1 (A1)
Xexp{ - ((X — 1) Six — ) + B[(y _ WiTi)z) }

J

(S

J
Here, J can be rewritten as

T
() (6 )
Yy~ WX 0; Bi/\y—wx
where 0, denotes d-dimensional zero vector. Moreover
X — W I, 0, X~ W
(i)™ Cor ) o) )
where I, is the d-dimensional identity matrix and w; = (w}w;y)T. Substituting Eq. (A3) into (A2)

7 ( X~ )T(Id _Wi)(si 0d>( L 0d>( X~ W )
y=wimi+wo ) \Nog 1 JNop g )\—wl 1) \y—wm+wo))

(Si +BwWw  —Biw, )
_BiWiT Bi

Noting that
S, + Bwiw,  —Bw;
_BiWiT Bi

we arrive at

T
X = 1 [ (1%
P(( )|(I), @) — Z gDi(z,n.)((d+l)/2)|Zi|1/2€Xp{ _ _( . ) 2[( . )}
y i=1 2\wim +wp Wi W+ Wy
o X Wi _
i=1 YJINWi i + wig
where

s — (Si + Bwiw; _Biwi)
l —Biwi Bi '

Thus, we have found that the joint distribution is a mixture of Gaussian shown in Eq. (22).

‘ = 15,18;, (A4)

Appendix B. Derivations of the optimal variational posteriors
B.1. O ¢}iilm)
By replacing 6; in Eq. (7) for ¢, we get

O(¢lm) o< p(¢lm)exp{(log(Z, Zl, n,S, W, B, M) 0(Zlm) Q. S.W,Blm) }- (BD)
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By ignoring no ¢-dependence terms in Eq. (25) as constants and using Eq. (32)

O(eplm) oc l_[exp{ z log ¢; +log QD?OI} = l_[ ™ = Gl {8y + ML) (B2)
i=1 n=1 i=1

Eq. (B2) indicates that Q(¢lm) is a Dirichlet distribution given by Eq. (32).
B.2. O(m;lm) and Q(S;Im)

Similarly, replacing 6; in Eq. (7) for {i,S}, we obtain

Q(M’ S) oc p(”’s S)exp{<10g p(@’ Z|‘P’ ©, S, Wa B’ m)>Q(z‘m),Q((p,W,B‘m)}

m

_ 1 _ ~ 1
oc neXP{Ni logls; " — ETr{Si(Ni(Mi — %) — %)+ Ci)} + logls;|"? — ETT{&)S,‘(W —vo)(w; — Vo)T}
i=1
+1Og|si|(1/2)(noid+l) - ;Tr{Bosl}}

— — T
m 1 _ NXx: NX: _ N —d—
°Cl_[ |Si|1/2exp{ _ 2Tr{Si(N,~ n §())(W _ Nx; iéovo )(Mi _ Nx; ‘:_fovo) }'Sil( 12)(mo+N;—d—1)

i=1

Xexp{ - ;Tr{Si (Bo +C; + N{Vf%o & —vy)(X; — "O)T)}}'}

m

= l_[ N(ui“li(Ni + fo)_lsi_l) W(Silny + N, B))

i=1 - 2

(B3)

(w151, QSilmy
where
N,ii + f()vO ~ Nié‘:o = S T
= = and B,:B +C,‘+— X,-—v Xl'_v .
" Ni+§0 0 Nt+§()( 0)( 0)

It follows that Q(S;|m) is the Wishart distribution given by Eq. (36).
Next, Q(j;|m) can be obtained by marginalizing Q(p;, S;lm) w.r.t. S;. Namely

O(puilm) = JQ(u,-,Silmms,-.

Here, [-dS;is understood to be w.r.t. the d(d + 1)/2 distinct elements of the matrix S;. Note that the integral range is defined by
over all possible values of positive-definite d X d matrix S;

V.— 1 _ _
0w m) oc [ 18P Dexpl = 218, (W, + o)ms — s — g™+ Be) o I+ 0wy — o — B

+ Bi‘(llz)(n°+Ni+l) J' W(Sih]O + N+ 1L, (N + &) — B — )+ Bi)dsi

J

-

=1

= - _ _ (= 12)(np+N+1)
o< |V + &) By + (i — B — m)'|

(—1/2)(no+N;+1)

= {1+ — B+ & (s — ) (B4)

Note that the last line in Eq. (B4) is obtained via the formula that IA + aa™| = IAl(1 + a’A~'a) for A nonsingular. Thus, Eq.
(B4) indicates that Q(pw;lm) becomes a d-dimensional Student’s-T distribution:

Q(”’l'm) = 3-([.1,1'“11-, 2'.(,[9]‘".’,[)’ (BS)
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where

