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Abstract

When predicting class labels for objects within a relational database, it is often
helpful to consider a model for relationships: this allows for information between
class labels to be shared and to improve prediction performance. However, there
are different ways by which objects can be related within a relational database.
One traditional way corresponds to a Markov network structure: each existing
relation is represented by an undirected edge. This encodesthat, conditioned on
input features, each object label is independent of other object labels given its
neighbors in the graph. However, there is no reason why Markov networks should
be the only representation of choice for symmetric dependence structures. Here
we discuss the case when relationships are postulated to exist due tohidden com-
mon causes. We discuss how the resulting graphical model differs from Markov
networks, and how it describes different types of real-world relational processes.
A Bayesian nonparametric classification model is built uponthis graphical repre-
sentation and evaluated with several empirical studies.

1 Contribution

Prediction problems, such as classification, can be easier when class labels share a sort of relational
dependency that is not accounted by the input features [10].If the variables to be predicted are at-
tributes of objects in a relational database, such dependencies are often postulated from the relations
that exist in the database. This paper proposes and evaluates a new method for building classifiers
that uses information concerning the relational structureof the problem.

Consider the following standard example, adapted from [3].There are different webpages, each
one labeled according to some class (e.g., “student page” or“not a student page”). Features such
as the word distribution within the body of each page can be used to predict each webpage’s class.
However, webpages do not exist in isolation: there are linksconnecting them. Two pages having a
common set of links is evidence for similarity between such pages. For instance, ifW1 andW3 both
link to W2, this is commonly considered to be evidence forW1 andW3 having the same class. One
way of expressing this dependency is through the following Markov network [5]:
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HereFi are the features of pageWi, andCi is its respective page label. Other edges linkingF
variables toC variables (e.g.,F1−C2) can be added without affecting the main arguments presented
in this section. The semantics of the graph, for a fixed input feature set{F1, F2, F3}, are as follows:
C1 is marginallydependenton C3, but conditionallyindependentgiven C2. Depending on the
domain, this might be either a suitable or unsuitable representation of relations. For instance, in some
domains it could be the case that the most sensible model would state thatC1 is only informative
aboutC3 once we know whatC2 is: that is,C1 andC3 are marginallyindependent, butdependent
givenC2. This can happen if the existence of a relation(Ci, Cj) corresponds to the existence of
hidden common causesgenerating this pair of random variables.

Consider the following example, loosely based on a problem described by [12]. We have three
objects, Microsoft (M ), Sony (S) and Philips (P ). The task is a regression task where we want
to predict the stock market price of each company given its profitability from last year. The given
relationships are thatM andS are direct competitors (due to the videogame console market), as
well S andP (due to the TV set market).
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Figure 1: (a) Assumptions that relate Microsoft, Sony and Philips stock prices through hidden com-
mon cause mechanisms, depicted as unlabeled gray vertices;(b) A graphical representation for
generic hidden common causes relationships by using bi-directed edges; (c) A depiction of the same
relationship skeleton by a Markov network model, which has different probabilistic semantics.

It is expected that several market factors that affect stockprices are unaccounted by the predictor
variablePast Year Profit. For example, a shortage of Microsoft consoles is a hidden common fac-
tor for both Microsoft’s and Sony’s stock. Another hidden common cause would be a high price
for Sony’s consoles. Assume here that these factors have no effect on Philips’ stock value. A de-
piction of several hidden common causes that correpond to the relationsCompetitor(M, S) and
Competitor(S, P ) is given in Figure 1(a) as unlabeled gray vertices.

Consider a linear regression model for this setup. We assumethat for each objectOi ∈ {M, S, P},
the stock priceOi.Stock, centered at the mean, is given by

Oi.Stock = β × Oi.P rofit + εi (1)

where eachεi is a Gaussian random variable.

