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Abstract

When predicting class labels for objects within a relatlateabase, it is often
helpful to consider a model for relationships: this allowsihformation between
class labels to be shared and to improve prediction perfocsnaHowever, there
are different ways by which objects can be related withinlati@nal database.
One traditional way corresponds to a Markov network stmgctieach existing
relation is represented by an undirected edge. This endhdgsconditioned on
input features, each object label is independent of othgrcoltabels given its
neighbors in the graph. However, there is no reason why Mankbworks should
be the only representation of choice for symmetric depecelstructures. Here
we discuss the case when relationships are postulatedsiodere tohidden com-
mon causesWe discuss how the resulting graphical model differs fromrkdv
networks, and how it describes different types of real-dioglational processes.
A Bayesian nonparametric classification model is built ufias graphical repre-
sentation and evaluated with several empirical studies.

1 Contribution

Prediction problems, such as classification, can be easienslass labels share a sort of relational
dependency that is not accounted by the input features [fLBje variables to be predicted are at-
tributes of objects in a relational database, such depaneteare often postulated from the relations
that exist in the database. This paper proposes and evalatew method for building classifiers
that uses information concerning the relational structditee problem.

Consider the following standard example, adapted from [djere are different webpages, each
one labeled according to some class (e.g., “student pagkiobra student page”). Features such
as the word distribution within the body of each page can leel tis predict each webpage’s class.
However, webpages do not exist in isolation: there are lgdtmecting them. Two pages having a
common set of links is evidence for similarity between suabgs. For instance, W, andW; both
link to W5, this is commonly considered to be evidencelfiér andV; having the same class. One
way of expressing this dependency is through the followiraghdv network [5]:
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Here F; are the features of pad#®;, andC; is its respective page label. Other edges linking
variables taC variables (e.g.f} — C2) can be added without affecting the main arguments pregente
in this section. The semantics of the graph, for a fixed inpatdre se{ F, F», F5}, are as follows:

C1 is marginallydependenbn Cs3, but conditionallyindependengiven C,. Depending on the
domain, this might be either a suitable or unsuitable reprigion of relations. For instance, in some
domains it could be the case that the most sensible modebvatate that”; is only informative
aboutC3 once we know what’; is: that is,C; andC3 are marginallyindependentbutdependent
givenC,. This can happen if the existence of a relati6f, C;) corresponds to the existence of
hidden common causggnerating this pair of random variables.

Consider the following example, loosely based on a problestdbed by [12]. We have three
objects, Microsoft {/), Sony (S) and Philips P). The task is a regression task where we want
to predict the stock market price of each company given itditability from last year. The given
relationships are that/ and .S are direct competitors (due to the videogame console maket
well S and P (due to the TV set market).
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Figure 1: (a) Assumptions that relate Microsoft, Sony aniig#hstock prices through hidden com-
mon cause mechanisms, depicted as unlabeled gray verfies; graphical representation for
generic hidden common causes relationships by using béidid edges; (c) A depiction of the same
relationship skeleton by a Markov network model, which hiffeignt probabilistic semantics.

It is expected that several market factors that affect sppdes are unaccounted by the predictor
variablePast Year Profit For example, a shortage of Microsoft consoles is a hiddemeon fac-
tor for both Microsoft's and Sony’s stock. Another hiddenmsuon cause would be a high price
for Sony’s consoles. Assume here that these factors havéfewi en Philips’ stock value. A de-
piction of several hidden common causes that correpondeaetationsCompetitor(M, S) and
Competitor(S, P) is given in Figure 1(a) as unlabeled gray vertices.

Consider a linear regression model for this setup. We assatéor each objead; € {M, S, P},
the stock pric&);.Stock, centered at the mean, is given by

O;.Stock = 3 x O;.Profit + ¢; (1)

where each; is a Gaussian random variable.

The fact that there are several hidden common causes betWeand .S can be modeled by the
covariance ot,,, ande,, o,,,s. Thatis, unlike in standard directed Gaussian modegls,is allowed

to be non-zero. The same holds toy,. Covariances of error terms of unrelated objects should
be zero §,,,, = 0). This setup is very closely related to the classemingly unrelated regression
model popular in economics [12].

