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Abstract

The Indian buffet process (IBP) is a Bayesian
nonparametric distribution whereby objects are
modelled using an unbounded number of latent
features. In this paper we derive a stick-breaking
representation for the IBP. Based on this new rep-
resentation, we develop slice samplers for the
IBP that are efficient, easy to implement and
are more generally applicable than the currently
available Gibbs sampler. This representation,
along with the work of Thibaux and Jordan [17],

also illuminates interesting theoretical connec-
tions between the IBP, Chinese restaurant pro-
cesses, Beta processes and Dirichlet processes.
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In this paper, we derive a new, stick-breaking represen-
tation for the IBP, a development which is analogous
to Sethuraman’s seminal stick-breaking representation fo
CRPs [15]. In this representation, as we will see in Sec-
tion 3, the probability of each feature is represented expli

itly by a stick of length between 0 and 1. Sethuraman’s
representation paved the way for both novel samplers for
and generalizations of CRPs [7]. Similarly, we show how
our novel stick-breaking representation of the IBP can be
used to develop new slice samplers for IBPs that are ef-
ficient, easy to implement and have better applicability to
non-conjugate models (Sections 4, 5.2, 6). This new repre-
sentation also suggests generalizations of the IBP (such as
a Pitman-Yor variant, in Section 3.2). Moreover, although
our stick-breaking representation of the IBP was derived
from a very different model than the CRP, we demonstrate
a surprising duality between the sticks in these two repre-
sentations which suggests deeper connections between the
two models (Section 3.2). The theoretical developments we

The Indian Buffet Process (IBP) is a distribution over bi- describe here, which show a stick-breaking representation
nary matrices consisting éf > 0 rows and an unbounded which is to the IBP what Sethuraman’s construction is to
number of columns [6]. These binary matrices can be interthe CRP, along with the recent work of Thibaux and Jordan
preted as follows: each row corresponds to an object, eadd 7], showing that a particular subclass of Beta processes
column to a feature, and a 1 in entfiy k) indicates object is to the IBP as the Dirichlet process is to the CRP, firmly
i has featurek. For example, objects can be movies like establish the IBP in relation to the well-known classes of
“Terminator 2", “Shrek” and “Shanghai Knights”, while Bayesian nonparametric models.

features can be “action”, “comedy”, “stars Jackie Chan”,
and the matrix can bg01;010; 110] in Matlab notation. 2

Like the Chinese Restaurant Process (CRP) [1], the IBP

provides a tool for defining nonparametric Bayesian mod-The IBP is defined as the limit of a corresponding distri-
els with latent variables. However, unlike the CRP, inbution over matrices withk" columns, as the number of
which each object belongs to oaad only onef infinitely ~ columnsK — oo. Let Z be a random binaryv x K ma-
many latent classes, the IBP allows each object to posse$dx, and denote entryi, k) in Z by z;;,. For each feature
potentiallyany combinatiorof infinitely many latent fea-  let . be the prior probability that featufeis presentin an
tures. This added flexibility has resulted in a great deal oPbject. We place &8eta(%,1) prior onyy, with o being
interest in the IBP, and the development of a range of interthe strength parameter of the IBP. The full model is:
esting applications. These applications include models fo .

choice behaviour [5], protein-protein interactions [2jet indepedently/k (1a)
structure of causal graphs [19], dyadic data for collabora- indepedently’i, k. (1b)
tive filtering applications [10], and human similarity judg
ments [11].

INDIAN BUFFET PROCESSES

e ~ Beta($, 1)
Zik|ux ~ Bernoulli(py)

Let us now consider integrating out tpg’s and taking the



limit of K — oo to obtain the IBP. For the first object, the customers and taking customéw be the last customer
the chance of it having each particular featérés inde-  to enter the restaurant; the second tef(r-) is the data
pendently onceju is integrated out, thus the distribu- likelihood of z; if z;; = 1. Itis possible to integrat@,. 5+

tion over the number of features it hadimomial (¢, ). out from the likelihood term iff is conjugate ta”. In fact