The fact that there are several hidden common causes betweenM andS can be modeled by the
covariance ofεm andεs, σms. That is, unlike in standard directed Gaussian models,σms is allowed
to be non-zero. The same holds forσsp. Covariances of error terms of unrelated objects should
be zero (σmp = 0). This setup is very closely related to the classicseemingly unrelated regression
model popular in economics [12].

A graphical representation for this type of model is thedirected mixed graph(DMG) [9, 11], with
bi-directed edges representing the relationship of havinghidden common causes between a pair
of vertices. This is shown in Figure 1(b). Contrast this to the Markov network representation in
Figure 1(c). The undirected representation encodes thatεm andεp are marginally dependent, which



does not correspond to our assumptions1. Moreover, the model in Figure 1(b) states that once
we observe Sony’s stock price, Philip’s stocks (and profit) should have a non-zero association with
Microsoft’s profit: this follows from a extension of d-separation to DMGs [9]. This is expected from
the assumptions (Philip’s stocks should tell us something about Microsoft’s once we know Sony’s,
but not before it), but does not hold in the graphical model inFigure 1(c). While it is tempting
to use Markov networks to represent relational models (freeof concerns raised by cyclic directed
representations), it is clear that there are problems for which they are not a sensible choice.

This is not to say that Markov networks are not the best representation for large classes of relational
problems. Conditional random fields [4] are well-motivatedMarkov network models for sequence
learning. The temporal relationship is closed under marginalization: if we do not measure some steps
in the sequence, we will still link the corresponding remaining vertices accordingly, as illustrated in
Figure 2. Directed mixed graphs are not a good representation for this sequence structure.
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Figure 2: (a) A conditional random field (CRF) graph for sequence data; (b) A hypothetical scenario
where two of the time slices are not measured, as indicated bydashed boxes; (c) The resulting CRF
graph for the remaining variables, which corresponds to thesame criteria for construction of (a).

To summarize, the decision between using a Markov network ora DMG reduces to the following
modeling issue: if two unlinked object labelsyi, yj are statistically associated when some chain
of relationshipsexistsbetweenyi andyj , then the Markov network semantics should apply (as in
the case for temporal relationships). However, if the association arises onlygiven the valuesof the
other objects in the chain, then this is accounted by the dependence semantics of the directed mixed
graph representation.The DMG representation propagates training data information through other
training points. The Markov network representation propagates training data information through
test points. Propagation through training points is relevant in real problems. For instance, in a
webpage domain where each webpage has links to pages of several kinds (e.g., [3]), a chain of
intermediated points between two classes labelsyi andyj is likely to be more informative if we
know the values of the labels in this chain. The respective Markov network would ignore all training
points in this chain besides the endpoints.

In this paper, we introduce a non-parametric classificationmodel for relational data that factorizes
according to a directed mixed graph. Sections 2 and 3 describes the model and contrasts it to a
closely related approach which bears a strong analogy to theMarkov network formulation. Experi-
ments in text classification are described in Section 4.

2 Model

Chu et al. [2] describe an approach for Gaussian process classification using relational information,
which we review and compare to our proposed model.

Previous approach: relational Gaussian processes throughindicators − For each pointx
in the input spaceX , there is a corresponding function valuefx. Given observed input points
x1,x2, . . . ,xn, a Gaussian process prior overf = [f1, f2, . . . , fn]T has the shape

P(f) =
1

(2π)n/2|Σ|1/2
exp

(

−1

2
fT Σ−1f

)

(2)

1For Gaussian models, the absence of an edge in the undirectedrepresentation (i.e., Gaussian Markov
random fields) corresponds to a zero entry in theinversecovariance matrix, where in the DMG it corresponds
to a zero in the covariance matrix [9].
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Figure 3: (a) A prediction problem wherey3 is unknown and the training set is composed of other
two datapoints. Dependencies betweenf1, f2 andf3 are given by a Gaussian process prior and not
represented in the picture. Indicatorsξij are known and set to 1; (b) The extra associations that
arise by conditioning onξ = 1 can be factorized as the Markov network model here depicted,in the
spirit of [9]; (c) Our proposed model, which ties the error terms and has origins in known statistical
models such as seemingly unrelated regression and structural equation models [11].

where theijth entry ofΣ is given by a Mercer kernel functionK(xi,xj) [8].