B

fui=no+Ni+1 —dandZm: m
l Wi

B.3. Q(Wlm) and Q(Blm)
In a similar way, using Eqgs. (25) and (29)

Q(W’ B ‘m) oc eXP{GOg p(@, Zl‘P’ M, S’ W’ B’ m>Q(Z|I71),Q((p,u,S\m) + <10g p(W, B'a»Q(a\m)}

m _ . _ ] »
<[1 exp{Nilog B2 = Bl = xw ™0 = X+ Tog B = BT g wi + oz B - Aoﬂi}
i=1
=11 eXp{logB§p°+(l’zx’v"”“)” = Pt = xw) i = xw + w,-T<Ai>Q<a,m>wi}}- (B6)
i=1

where (A;)oq,Im) Will be specified in Section B.4.
Next, let W; be the generalized least-squares estimator minimizing (¥ — Xw,)"V;(¥Y — Xw,). That is

W, = X'V,X) " 'XTV,Y. (B7)
By adding and subtracting XW;, we get

(Y — Xw) V(Y — Xw)) = (¥ — XW;) — (Xw; — XW)"V,(¥ — XW)) — (Xw; — XX)))
=Y — XW) V(Y — X%) + (w;, — W) X"V.X(w; — W,). (B8)

Note that using the orthogonality property of least-square estimator, say X" V,(Y — XW,) = 0, the cross-product terms vanish.
Consequently, we get

(Y — Xw)"' V(Y — Xw;) + WiT<Ai>Q(a,|m)Wi = (¥ — XW) V(Y — XW) + (w; — W) X"V, X(w; — W) + WiT<Ai>Q(a,Im)Wi
=R+ w—w) X"V.X + (AD o lm)) (Wi — Wy), (B9)
where
_ _ _ -1
R = (¥ = XW)" Vit = X%) + W X" VX(X"VX + (Aoaim)  ADotam Wi
and
B Te 1 oo
W, = (XX + (Agam) X'ViY.

Substituting Eq. (B9) into (B6), we have

1 o V-
oW, Blm) <[] [B§d+‘)’2exp{ = 5 TrB(X VX + (Ao m ) (Wi = Wi)(w; — Wi)T}}BE""”N/’Z) b
i=1

Xexp{ - B,-()\O + %)}], (B10)

O(W,Blm) = l_[ M(WilwisB;I(XTviX + <Ai>Q(a‘-\m))7l> g(ﬁi'ﬁo + %’)\0 + %) . (B11D)

J

i=1

0w, 1B,m) 0(BIm)
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Hence, Q(B;Im) is the gamma distribution:

N
O(Bilm) = (Bz|P0+ 5 s Ao+ > ) (B12)

Next, Q(w;|m) can be computed by marginalizing Q(w;, 8;lm) w.r.t. w,

}(1/2)(2p0+1vi+d+1)

Owiim) = [ Q(w, ) o {/\0 + B o= W (XX (Al ) — W)

1 R 1 _ -
X qu(ﬁim) + E(Ni +d+ 1,0+ 5 + E(Wi - Wi)T(XTViX + (Ai>Q(a,»\m)) (w; — V_Vi))dﬁi

T (XTV,X +< A,)Q(ai‘m)) =(1/12)2py+Ni+d+1)
R W : BI3

Eq. (B13) indicates that as shown in Eq. (40), Q(w;|m) is a multivariate Student’s-T distribution with Jw, =2po + N; degrees of
freedom, mode

_ -1 _
W, = (X"VX + (A)gam) XViY, (B14)

and scale parameter

. 2/\0 + Ri T -1
o= (i )X+ o) (B1S)
B.4. Q(alm)

Applying Eq. (8) to o, we get
O(alm) oc p(a|m)exp{<log p(W, Bla, m))Q(wIm),Q([;\m)}- (B16)

Here, since p(;lm) is a gamma distribution
m  d+1 m  d+1
plalm) oc 1‘[ 1‘[% o, g0y o< [ ] 1‘[ afy expl = oo b (B17)

=1 j=1

On the other hand, using the results of Q(w;lm) and Q(B;m)

m d+1 1/2 1 T

(log p(W, Blav, m)>Q(w\m) OBlm) Z (log p(w;1B;, & z)>Q(w Im),Q(B;lm) Z log l_[ oy~ §<Bi>Q(,B,\m)<wi A,-w,»)Q(w_‘m) . (BIB)
i=1 i=1 j=1 !