As K — oo, this approache®oisson(«). For subse- itisimportantforH to be conjugate té” when we consider
quent objectsi = 2,..., N, the probability of it also the probabilities of new features being introduced, begaus
having a featuré: already belonging to a previous object all possible parameters for these new features have to be
is %%rﬁjjl — mj“v wherem<;, = Zj@_ zik > 0 _taken into account. IfL; is the number of new features

is the number of objects prior towith featurek. Re-  introduced, we have

peating the argument for the first object, objeécwill 2)Lig
also havePoisson(<) new features not belonging to pre- L
vious objects. Note that even though the total number of ° o °
available] features is unbounded, thgeJ actual nuniberof /f(xi|zi’1:K+’Zi=1:Li = 1O, O, ) dn03,) (4)

usgd feature]% |slalways finite (and in fact is distributed a$yhere 2,.,, are occurrences for the new features and
Poisson(a Y ).

i=17 ¢7.,, are their parameters, the superscfigtenoting cur-
The above generative process can be understood using thently unused (inactive) features. The fraction comes
metaphor of an Indian buffet restaurant. Customers (obfrom the probability of introducind.; new features under
jects) come into the restaurant one at a time, and can sampRisson(§) while the second term is the data likelihood,
an infinite number of dishes (features) at the buffet countewith the parameteré;,; - integrated out with respect to the
Each customer will try each dish that previous customergrior densityh,(-).

have tried with probabilities proportional to how popular to heeq to integrate out the parameters for new features

each (.j'Sh is; in addition the customer will try a number Ofis similar to the need to integrate out parameters for new
new dishes that others have not tried before. clusters in the Dirichlet process (DP) mixture model case
To complete the model, let;, be parameters associated (See [13]). To perform this integration efficiently, conju-

with featurek andz; be an observation associated with ob- gacy is important, but the requirement for conjugacy limits

e
N

p(L;|resh o« ( X

jecti. Let the applicability of the IBP in more elaborate settingssilt i
possible to devise samplers in the non-conjugate case anal-
Op ~ H independently’k  (2a)  ogous to those developed for DP mixture models [10, 5].
x; ~ F(z.,0.) independentlyi (2b)  Inthe next section we develop a different representation of

the IBP in terms of a stick-breaking construction, which

whereH is the prior over parameters|(z; ., 0.) isthe data  |eads us to an easy to implement slice sampler for the non-
distribution given the features . = {z;,}32, correspond-  conjugate case.

ing to objecti and feature parametefs = {6, }7° ;. We
assume thaf'(z; ., 0.) depends only on the parameters of3 STICK BREAKING CONSTRUCTION
the present features.
In this section, we describe an alternative representafion
the IBP where the feature probabilities are not integrated
dout, and a specific ordering is imposed on the features.
We call this the stick-breaking construction for the IBP.
We will see that the new construction bears strong rela-
tionships with the standard stick-breaking constructim f
CRPs, paving the way to novel generalizations of and in-
ference techniques for the IBP.

2.1 GIBBS SAMPLER

The above generative process for the IBP can be used
rectly in a Gibbs sampler for posterior inferenceoandé
given datax = {z;} [6]. The representation consists of the
numberK ™ of used (active) features, the matéx. 1.+

of occurrences among thié*+ active features, and their pa-
rameterd,.x+. The superscript denotes active features.
The sampler iterates through= 1, ..., N, for each object

1 it updates the feature occurrences for the currently used-1 DERIVATION

features, then considers adding new features to model tq_e . .
dataz,. ety > pe) > ... > u) be a decreasing ordering

of p1.x = {p1,...,ux}, where eachy; is Beta(4,1).
For the already used featurés= 1,..., K™, the condi- We will show that in the limit’ — oo the 1()'s obey the
tional probability ofz;;, = 1 given other variables is just  following law, which we shall refer to as thetick-breaking

- constructiorfor the IBP,
P(zip = 1|resh oc T f (| 2i, -k, 2ik = 1,01.+) ()

k
wherem—;, = 3, zjx. The fraction is the conditional  v(x) "% Beta(a, 1) By = V(k)M(k—1) = H”(l) ®)
prior of z;; = 1, obtained by using exchangeability among 1=1