The idea is to start from a standard Gaussian process prior, and add relational information by con-
ditioning onrelational indicators. Let ξij be an indicator that assumes different values, e.g., 1 or 0.
The indicator values are observed for each pair of data points (xi,xj): they are an encoding of the
given relational structure. A model forP (ξij = 1|fi, fj) is defined. This evidence is incorporated
into the Gaussian process by conditioning on all indicatorsξij that are positive. Essentially, the idea
boils down to usingP(f |ξ = 1) as the prior for a Gaussian process classifier. Figure 3(a) illus-
trates a problem with datapoints{(x1, y1), (x2, y2), (x3, y3)}. Gray vertices represent unobserved
variables. Eachyi is a binary random variable, with conditional probability given by

P(yi = 1|fi) = Φ(fi/σ) (3)

whereΦ(·) is the standard normal cumulative function andσ is a hyperparameter. This can be
interpreted as the cumulative distribution offi + εi, wherefi is given andεi is a normal random
variable with zero mean and varianceσ2.

In the example of Figure 3(a), one has two relations:(x1, x2), (x2, x3). This information is incorpo-
rated by conditioning on the evidence(ξ12 = 1, ξ23 = 1). Observed points(x1, y1), (x2, y2) form
the training set. The prediction task is to estimatey3. Notice thatξ12 is not used to predicty3: the
Markov blanket forf3 includes(f1, f2, ξ23, y3, ε3) and the input features. Essentially, conditioning
on ξ = 1 corresponds to a pairwise Markov network structure, as depicted in Figure 3(b) [9]2.

Our approach: mixed graph relational model − Figure 3(c) illustrates our proposed setup. For
reasons that will become clear in the sequel, we parameterize the conditional probability ofyi as

P(yi = 1|gi, vi) = Φ(gi/
√

vi) (4)

wheregi = fi + ζi. As before, Equation (4) can be interpreted as the cumulative distribution of
gi + ε?

i , with ε?
i as a normal random variable with zero mean and variancevi = σ2 − σ2

ζi
, the last

term being the variance ofζi. That is, we break the original error term asεi = ζi + ε?
i , whereε?

i
andε?

j are independent for alli 6= j. Random vectorζ is a multivariate normal with zero mean and
covariance matrixΣζ . The key aspect in our model is thatthe covariance ofζi andζj is non-zero
only if objectsi and j are related(that is, bi-directed edgeyi ↔ yj is in the relational graph).
ParameterizingΣζ for relational problems is non-trivial and discussed in thenext section.

In the example of Figure 3, one noticeable difference of our model 3(c) to a standard Markov network
models 3(b) is that now the Markov blanket forf3 includes error terms for all variables (bothε and
ζ terms), following the motivation presented in Section 1.

2In the figure, we are not representing explicitly thatf1, f2 andf3 are not independent (the prior covari-
ance matrixΣ is complete). The figure is meant as a representation of the extra associations that arise when
conditioning onξ = 1, and the way such associations factorize.



As before, the prior forf in our setup is the Gaussian process prior (2). This means that g has the
following Gaussian process prior (implicitly conditionedonx):

P(g) =
1

(2π)n/2|R|1/2
exp

{

−1

2
g>R−1g

}

(5)

whereR = K + Σζ is the covariance matrix ofg = f + ζ, with Kij = K(xi,xj).