A graphical representation for this type of model is theected mixed grapfDMG) [9, 11], with
bi-directed edges representing the relationship of hahidgen common causes between a pair
of vertices. This is shown in Figure 1(b). Contrast this te Markov network representation in
Figure 1(c). The undirected representation encodes thahde, are marginally dependent, which



does not correspond to our assumptfondloreover, the model in Figure 1(b) states that once
we observe Sony'’s stock price, Philip’s stocks (and profigud have a non-zero association with
Microsoft’s profit: this follows from a extension of d-seption to DMGs [9]. This is expected from
the assumptions (Philip’s stocks should tell us somethrmuaiMicrosoft's once we know Sony'’s,
but not before it), but does not hold in the graphical moddFigure 1(c). While it is tempting

to use Markov networks to represent relational models (@fegoncerns raised by cyclic directed
representations), it is clear that there are problems fachvihey are not a sensible choice.

This is not to say that Markov networks are not the best regmtasion for large classes of relational
problems. Conditional random fields [4] are well-motivatddrkov network models for sequence
learning. The temporal relationship is closed under mat@ation: if we do not measure some steps
in the sequence, we will still link the corresponding renragrvertices accordingly, as illustrated in
Figure 2. Directed mixed graphs are not a good representftidhis sequence structure.

(a) (b) (©)

Figure 2: (a) A conditional random field (CRF) graph for setpeedata; (b) A hypothetical scenario
where two of the time slices are not measured, as indicateldslyed boxes; (c) The resulting CRF
graph for the remaining variables, which corresponds ta#me criteria for construction of (a).

To summarize, the decision between using a Markov netwokk[OMG reduces to the following
modeling issue: if two unlinked object labejs, y; are statistically associated when some chain
of relationshipsexistsbetweeny; andy;, then the Markov network semantics should apply (as in
the case for temporal relationships). However, if the aasion arises onlygiven the valuesf the
other objects in the chain, then this is accounted by thertbgrece semantics of the directed mixed
graph representatiohe DMG representation propagates training data informatihrough other
training points. The Markov network representation progtes training data information through
test points. Propagation through training points is relevant in realbpgms. For instance, in a
webpage domain where each webpage has links to pages oékskiets (e.g., [3]), a chain of
intermediated points between two classes lapgelandy; is likely to be more informative if we
know the values of the labels in this chain. The respectivekblanetwork would ignore all training
points in this chain besides the endpoints.

In this paper, we introduce a non-parametric classificatimalel for relational data that factorizes
according to a directed mixed graph. Sections 2 and 3 desctlie model and contrasts it to a
closely related approach which bears a strong analogy th#rkov network formulation. Experi-
ments in text classification are described in Section 4.

2 Model

Chu et al. [2] describe an approach for Gaussian processifatation using relational information,
which we review and compare to our proposed model.

Previous approach: relational Gaussian processes througindicators — For each pointx
in the input spaceY, there is a corresponding function valyg. Given observed input points

X1,Xa,...,X,, @ Gaussian process prior oet [f1, fa, ..., fu]? has the shape
P(f) ! e Lers g 2)
= —-— X [E—
(27T)n/2|2|1/2 p 2

1For Gaussian models, the absence of an edge in the undinegiessentation (i.e., Gaussian Markov
random fields) corresponds to a zero entry inittversecovariance matrix, where in the DMG it corresponds
to a zero in the covariance matrix [9].
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Figure 3: (a) A prediction problem whegg is unknown and the training set is composed of other
two datapoints. Dependencies betwgenf, and f5; are given by a Gaussian process prior and not
represented in the picture. Indicatdrs are known and set to 1; (b) The extra associations that
arise by conditioning o = 1 can be factorized as the Markov network model here depiotede
spirit of [9]; (c) Our proposed model, which ties the errants and has origins in known statistical
models such as seemingly unrelated regression and stabietiration models [11].

where thejth entry ofX is given by a Mercer kernel functiofi(x;, x;) [8].

The idea is to start from a standard Gaussian process pnidiadd relational information by con-
ditioning onrelational indicators Let¢;; be an indicator that assumes different values, e.g., 1 or O.
The indicator values are observed for each pair of data p@intx;): they are an encoding of the
given relational structure. A model fd?(¢;; = 1|f;, f;) is defined. This evidence is incorporated
into the Gaussian process by conditioning on all indicaggréhat are positive. Essentially, the idea
boils down to usingP (f|¢ = 1) as the prior for a Gaussian process classifier. Figure 3¢} il
trates a problem with datapoinféz1, y1), (2, y2), (x3,y3)}. Gray vertices represent unobserved
variables. Eacly; is a binary random variable, with conditional probabilityen by

P(y: = 1fi) = @(fi/0) 3

where®(-) is the standard normal cumulative function ands a hyperparameter. This can be
interpreted as the cumulative distribution £ff+ ¢;, where f; is given andk; is a normal random
variable with zero mean and variancé

In the example of Figure 3(a), one has two relatidns; «2), (z2, 23). This information is incorpo-
rated by conditioning on the evidentg@> = 1,&;3 = 1). Observed pointézy,y1), (z2, y2) form
the training set. The prediction task is to estimgie Notice that{,, is not used to prediajs: the
Markov blanket forfs includes( f1, f2, £23, y3, €3) and the input features. Essentially, conditioning
on¢ = 1 corresponds to a pairwise Markov network structure, asotiegin Figure 3(b) [9).