Here, since (B;)g(g,m) is the mean of the gamma distribution given by Eq. (B12), we easily have

2py + N

“RT B19
24 + N; (BI9)

<Bi>Q(B,\m) =

Moreover, adding and subtracting the mean vector W; of the distribution Q(w;ln)

<w,-TAiw,->Q(Wi‘m)= Tr{Ai<wiw,-T>Q(w[‘m)} = Tr{A,-(((w,- — W)(W; — Wi)T)Q(w,Im)—l—W’W’T)} = Tr{Ai( 7 fw_‘ 5 Sy, + V'V,V'V,T)}

d+1 f
=Zzin“(%m+w} (B20)

Note that since W; is the mean vector of the random vector w; following the Student’s-T distribution given by Egs. (40) and (41),
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the term {(w; — W,)(W; — W,-)T>Q(wi|,n) corresponds to the
variance of w;. The notation (3,);; represents the jth
diagonal element of 3.

Substituting Eqs. (B17)—(B20) into Eq. (B16)

O(alm) = [ ] Oex;lm)
i=1

)i

m d+

|

_ ko +(1/2) -1 _

= [T ey — ey
i=1 il

1 2py+N; Iw, )
* (g‘) i 5(2Ao +N, )(fw, = s +W""))}

= ]_[ O(ay ;lm). (B21)

It follows that

1
Q(ai,jlm) = éé(a,»,ﬂKo + E’gi’j>’ (B22)
where
_ 1(2py+ N, Jw, 2
Gi=6dt > (ZAO N, )(fw, — 2(Ew,-)j,j +wi; )

Since we have found that «;; follows a gamma distribution,
its mean is easily computed as

<Ai>Q(oz,vyj|m) = diag(<ai,1>Q(a,.,1 lm)s +++ <ai,d+1 >Q(a,,d+l Im))

2 2{ia+1 )
2K() + 1 v 2K0 + 1 ’

= diag( (B23)
B.5. Q(ZIm)

Using Egs. (6) and (24)
Q(ZIm) oc exp{(log p(Z, Zlp, w.. S, W, B, m)) g 5.W plmy}

n 1
= l_[ l_[ CXP{Zi ((10g 0o m) + §<10g 1S:D s, im)

i=1 n=1

1
- ETr{<Si>Q(S,\m)<(Xn = (X, — Mi)T>Q(u,\m)}

1 1
+5{10g By, ~ 5 Bidagim

x((y,, - WI'T’_‘n)2>Q<w,.|m))}' (B24)

Here, since S; and B; follow the Wishart and gamma
distributions, respectively, we easily compute their mean
values as follows:

(SDos,im = (o + N)B; ', (B25)

2pp + N;

' _ ) B26
<Bl>Q(B,~|m) 2/\0 +R1 ( )
Moreover,  {(X, = R)X, = 1) Dol and  {(y, —
W %,)%) o(w,m) are computed below

— . —_ . T = P P T T T
((xn (X, — 1) ) oI g(u, R — ) >Q<V~f‘ml
Va;illi}
_ _ T
+x, — )X, — )
_ fl"i 2 — 0 — )Tt
= i + (Xn ”’i)(xn l‘l‘l) > (B27)
fMi -2
2
<(yn - w?in) >
Q(w[\m)
— i T ) — - — W; 2
= <(yn X, Wt) X, (W; — W;) >Q(w,-|m)
2
= (v = %) 4% <(W" — W) (W - Wf)T)Q(w»\m)
VH‘FEW,'}
T - 2 fw- ~T ~
=\y, —XW;)+ — X ZW'X' (BZS)
( s

The other special expetations such as {log ¢;)g(,m and
(loglS;1)gs,im) can be computed as follows:

<10g (Pi>Q({<P[};'1] lm)

F(Z(80+N,))
N @J

J=1

(og ) [ ] & 'dey- - -dep,.
P j=1

l_[F(So‘f‘Nj)

J=1

(B29)

Note that the integral in Eq. (B28) is performed so as to
satisfy > /2| ¢; = 1. On the other hand, since

J | 2ot {8 + NI )der- - -de, = 1,
P1 P
we get
) []18 + Ny
J J ¢ oy dg, =~ (B30)
@ Pn j=] ud _
F( (8o +Nj))
=

To make the form of the R.H.S. of Eq. (B29), we
differentiate both sides of Eq. (B30) w.r.t. N;. It follows



N. Ueda, Z. Ghahramani / Neural Networks 15 (2002) 1223-1241 1239

that

P N —1
J J tog o) [T "™ 'de- - dg,
@ bm j=1

I3 +N) ;
- (W(ao +N) ~ W(mao +Zz‘v,-)>,
F(Z (3 + Nj)) =
j=1

(B31)
where W(-) is the digamma function defined by

d log I(x)
0x

Substituting Eq. (B31) into Eq. (B29)

P(x) =

Jj=1

<10g (’Di>Q({¢i},m:||m) = lI’((S() + Nl) - ‘If(mSO + Z]Vj) .