3 Parametrizing a mixed graph model for relational classification

For simplicity, in this paper we will consider only relationships that induce positive associations
between labels. Ideally, the parameterization ofΣζ has to fulfill two desiderata: (i). it should respect
the marginal independence constraints as encoded by the graphical model (i.e., zero covariance for
vertices that are not adjacent), and be positive definite; (ii). it has to be parsimonious in order to
facilitate hyperparameter selection, both computationally and statistically. Unlike the multivariate
analysis problems in [11], the size of our covariance matrixgrows with the number of data points.

As shown by [11], exact inference in models with covariance matrices with zero-entry constraints is
computationally demanding. We provide two alternative parameterizations that are not as flexible,
but which lead to covariance matrices that are simple to compute and easy to implement. We will
work under the transductive scenario, where training and all test points are given in advance. The
corresponding graph thus contain unobserved and observed label nodes.

3.1 Method I

The first method is an automated method to relax some of the independence constraints, while
guaranteeing positive-definiteness, and a parameterization that depends on a single scalarρ. This
allows for more efficient inference and is done as follows:

1. LetGζ be the corresponding bi-directed subgraph of our original mixed graph, and letU0

be a matrix withn × n entries,n being the number of nodes inGζ

2. SetU0

ij to be the number of cliques inGζ whereyi andyj appear together;

3. SetU0

ii to be the number of cliques containingyi, plus a small constant∆;

4. SetU to be the corresponding correlation matrix obtained by intepretingU0 as a covariance
matrix and rescaling it;

Finally, setΣζ = ρU, whereρ ∈ [0, 1] is a given hyperparameter. MatrixU is always guaranteed to
be positive definite: it is equivalent to obtaining the covariance matrix ofy from a linear latent vari-
able model, where there is an independent standard Gaussianlatent variable as a common parent to
every clique, and every observed nodeyi is given by the sum of its parents plus an independent error
term of variance∆. Marginal independencies are respected, since independent random variables
will never be in a same clique inGζ . In practice, this method cannot be used as is since the number
of cliques will in general grow at an exponential rate as a function ofn. Instead, we first triangulate
the graph: in this case, extracting cliques can be done in polynomial time. This is a relaxation of the
original goal, since some of the original marginal independence constraints will not be enforced due
to the triangulation3.

3.2 Method II

The method suggested in the previous section is appealing under the assumption that vertices that
appear in many common cliques are more likely to have more hidden common causes, and hence
should have stronger associations. However, sometimes thetriangulation introduces bad artifacts,
with lots of marginal independence constraints being violated. In this case, this will often result in
a poor prediction performance. A cheap alternative approach is not generating cliques, and instead

3The need for an approximation is not a shortcoming only of theDMG approach. Notice that the relational
Gaussian process of [2] also requires an approximation of its relational kernel.
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Figure 4: (a) The link matrix for the political books dataset. (b) The relational kernel matrix obtained
with the approximated Method I. (c) The kernel matrix obtained with Method II, which tends to
produce much weaker associations but does not introduce spurious relations.

getting a marginal covariance matrix from a different latent variable model. In this model, we
create an independent standard Gaussian variable for each edgeyi ↔ yj instead of each clique. No
triangulation will be necessary, and all marginal independence constraints will be respected. This,
however, has shortcomings of its own: for all pairs(yi, yj) connected by an edge, it will be the case
thatU0

ij = 1, whileU0

ii can be as large asn. This means that the resulting correlation inUij can be
close to zero even ifyi andyj are always in the same cliques. In Section 4, we will choose between
Methods I and II according to the marginal likelihood of the model.

3.3 Algorithm

Recall that our model is a Gaussian process classifier with error termsεi of varianceσ such that
εi = ζi + ε?

i . Without loss of generality, we will assume thatσ = 1. This results in the following
parameterization of the full error covariance matrix:

Σε = (1 − ρ)I + ρU (6)

whereI is ann × n identity matrix. Matrix(1 − ρ)I corresponds to the covariance matrixΣε? .