Our approach: mixed graph relational model — Figure 3(c) illustrates our proposed setup. For
reasons that will become clear in the sequel, we parametirézconditional probability of; as

P(yi = 1|gi,vi) = ®(gi//0i) (4)

whereg; = f; + (;. As before, Equation (4) can be interpreted as the cumelalistribution of
gi + €, with €& as a normal random variable with zero mean and varianee o2 — ag the last
term being the variance @f. That is, we break the original error term @s= (; + €}, wheree;
ande; are independent for all# j. Random vectoc is a multivariate normal with zero mean and
covariance matrix... The key aspect in our model is the covariance of; and(; is non-zero
only if objectsi and j are related(that is, bi-directed edgg; < y; is in the relational graph).
Parameterizin@. for relational problems is non-trivial and discussed inrtlegt section.

Inthe example of Figure 3, one noticeable difference of oodeh3(c) to a standard Markov network
models 3(b) is that now the Markov blanket ffyrincludes error terms for all variables (batland
¢ terms), following the motivation presented in Section 1.

2In the figure, we are not representing explicitly that f> and fs are not independent (the prior covari-
ance matrix> is complete). The figure is meant as a representation of ttna agsociations that arise when
conditioning or¢ = 1, and the way such associations factorize.



As before, the prior fof in our setup is the Gaussian process prior (2). This meangthas the
following Gaussian process prior (implicitly conditionedx):

P(g) = Wexp{—%gTng} )

whereR = K + X is the covariance matrix ¢f = f + ¢, with K;; = K(x;, x;).

3 Parametrizing a mixed graph model for relational classifiation

For simplicity, in this paper we will consider only relatismps that induce positive associations
between labels. |deally, the parameterizatiolghas to fulfill two desiderata: (i). it should respect
the marginal independence constraints as encoded by thhigahmodel (i.e., zero covariance for
vertices that are not adjacent), and be positive definife; ifihas to be parsimonious in order to
facilitate hyperparameter selection, both computatigraaid statistically. Unlike the multivariate
analysis problems in [11], the size of our covariance majrows with the number of data points.

As shown by [11], exact inference in models with covarianedrioes with zero-entry constraints is
computationally demanding. We provide two alternativeapagterizations that are not as flexible,
but which lead to covariance matrices that are simple to etenpnd easy to implement. We will

work under the transductive scenario, where training ahtést points are given in advance. The
corresponding graph thus contain unobserved and obsetvebiodes.

3.1 Method |

The first method is an automated method to relax some of thepemtience constraints, while
guaranteeing positive-definiteness, and a parameteniztitat depends on a single scaparThis
allows for more efficient inference and is done as follows:

1. LetG. be the corresponding bi-directed subgraph of our origiriaéthgraph, and l1et®
be a matrix withn x n entries,n being the number of nodes @1

2. SetU?j to be the number of cliques ifi; wherey; andy; appear together;

3. SetUY, to be the number of cliques containipg plus a small constank;

4. SetU to be the corresponding correlation matrix obtained bypirgengU® as a covariance
matrix and rescaling it;

Finally, setX. = pU, wherep € [0, 1] is a given hyperparameter. MatiX is always guaranteed to
be positive definite: it is equivalent to obtaining the céaace matrix ofy from a linear latent vari-
able model, where there is an independent standard Gausttahvariable as a common parent to
every clique, and every observed nagés given by the sum of its parents plus an independent error
term of varianceA. Marginal independencies are respected, since indeperaietiom variables
will never be in a same clique i8.. In practice, this method cannot be used as is since the numbe
of cliques will in general grow at an exponential rate as afiom of n. Instead, we first triangulate
the graph: in this case, extracting cliques can be done ympahial time. This is a relaxation of the
original goal, since some of the original marginal indepamk constraints will not be enforced due
to the triangulatiofy

3.2 Method Il

The method suggested in the previous section is appealitigruhe assumption that vertices that
appear in many common cliques are more likely to have morgédniccommon causes, and hence
should have stronger associations. However, sometimesidmgulation introduces bad artifacts,
with lots of marginal independence constraints being walaln this case, this will often result in
a poor prediction performance. A cheap alternative appréanot generating cliques, and instead