We start by considering ;. For finite K it is

f1) =, I0AX i (6)
where eachy; is Beta($, 1) and has density:
a, w1
p(m) = e L0 < <1) @)

wherel(A) is the indicator function for a condition (mea-
surable sety: I(A) = 1 if Aistrue, and 0 otherwise. The

cumulative distribution function (cdf) fqu; is then:

1228 o
F(Ml)Z/ "

— 00

[0 <t <1)dt
= 110 < < 1) +I(1 < ) (8)

Since they;’s are independent, the cdf af,) is just the
product of the cdfs of eachy, so

a K
Flpa)) = (H(’i)ﬂ(o Spay <1 +I1 < pay < OO))

= nnl0 < pay <1 +I( < pyy) ©)
Differentiating, we see that the densityaf;) is
p(pny) = aply 0 < py < 1) (10)

and therefore:(;y ~ Beta(a, 1).

We now derive the densities for subsequept)’'s. For
eachk > 1 letl; be such thafy, = ) and letL, =

{11 BREE) K}\{lla SRR lk} Since:u(l:k) = {:u(l)a s 7M(k)}
are thek largest values among;. -, we have
fu < D Ly = k) (11)

k' <k

for eachl € Ly. Restricting the range of; to [0, 111}, the
cdf becomes

fo*” a4t
W

F(ulpary) = T
100 <y < pry) + Tpery < )

=H 12)

%
)

e

I

NOW /11,41y = maxjer,, i With eachy; independentgiven

H(1:k)- The cdf ofu, 11y is again the product of the cdfs of

wyoverl € Ly,

F(ﬂ(k+1)|ﬂ(1 k)) (13)
K*ka
=gy < H(]C+1) [0 < prsr) < pery) + Loy < )

=1y Plor ) 10 < ey < i) + Mgy < piesr))

asK — oo. Differentiating, the density gf ;1) is,

P(kt1) | 1(1:k))

=g 1y 10 < pgerny < pey) (14)

Notice that the.;,'s have a Markov structure, withy;, ;1)
conditionally independent Qf ;.;,_1) given ().

Finally, instead of working with the variables,, directly,
we introduce a new set of variableg,) = L’(‘“‘)l) with
range0, 1]. Using a change of variables, the density of
v (k) Is derived to be,

PVl (rr—1)) = avfy 10 < vy < 1) (15)

Thusy(;, are independent from,.;,_;) and are simply
Beta(a 1) distributed. Expanding,) = v pxr-1) =
Hl 1 (1), we obtain the stick- breakmg construction (5).

The construction (5) can be understood metaphorically as
follows. We start with a stick of length 1. At iteration

k =1,2,..., we break off a piece at a point;, relative

to the current length of the stick. We record the length

of the stick we just broke off, and recurse on this piece,
discarding the other piece of stick.

3.2 RELATION TO DP

Initerationk of the construction (5), after breaking the stick
in two we always recurse on the stick whose length we de-
note by . Letn,) be the length of the other discarded
stick. We have,

k—1
my = (1= va)ug-1y = A —vw) [[ vy (16)
=1
Making a change of variableg;) = 1 — v,
o k—1
L.1.d.
'U(k) ~ Beta(l, a) 77(1@) = 'U(k) H(l — 'U(l)) (17)

=1
thus 7(1..) are the resulting stick lengths in a standard
stick-breaking construction for DPs [15, 7].

In both constructions the final weights of interest are the
lengths of the sticks. In DPs, the weightg,) are the
lengths of sticks discarded, while in IBPs, the wei

are the lengths of sticks we have left. This difference leads
to the different properties of the weights: for DPs, thekstic
lengths sum to a length of 1 and are not decreasing, while in
IBPs the stick lengths need not sum to 1 but are decreasing.
Both stick-breaking constructions are shown in Figure 1.
In both the weights decrease exponentially quickly in ex-
pectation.

The direct correspondence to stick-breaking in DPs implies
that a range of techniques for and extensions to the DP can
be adapted for the IBP. For example, we can generalize the
IBP by replacing théeta(a, 1) distribution onv(;)’s with
other distributions. One possibility is a Pitman-Yor [14]
extension of the IBP, defined as

V(k) ~ Beta(a + kd, 1 — d) (18)

k
k) = H v
=1



seen as adaptively choosing the truncation level at each it-

ﬁiﬁ T eration. Slice sampling is an auxiliary variable method tha
He T o samples from a distribution by sampling uniformly from
E:‘S‘; ‘ Tl the region under its density function [12]. This turns the
u(e)J ..... Ths) problem of sampling from an arbitrary distribution to sam-

pling from uniform distributions. Slice sampling has been
successfully applied to DP mixture models [8], and our ap-

Figure 1. Stick-breaking construction for the DP and IBP. lication to the IBP follows a similar thread.