The usefulness of separatingε asε? andζ becomes evident when we use an expectation-propagation
(EP) algorithm [7] to perform inference in our relational classifier. Instead of approximating the
posterior off , we approximate the posterior densityP(g|D), D = {(x1, y1), . . . , (xn, yn)} being
the given training data. The approximate posterior has the form Q(g) ∝ P(g)

∏

i t̃i(gi) where
P(g) is the Gaussian process prior with kernel matrixR = K + Σζ as defined in the previous
section. Since the covariance matrixΣε? is diagonal, the true likelihood ofy giveng factorizes
over each datapoint:P(y|g) =

∏n
i=1

P(yi|gi), and standard EP algorithms for Gaussian process
classification can be used [8] (with the variance given byΣε? instead ofΣε, and kernel matrixR
instead ofK).

The final algorithm defines a whole new class of relational models, depends on a single hyperpa-
rameterρ which can be optimized by grid search in[0, 1], and requires virtually no modification of
code written for EP-based Gaussian process classifiers4.

4 Results

We now compare three different methods in relational classification tasks. We will compare a
standard Gaussian process classifier (GPC), the relationalGaussian process (RGP) of [2] and our
method, the mixed graph Gaussian process (XGP). A linear kernelK(x, z) = x · z is used, as de-
scribed by [2]. We set∆ = 10−4 and the hyperparameterρ is found by a grid search in the space
{0.1, 0.2, 0.3, . . . , 1.0} maximizing the approximate EP marginal likelihood5.

4We provide MATLAB/Octave code for our method in http://www.statslab.cam.ac.uk/∼silva.
5For triangulation, we used the MATLAB implementation of theReverse Cuthill McKee vertex ordering

available at http://people.scs.fsu.edu/∼burkardt/msrc/rcm/rcm.html



Table 1: The averaged AUC scores of citation prediction on test cases of the Cora database are
recorded along with standard deviation over 100 trials. “n” denotes the number of papers in one
class. “Citations” denotes the citation count within the two paper classes.

Group n Citations GPC GPC with Citations XGP
5vs1 346/488 2466 0.905± 0.031 0.891± 0.022 0.945± 0.053
5vs2 346/619 3417 0.900± 0.032 0.905± 0.044 0.933± 0.059
5vs3 346/1376 3905 0.863± 0.040 0.893± 0.017 0.883± 0.013
5vs4 346/646 2858 0.916± 0.030 0.887± 0.018 0.951± 0.042
5vs6 346/281 1968 0.887± 0.054 0.843± 0.076 0.955± 0.041
5vs7 346/529 2948 0.869± 0.045 0.867± 0.041 0.926± 0.076

4.1 Political books

We consider first a simple classification problem where the goal is to classify whether a par-
ticular book is of liberal political inclination or not. Thefeatures of each book are given
by the words in the Amazon.com front page for that particularbook. The choice of books,
labels, and relationships are given in the data collected byValdis Krebs and available at
http://www-personal.umich.edu/ mejn/netdata. The data containing book features can be found at
http://www.statslab.cam.ac.uk/∼silva. There are 105 books, 43 of which are labeled as liberalbooks.
The relationships are pairs of books which are frequently purchased together by a same customer.
Notice this is an easy problem, where labels are strongly associated if they share a relationship.
We performed evaluation by sampling 100 times from the original pool of books, assigning half of
them as trainining data. The evaluation criterion was the area under the curve (AUC) for this binary
problem. This is a problem where Method I is suboptimal. Figure 4(a) shows the original binary
link matrix. Figure 4(b) depicts the correspondingU0 matrix obtained with Method I, where entries
closer to red correspond to stronger correlations. Method II gives a better performance here (Method
I was better in the next two experiments). The AUC result for GPC was of 0.92, while both RGP
and XGP achieved 0.98 (the difference between XGP and GPC having a std. deviation of 0.02).