3The need for an approximation is not a shortcoming only ofiMG approach. Notice that the relational
Gaussian process of [2] also requires an approximatiors oéiational kernel.
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Figure 4: (a) The link matrix for the political books datagé) The relational kernel matrix obtained
with the approximated Method I. (c) The kernel matrix ob&girwith Method II, which tends to
produce much weaker associations but does not introducmepuelations.

getting a marginal covariance matrix from a different lateariable model. In this model, we
create an independent standard Gaussian variable for dgefy,e— y; instead of each clique. No
triangulation will be necessary, and all marginal indemmat constraints will be respected. This,
however, has shortcomings of its own: for all pdigs y,;) connected by an edge, it will be the case
thatUy; = 1, while U, can be as large as This means that the resulting correlatiorlip; can be
close to zero even ij; andy; are always in the same cliques. In Section 4, we will choosedsn
Methods | and Il according to the marginal likelihood of thedwl.

3.3 Algorithm

Recall that our model is a Gaussian process classifier withr &rmse; of variances such that
€; = (; + €. Without loss of generality, we will assume that= 1. This results in the following
parameterization of the full error covariance matrix:

Ye=(1-pI+pU0 (6)
wherel is ann x n identity matrix. Matrix(1 — p)I corresponds to the covariance mafrix .

The usefulness of separatingse* and¢ becomes evident when we use an expectation-propagation
(EP) algorithm [7] to perform inference in our relationahssifier. Instead of approximating the
posterior off, we approximate the posterior dens®yg|D), D = {(x1,41),-- -, (Xn, yn)} being

the given training data. The approximate posterior has dne Q(g) o P(g) [, t:(g;) where
P(g) is the Gaussian process prior with kernel malix= K + X as defined in the previous
section. Since the covariance matbix- is diagonal, the true likelihood gf given g factorizes
over each datapoint(y|g) = [[;—, P(v:|¢:), and standard EP algorithms for Gaussian process
classification can be used [8] (with the variance giverthy instead of:., and kernel matri®
instead ofK).

The final algorithm defines a whole new class of relational emdiepends on a single hyperpa-
rameterp which can be optimized by grid searchlin 1], and requires virtually no modification of
code written for EP-based Gaussian process claséifiers

4 Results

We now compare three different methods in relational di@ssion tasks. We will compare a
standard Gaussian process classifier (GPC), the relati@madsian process (RGP) of [2] and our
method, the mixed graph Gaussian process (XGP). A lineaeké&i(x, z) = x - z is used, as de-
scribed by [2]. We sef\ = 10~ and the hyperparametgiis found by a grid search in the space
{0.1,0.2,0.3, ..., 1.0} maximizing the approximate EP marginal likelihdod

“We provide MATLAB/Octave code for our method in http://wvstatslab.cam.ac.uksilva.

SFor triangulation, we used the MATLAB implementation of tReverse Cuthill McKee vertex ordering
available at http://people.scs.fsu.edblrkardt/msrc/rcm/recm.html



Table 1. The averaged AUC scores of citation prediction @t ¢ases of the Cora database are
recorded along with standard deviation over 100 trials. denotes the number of papers in one
class. “Citations” denotes the citation count within the paper classes.

Group n Citations GPC GPC with Citations XGP
5vsl | 346/488| 2466 | 0.905+0.031] 0.891+0.022 | 0.945+ 0.053
5vs2 | 346/619| 3417 | 0.900+ 0.032| 0.905+ 0.044 | 0.933+ 0.059
5vs3 | 346/1376| 3905 | 0.863+ 0.040| 0.893+0.017 | 0.883+0.013
5vs4 | 346/646| 2858 | 0.916+ 0.030| 0.887+0.018 | 0.951+ 0.042
5vs6 | 346/281| 1968 | 0.887+0.054| 0.843+0.076 | 0.955+ 0.041
5vs7 | 346/529| 2948 | 0.869+ 0.045| 0.867+0.041 | 0.926+ 0.076

4.1 Political books

We consider first a simple classification problem where thal @@ to classify whether a par-
ticular book is of liberal political inclination or not. Théeatures of each book are given
by the words in the Amazon.com front page for that particidaok. The choice of books,
labels, and relationships are given in the data collectedvalis Krebs and available at
http://www-personal.umich.edu/ mejn/netdata. The dataaining book features can be found at
http://www.statslab.cam.ac.uksilva. There are 105 books, 43 of which are labeled as lilieralks.
The relationships are pairs of books which are frequenttglpased together by a same customer.
Notice this is an easy problem, where labels are stronglyciesed if they share a relationship.
We performed evaluation by sampling 100 times from the nabpool of books, assigning half of
them as trainining data. The evaluation criterion was tlea ander the curve (AUC) for this binary
problem. This is a problem where Method | is suboptimal. Fég(a) shows the original binary
link matrix. Figure 4(b) depicts the correspondidf matrix obtained with Method I, where entries
closer to red correspond to stronger correlations. Methgigés a better performance here (Method
| was better in the next two experiments). The AUC result f&@@was of 0.92, while both RGP
and XGP achieved 0.98 (the difference between XGP and GPi@dawstd. deviation of 0.02).