The black stick at top has length 1. At each iteration the’
vertical black line represents the break point. The browrin detail, we introduce an auxiliary slice variable,
dotted stick on the right is the weight obtained for the DP,

while the blue stick on the left is the weight obtained for 8|7, pi(1:00) ~ Uniform][0, *] (21)

the IBP.
wherey* is a function ofu(;..) andZ, and is chosen to be

) the length of the stick for the last active feature,
whered € [0,1) anda > —d. The Pitman-Yor IBP

weights decrease in expectation a@(dc—%) power-law, . . .

and this may be a better fit for some naturally occurring poo=mm {1’ k:algf}c_lﬂ(k)} : (22)
data which have a larger number of features with signifi-

cant but small weights [4]. The joint distribution ofZ and the auxiliary variable is

An example technique for the DP which we could adapt to
the IBP is to truncate the stick-breaking constructionrafte
certain number of break points and to perform inference ir{Nherep(s|Z fi(10e)) = LI(0< s < u*). Clearly, integrat-
the reduced space. [7] gave a bound for the error introduceg) )+~ (Lico) B dietrib it '

oL s ing outs preserves the original distribution over; ..., and
by the truncation in the DP case which can be used here as ™\ hile conditioned or andi(1.0), § is simply drawn

well. Let K be the truncation level. We sgty) = 0for  fom (21). Givens, the distribution ofZ becomes:
eachk > K*, while the joint density ofi(;.x+) Is,

P(8, th(1:00)5 Z) = P(Z, l(1:00)) P(S|Z, ph1:00y)  (23)

K P(Z|Xa S, /1*(100)) X p(Z|X, /L(loo))u_l*ﬂ(o <s< ,U*) (24)

p(pin) = H Plp) 1)) (19) " \which forces all columng of Z for which fiky < s tobe
*kzl zero. LetK™ be the maximal feature index with g -) > s.
K* o K 1 Thusz;, = 0forall kK > K*, and we need only consider
= H(k-) H PO < pgesy < - < ppy 1) updating those featurds < K*. Notice thatK* serves
k=1 as a truncation level insofar as it limits the computational

The conditional distribution of given i, - is simply* costs to a finite amount without approximation.

Let KT be an index such that all active features have in-
-, L dexk < KT (note thatk T itself would be an inactive fea-
p(Zlpa:x=) = H H 1 (1= may) 7 (20) ture). The computational representation for the slice sam-
=h=l pler consists of the slice variables and the fic$tfeatures:
with z;;, = 0 for k > K*. Gibbs sampling in this represen- (s, K*, K', Z1.x 1.xct: (1:xc1), 01.51). The slice sampler
tation is straightforward, the only point to note being thatproceeds by updating all variables in turn.
adaptive rejection sampling (ARS) [3] should be used to,yate s The slice variable is drawn from (21). If the new
sample eacl ;) given other variables (see next section). value ofs makesk* > K (equivalently;s < pexc), then
we need to pad our representation with inactive features
4 SLICE SAMPLER until K* < KT. In the appendix we show that the stick
lengthsy.(;y for new features: can be drawn iteratively
Gibbs sampling in the truncated stick-breaking construcfrom the following distribution:
tion is simple to implement, however the predetermined ‘
truncation level seems to be an arbitrary and unnecesP(H (k) [ k—1); 2., >k = 0) oc exp(a Zij\il %(1 — (k)"
sary approximation. In this secFion, we propose a non- u?‘k’)l(l _ M(k))N]I(O < piery < Bie-1) (25)
approximate scheme based on slice sampling, which can be

1 i . . . We used ARS to draw samples from (25) since it is log-
Note that we are making a slight abuse of notation by using in Th | for th feat
Z both to denote the original IBP matrix with arbitrarily orgd ~ cONCaVe INog i(r). 1he columns Tor these new teatures

columns, and the equivalent matrix with the columns reedéo  are initialized toz. ,, = 0 and their parameters drawn from
decreasing:’'s. Similarly for the feature parametef’s. their priord;, ~ H.