4.2 Cora

The Cora collection [6] contains over 50,000 computer science research papers including biblio-
graphic citations. We used a subset in our experiment. The subset consists of 4,285 machine learning
papers categorized into 7 classes. The second column of Table 1 shows the class sizes. Each paper
was preprocessed as a bag-of-words, a vector of “term frequency” components scaled by “inverse
document frequency”, and then normalized to unity length. This follows the pre-processing used in
[2]. There is a total of 20,082 features. For each class, we randomly selected 1% of the labelled
samples for training and tested on the remainder. The partition was repeated 100 times. We used
the fact that the database is composed of fairly specializedpapers as an illustration of when XGP
might not be as optimal as RGP (whose AUC curves are very closeto 1), since the population of
links tends to be better separated between different classes (but this is also means that the task is
fairly easy, and differences disappear very rapidly with increasing sample sizes). The fact there is
very little training data also favors RGP, since XGP propagates information through training points.
Still, XGP does better than the non-relational GPC. Notice that adding the citation adjacency matrix
as a binary input feature for each paper does not improve the performance of the GPC, as shown in
Table 1. Results for other classes are of similar qualitative nature and not displayed here.

4.3 WebKB

The WebKB dataset consists of homepages from 4 different universities: Cornell, Texas, Washington
and Wisconsin [3]. Each webpage belongs to one out of 7 categories: student, professor, course,
project, staff, department and “other”. The relations comefrom actual links in the webpages. There
is relatively high heterogeneity of types of links in each page: in terms of mixed graph modeling,
this linkage mechanism is explained by a hidden common cause(e.g., a student and a course page
are associated because that person’s interest in enrollingas a student also creates demand for a
course). The heterogeneity also suggests that two unlinkedpages should not, on average, have an
association if they link to a common pageW . However, observing the type of pageW might create



Table 2: Comparison of the three algorithms on the task “other” vs. “not-other” in the WebKB
domain. Results for GPC and RGP taken from [2]. The same partitions for training and test are used
to generate the results for XGP. Mean and standard deviationof AUC results are reported.

University Numbers Other or Not
Other All Link GPC RGP XGP

Cornell 617 865 13177 0.708± 0.021 0.884± 0.025 0.917± 0.022
Texas 571 827 16090 0.799± 0.021 0.906± 0.026 0.949± 0.015

Washington 939 1205 15388 0.782± 0.023 0.877± 0.024 0.923± 0.016
Wisconsin 942 1263 21594 0.839± 0.014 0.899± 0.015 0.941± 0.018

the association. We compare how the three algorithms perform when trying to predict if a webpage
is of class “other” or not (the other classifications are easier, with smaller differences. Results are
omitted for space purposes). The proportion of “other” to non-“other” is about 4:1, which makes the
area under the curve (AUC) a more suitable measure of success. We used the same 100 subsamples
from [2], where 10% of the whole data is sampled from the pool for a specific university, and the
remaining is used for test. We also used the same features as in [2], pre-processed as described in the
previous section. The results are shown in Table 2. Both relational Gaussian processes are far better
than the non-relational GPC. XGP gives significant improvements over RGP in all four universities.

5 Conclusion

We introduced a new family of relational classifiers by extending a classical statistical model [12]
to non-parametric relational classification. This is inspired by recent advances in relational Gaus-
sian processes [2] and Bayesian inference for mixed graph models [11]. We showed empirically
that modeling the type of latent phenomena that our approachpostulates can sometimes improve
prediction performance in problems traditionally approached by Markov network structures.

Several interesting problems can be treated in the future. It is clear that there are many different ways
by which the relational covariance matrix can be parameterized. Intermediate solutions between
Methods I and II, approximations through matrix factorizations and graph cuts are only a few among
many alternatives that can be explored. Moreover, there is arelationship between our model and
multiple kernel learning [1], where one of the kernels comesfrom error covariances. This might
provide alternative ways of learning our models, includingmultiple types of relationships.

Acknowledgements: We thank Vikas Sindhwani for the preprocessed Cora database.
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