(B32)

In a similar manner, since
[ Bloriag =1
0

where p; = py + (N;/2) and A; = Ay + (R;/2), we have

i) *© pi—1 —AB: d F(P,')

g Biap = — [ P2, B33
op; Jo Pie & ap \ A ®39
It follows that
[ oz popr e 0ap = (BF 20— Nplog &)

Ay 9p;
(B34)

Using Eq. (B34), we get

<10g Bi>Q(B,‘\m) = I(log Bi)Bf"_lef)‘iﬁdei

A
I(p)
= W(p,) — log A;. (B35)
Similarly, since
| i moas = 1.
where n; = 1y + N;, we have
0 _
- J IS[|(]/2)(1“ dﬂ)exp{ - Tr{BlS,}}dSl
am;
D mdl2 d(d=1)/4 l—[ F( mi + J)
J j=1 2

= Py B . (B36)

It follows that

Jaog|s,.|)|si|<1’2><ﬂf*d*1>exp{— %Tr{B,-S,-}}dS,-

d .
_ i+ 11—

2 d(d—1)4 F( m; )
T lel —

nil2
B,

d i
x{dlogz—logB,.HZ\Ir(%). (B37)

J=1

Thus,

d L=
(loglS:Dos iy = d log 2 — logIB;| + ZW(%)
=
(B38)

Finally, substituting Eqgs. (B25)—(B28), (B32), (B35) and
(B38) into (B24), we get

m N
0Zlmy o< [ T [ [exptai#}: (B39)

i=1 n=1

where

')/[1 = ‘I’((SO +N,) - \I’(mSO + ZNl)

i=1

X (fulfu_l 22,,,]. + (x, — P)(x, — llt)T)}

_ 1 2p0 +N, T 2 fW, =T =
2(2)\0 +Rl ){(yn ani) +fw1 — 2Xn2W,-Xn .

(B40)
Thus,
% =0 = 1lm) = 220
> exp{y/}
=1

Appendix C. Derivation of the predictive posterior
distribution

Setting the integration of the R.H.S. of Eq. (49) to I and
using the result that Q(w;, B8;lm) is the normal-gamma
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distribution (Eq. (B10)), we get
1= [ (TR B 0w Bl 0B,

oc Jggl’zﬂpo“'“*")exp{ - %[2)@ + R+ (w—w)"

XKij(w —w;) + ()’N+1 - Wz‘TiNH)Z]}sz‘ ag, (Cl)

where K; = X"V, X + (A} o(e;lmy- On the other hand

(w; — W) Ki(w; — W,) + (yN+1 - WiTiNH)z
= WiT(Ki + iN+1i1T/+1)Wi — 2w, (K;W; + Xy 1yn+1)
+ Y1 + W KW,
= (W; = W) ' Mi(W; = W) + UiOy+1). (C2)

where

M; = K, + &y 1 Xy41, (C3)

I a1 v TE <

W, =M; (KjW; + Xy 1yv41) =M (X V.Y + XN+1}’N+1>,
(C4

Uivns1) = Yue1 + W KW, — W, MW, (&%)

Substituting Eq. (C2) into (C1) and rearranging w; and f3;
terms, we have

I o J JV(wilwi, Bi_lMi_l)dwi J/sg”z’@”“’vf“)

J

7~

1

x exp{ - Barg+r+ U,~<yN+1)>}dﬁ,-

1 _ 1
- j@(ﬁil 3o B 1), 3 QA+ R+ U,»<yN+1)))dﬁ,«

J

s

=1
1 —(12)2py+N;+1)
X { B QAo+ R + Ui()’N+1))}

o200 + R; + Uiy )~ MPCaHNHD, (C6)

Next, to obtain the distribution of yy, 1, arranging U;(yy+1)

W.I.t. Y41

_ T
Uivns1) = Yne1 + W, KW, — (XTViY + XN+1YN+1)

XMi_l(XTViY+iN+1)’N+1)

= (1 - i%JrlMi_]iNH)()’NJrl -5 (&7))
where
_ <T ~lg “Ior —1yT¢
Vi = (1 — Xy M; XN-H) XM X'VY
_ 1
=Ky (XTViX + <Ai>Q(a,-|m)) X'V.Y =W %y (C8)
Thus

I oc {2/\0 +Ri(1 - i£+1M;liN+1)

_ T~
- W; Xy11

) —(1/2)2py+N;+1)
X ()’N+1 }

o1+ 1_i;/+lMi_]iN+l
2\ + R,

L)~ (2@ HN D
_ T~
X(yN-H - W; XN+1) }

= «7()’N+1| - V_Vin(NH, 03, 2py + Ni)’ (€9

where the scale paramter o; is given by
200 + R;
g; = = =T . .
(2po + N(1 = Ry My 'Ry4)

From these results, we obtain Eq. (49).
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