N K~



Update Z. Givens, we only need to updatg;, for each:
andk < K*. The conditional probabilities are:

pleis = 1lresh o S f(wifzi, 7 = 161xc1) - (26)

Thep* denominator is needed when different values,;pf
induces different values @f* by changing the index of the
last active feature.

Update §,.. For eachk = 1,..., KT, the conditional prob-
ability of 0y is:

N
p(Ox|resh oc h(0y) H J(xilz 151, O-ks Ok)

=1

(27)

Update (. Fork =1,..., Kt — 1, combining (19) and
(20), the conditional probability gf ) is

gk—1

P(rqryresy ocpu(yt ™ (1 = pir))
I(prsny < vy < pe-1))

me,k
(28)
N

wherem.,, = Y i, zi. Fork = KT, in addition to tak-
ing into account the probability of featurés' is inactive,

we also have to take into account the probability that all

columns of Z beyondKT are inactive as well. The ap-
pendix shows that the resulting conditional probability of
Kty IS given by (25) withk = KT. We draw from both
(28) and (25) using ARS.

5 CHANGE OF REPRESENTATIONS

arbitrarily large finite model, then to either ignore the or-
dering and weights (to get IBP) or to enforce the decreasing
weight ordering (to get stick-breaking).

Changing from stick-breaking to the standard IBP repre-
sentation is easy. We simply drop the stick lengths as
well as the inactive features, leaving us with fkie’ active
feature columns along with the corresponding parameters.
To change from IBP back to the stick-breaking represen-
tation, we have to draw both the stick lengths and order
the features in decreasing stick lengths, introducing-inac
tive features into the representation if required. We may
index the K+ active features in the IBP representation as
k =1,...,K" inthe finite model. LetZ.y 1.+ be the
feature occurrence matrix. Suppose that we Have K,
features in the finite model. For the active features, the pos
terior for the lengths are simply

wi |z ~ Beta(% +mg, 1+ N —myg)

— Beta(m.p, 1+ N —m.g) (29)
asK — oo. For the rest of thek — KT inactive fea-
tures, it is sufficient to consider only those inactive feasu
with stick lengths larger thaminy, x;7. Thus we consider

a decreasing orderiryg‘gl) > ;f’Q) > ... on these lengths.
(25) gives their densities in th& — oo limit and ARS
can be used to draw?, .., until pf..) < ming 1. Fi-
nally, the stick-breaking representation is obtained by re
orderingufK+,u‘(’1:Ko) in decreasing order, with the fea-
ture columns and parameters taking on the same ordering
(columns and parameters corresponding to inactive feature
are set to 0 and drawn from their prior respectively), giving

Both the stick-breaking construction and the standard IBRISK * + K° features in the stick-breaking representation.

representation are different representations of the same

nonparametric object. In this section we consider updates.1 SEMI-ORDERED STICK-BREAKING

which change from one representation to the other. More

precisely, given a posterior sample in the stick-breakingn deriving the change of representations from the IBP to
representation we wish to construct a posterior sample ithe stick-breaking representation, we made use of an in-
the IBP representation and vice versa. Such changes eérmediate representation whereby the active features are
representation allow us to make use of efficient MCMCunordered, while the inactive ones have an ordering of de-
moves in both representations, e.g. interlacing splitgmer creasing stick lengths. Itis in fact possible to directlyrkvo
moves in IBP representation [10] with the slice samplerwith this representation, which we shall call semi-ordered
in stick-breaking representation. Furthermore, sincéa bot stick-breaking.

stick lengths and the ordering of features are integratéd o
in the IBP representation, we can efficiently update bot
in the stick-breaking representation by changing to the 1B
representation and back.

Urhe representation consists Af" active and unordered
eatures, as well as an ordered sequence of inactive fea-
tures. The stick lengths for the active features have condi-
tional distributions:

We appeal to the infinite limit formulation of both repre-

sentations to derive the appropriate procedures. In partic
lar, we note that the IBP is obtained by ignoring the order-
ing on features and integrating out the weights ) in an while for the inactive features we have a Markov property:

arbitrarily large finite model, while the stick-breakingeo
struction is obtained by enforcing an ordering with decreas  p(.
ing weights. Thus, given a sample in either representations

our approach is to construct a corresponding sample in an

wi|z. k ~ Beta(m. j, 14+ N —m. ) (30)

1y, 25k = 0) o< exp(0; L(1 = p,))")

(1)1 = 1) VIO < iy < py—yy)  (31)

o

(



5.2 SLICE SAMPLER

=
o
W
T

To use the semi-ordered stick-breaking construction as
representation for inference, we can again use the slic -
sampler to adaptively truncate the representation for-inac -
tive features. This gives an inference scheme which work:
in the non-conjugate case, is not approximate, has an ada ‘ ‘ 1

tive truncation level, but without the restrictive ordegin Stick-Breaking Semi-Ordered ~ Gibbs Sampling
constraint of the stick-breaking construnction. The repre

sentation(s, K, Z1.x 1.5+, 1] s+ 01:5c+) CONsists only  Figure 2: Autocorrelation times fak* for the slice sam-

of the KT active features and the slice variable pler in decreasing stick lengths ordering, in semi-ordered
stick-breaking representation, and for the Gibbs sampler.

N
T

mixing time
=
o

(N
T

]

s ~ Uniform[0, p*] p* = min {1, min N;:} (32)
1<k<K+

Once a slice value is drawn, we generdté inactive For each dataset and each sampler, we repéatads of
features, with their stick lengths drawn from (31) until 15,000 iterations. We used the autocorrelation coefficients

M(()KOJrl) < 5. The associated feature colUmES y ;- of the number of represented featud€s and o (with a

are initialized to 0 and the parametefs,.. drawn from ~Maximum lag 0f2500) as measures of mixing time. We
their prior. Sampling for the feature entries and paranseterfound that mixing in&* is slower than inx for all datasets
for both the active and just generated inactive features prgdd report results only fok™* here. We also found that
ceed as before. Afterwards, we drop from the list of activel this regime the autocorrelation times do not vary with
features any that became inactive, while we add to the lisfimensionality or witho? . In Figure 2 we report the auto-

any inactive feature that became active. Finally, the stickcorrelation times of™ over all runs, all datasets, and all
lengths for the new list of active features are drawn fromthrée samplers. As expected, the slice sampler using the de-
their conditionals (30). creasing stick lengths ordering was always slower than the

semi-ordered one. Surprisingly, we found that the semi-
ordered slice sampler was just as fast as the Gibbs sampler
6 EXPERIMENT which fully exploits conjugacy. This is about as well as we

) ) o would expect a more generally applicable non-conjugate
In this section we compare the mixing performance of thesampler to perform.

two proposed slice samplers against Gibbs sampling. We

chose a simple synthetic dataset so that we can be assured

of convergence to the true posterior and that mixing times/. DEMONSTRATION

can be estimated reliably in a reasonable amount of compu-

tation time. We also chose to apply the three samplers on l this section we apply the semi-ordered slice sampler to
conjugate model since Gibbs sampling requires conjugacy,000 examples of handwritten images of 3's in the MNIST
although our implementation of the two slice samplers diddataset. The model we worked with is a generalization of
not make use of this. In the next section we demonstratéhat in Section 6, where in addition to modelling feature
the modelling performance of a non-conjugate model useccurrences, we also model per object features values [6].
ing the semi-ordered slice sampler on a dataset of MNISTn particular, letY” be a matrix of the same size &s with
handwritten digits. i.i.d. zero mean unit variance Gaussian entries. We model

We used the conjugate linear-Gaussian binary latent feaqacmi as

ture model for comparing the performances of the different
samplers [6]. Each data point is modelled using a spher-

ical Gaussian with mean; . A and variancer% , wherez; . . . N N
an,: X i where® is elementwise multiplication. Specification for

is the row vector of feature occurrences corresponding t?he rest of the model is as in Section 6. We can integrate
zi, andA is a matrix whosdith row forms the parameters or A out while maintaining tractability, but not both.

for thekth feature. Entries ofl are drawni.i.d. from a zero
mean Gaussian with varianeé€,. We generated,2 and  The handwritten digitimages are first preprocessed by pro-
3 dimensional datasets from the model with data variancgecting on to the first 64 PCA components, and the sampler
fixed atc% = 1, varying values of the strength parameterran for 10000 iterations. The trace plot of the log likeli-

a = 1,2 and the latent feature varianeg = 1,2,4,8. For ~ hood and the distribution of the number of active features
each combination of parameters we produced five datasetse shown in Figure 3. The model succesfully finds latent
with 100 data points, giving a total of 120 datasets. For allfeatures to reconstruct the images as shown in Figure 4.
datasets, we fixed3, ando? to the generating values and Some of the latent features found are shown in Figure 5.
learned the feature matrix ando. Most appear to model local shifts of small edge segments

Ii|Z7KAaO'§{ NN((ZZ, Qyi,:)Aaa'g{I)a (33)
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ments. A direct consequence of our stick-breaking con-
S et teats” struction is that a draw from such a Beta process has the

form A = 377 k) ds, With 1,y drawn from (5) and

0 drawn i.i.d. from the base measufe. This is a par-
Figure 3: Top-left the log likelihood trace plot. The sam- ticularly simply case of a more general construction called
pler quickly finds a high likelihood regiorilop-right his-  the inverse Lévy measure [18, 9]. Generalizations to us-
togram of the number of active features over the 10000 itering other stick-breaking constructions automaticallydiea
ations.Bottom-left number of images sharing each featureto generalizations of the Beta process, and we are currently
during the last MCMC iterationBottom-right histogram  exploring a number of possibilities, including the Pitman-
of the number of active features used by each input imageYor extension. Finally, the duality observed in Section 3.2
Note that about half of the features are used by only a fevseems to be a hitherto unknown connection between the
data points, and each data point is represented by a smd#eta process and the DP which we are currently trying to
subset of the active features. understand.

m, (# objects with feature k)

20 40 60 80 100 120
k (feature label)

As an aside, it is interesting to note the importance of fea-
ture ordering in the development of the IBP. To make the
derivation rigorous, [6] had to carefully ignore the featur
ordering by considering permutation-invariant equivaken
classes before taking the infinite limit. In this paper, we de
rived the stick-breaking construction by imposing a featur
ordering with decreasing feature weights.

To conclude, our development of a stick-breaking construc-
tion for the IBP has lead to interesting insights and connec-
tions, as well as practical algorithms such as the new slice
samplers.

ACKNOWLEDGEMENTS
Figure 4:Last column original digits. Second last column
reconstructed digitsOther columnsfeatures used for re-
construction.

We thank the reviewers for insightful comments. YWT
thanks the Lee Kuan Yew Endowment Fund for funding.

REFERENCES
of the digits, and are reminiscent of the result of learning

models with sparse priors (e.g. ICA) on such images [16]. [1] D. Aldous. Exchangeability and related topics. In
Ecole dEté de Probabilies de Saint-Flour XllI-

8 DISCUSSION AND EUTURE WORK 1983 pages 1-198. Springer, Berlin, 1985.

[2] W. Chu, Z. Ghahramani, R. Krause, and D. L. Wild.

We have derived novel stick-breaking representations®f th
Indian buffet process. Based on these representations new
MCMC samplers are proposed that are easy to implement
and work on more general models than Gibbs sampling.

In experiments we showed that these samplers are just a?3

efficient as Gibbs without using conjugacy.

[17] have recently showed that the IBP is a distribution
on matrices induced by the Beta process with a constant

strength parameter of 1. This relation to the Beta process[4]

is proving to be a fertile ground for interesting develop-

Identifying protein complexes in high-throughput
protein interaction screens using an infinite latent fea-
ture model. IBIOCOMPUTING: Proceedings of the
Pacific Symposiup2006.

] W.R. Gilks and P. Wild. Adaptive rejection sampling

for Gibbs sampling.Applied Statistics41:337-348,
1992.

S. Goldwater, T.L. Griffiths, and M. Johnson. Interpo-
lating between types and tokens by estimating power-



law generators. IMdvances in Neural Information [19] F. Wood, T. L. Griffiths, and Z. Ghahramani. A
Processing System&lume 18, 2006. non-parametric Bayesian method for inferring hidden

- . . causes. IrProceedings of the Conference on Uncer-
[5] %ogglr:\:i’t: .iﬁjﬁrlfifglyarrfag)./ Etsnisfz:tisrgg. %r((:)tjome tainty in Artificial Intelligence volume 22, 2006.
ceedings of the International Conference on Machine
Learning volume 23, 2006. APPENDIX

[6] T. L. Griffiths and Z. Ghahramani. Infinite latent Recall from the construction gf ;. ;1. that it is simply
feature models and the Indian buffet process. Inthe K — oo limit of a decreasing ordering qft,,. Since
Advances in Neural Information Processing Systemsreordering does not affect the probabilitiesgfs given
volume 18, 2006. the corresponding, for eachl € Ly,

[7] H. Ishwaran and L.F. James. Gibbs sampling meth- ;. _, — 0lptry)
ods for stick-breaking priordournal of the American ’
Statistical Associatior®6(453):161-173, 2001. zKlim /p(/LLka))p(z;,Lk = 0luL,,) duL,

[8] M. Kalli and S. G. Walker. Slice sampling for N - .
the Dirichlet process mixture model. Poster pre-Giveny (), ju's andz;’s are conditionally i.i.d. across dif-
sented at the Eighth Valencia International Meetingferent!’s, with cdf of ;;; as given in (12). Thus we have

on Bayesian Statistics, 2006.
K—k

He(k) o
[9] P. Lévy. Theorie de L'Addition des Variables :Khm (/ (1 —M)N%M(_k)?u?é—ldu) (34)
Aléatoires Paris: Gauthier-Villars, 1937. —N\Jo

[10] E. Meeds, Z. Ghahramani, R. Neal, and S. T. RoweisApplying change of variables = 1/ to the integral,
Modeling dyadic data with binary latent factors. In

Advances in Neural Information Processing Systems 1 .
volume 19, to appear 2007. / (1 = vpg)N v~ tdy
0
[11] D. J. Navarro and T. L. Griffiths. A nonparametric 1

Na, £—1
Bayesian method for inferring features from similar- (1 =v v = pw)" gre"dv

ity judgements. InAdvances in Neural Information

1
Processing Systemglume 19, to appear 2007. _

N
SN A=)V = pgy)) grE T dy
[12] R. M. Neal. Slice sampling.Annals of Statistigs =0
31:705-767, 2003.

M= 11 == 3

Il
=)

() (U= o) T R
[ K I'(&+i+N—i+1

[13] R.M. Neal. Markov chain sampling methods for (RitN—t)

Dirichlet process mixture modeldournal of Compu- e N

tational and Graphical Statisti¢®:249-265, 2000. = (Nﬁ’l?)!i! (1— N(k))i%%

=

K3

[14] J. Pitman and M. Yor. The two-parameter Poisson- .
Dirichlet distribution derived from a stable subordi- = (H”Lliﬂ) (1 +as M(l _ H(k))i>
nator. Annals of Probability25:855-900, 1997. =K

[15] J. Sethuraman. A constructive definition of Dirichlet Finally, plugging the above into (34) and takifg — oo,
priors. Statistica Sinica4:639—-650, 1994.

[16] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. p(z:>k = Ol

Energy-based models for sparse overcomplete repre- = exp ( —aHy +« ZZN:I %(1 — u(k))i) (35)
sentations. Journal of Machine Learning Research
4:1235-1260, Dec 2003. To obtain (25), we note that the conditional fay,) is the

) ) _ posterior conditioned on both ;, = 0 andz. ., = 0. The
[17] R. Thibaux and M. I. Jordan. Hierarchical beta Pro- prior given 1) is (14), the probability of. , = 0 is

cesses and the Indian buffet process. This volumeygt (1 — xy)™Y, while the probability of. -, = 0is (35);
2007. multiplying all three gives (25).

[18] R. L. Wolpert and K. Ickstadt. Simulations of lévy
random fields. InPractical Nonparametric and
Semiparametric Bayesian Statistiggages 227-242.
Springer-Verlag, 1998.