4.2 Cora

The Cora collection [6] contains over 50,000 computer szeresearch papers including biblio-
graphic citations. We used a subset in our experiment. Theeteonsists of 4,285 machine learning
papers categorized into 7 classes. The second column of Tadilows the class sizes. Each paper
was preprocessed as a bag-of-words, a vector of “term fregieomponents scaled by “inverse
document frequency”, and then normalized to unity lengthis Tollows the pre-processing used in
[2]. There is a total of 20,082 features. For each class, wdamly selected % of the labelled
samples for training and tested on the remainder. The jpartitas repeated 100 times. We used
the fact that the database is composed of fairly speciafizgers as an illustration of when XGP
might not be as optimal as RGP (whose AUC curves are very ¢to&g since the population of
links tends to be better separated between different dggs# this is also means that the task is
fairly easy, and differences disappear very rapidly wittréasing sample sizes). The fact there is
very little training data also favors RGP, since XGP propag@formation through training points.
Still, XGP does better than the non-relational GPC. Notieg adding the citation adjacency matrix
as a binary input feature for each paper does not improvedtfermance of the GPC, as shown in
Table 1. Results for other classes are of similar qualigatizture and not displayed here.

4.3 WebKB

The WebKB dataset consists of homepages from 4 differemeusities: Cornell, Texas, Washington
and Wisconsin [3]. Each webpage belongs to one out of 7 cagsgcstudent, professor, course,
project, staff, department and “other”. The relations cdrom actual links in the webpages. There
is relatively high heterogeneity of types of links in eacly@ain terms of mixed graph modeling,
this linkage mechanism is explained by a hidden common cguge a student and a course page
are associated because that person’s interest in enralirey student also creates demand for a
course). The heterogeneity also suggests that two unlipagds should not, on average, have an
association if they link to a common pagé. However, observing the type of pa@é might create



Table 2: Comparison of the three algorithms on the task tothe “not-other” in the WebKB
domain. Results for GPC and RGP taken from [2]. The sametipartifor training and test are used
to generate the results for XGP. Mean and standard deviatiBlC results are reported.
University Numbers Other or Not

Other  All Link GPC RGP XGP

Cornell 617 865 13177 0.708+0.021 0.884+ 0.025 0.91A 0.022

Texas 571 827 16090 0.799+ 0.021 0.906+ 0.026 0.949t 0.015
Washington| 939 1205 15388 0.782+ 0.023 0.87A 0.024 0.923t 0.016
Wisconsin | 942 1263 21594 0.839+ 0.014 0.899+ 0.015 0.941t 0.018

the association. We compare how the three algorithms panfdren trying to predict if a webpage
is of class “other” or not (the other classifications are &asvith smaller differences. Results are
omitted for space purposes). The proportion of “other” ta+iother” is about 4:1, which makes the
area under the curve (AUC) a more suitable measure of sudsesssed the same 100 subsamples
from [2], where 10% of the whole data is sampled from the pooldf specific university, and the
remaining is used for test. We also used the same featune$2jspre-processed as described in the
previous section. The results are shown in Table 2. Bothiogelal Gaussian processes are far better
than the non-relational GPC. XGP gives significant improgata over RGP in all four universities.

5 Conclusion

We introduced a new family of relational classifiers by edieg a classical statistical model [12]
to non-parametric relational classification. This is inediby recent advances in relational Gaus-
sian processes [2] and Bayesian inference for mixed graptelmdll]. We showed empirically
that modeling the type of latent phenomena that our apprpastulates can sometimes improve
prediction performance in problems traditionally apptueat by Markov network structures.

Several interesting problems can be treated in the futtieclear that there are many different ways
by which the relational covariance matrix can be paramegdti Intermediate solutions between
Methods | and Il, approximations through matrix factoriaas and graph cuts are only a few among
many alternatives that can be explored. Moreover, thererédagionship between our model and
multiple kernel learning [1], where one of the kernels corftem error covariances. This might
provide alternative ways of learning our models, includimgjtiple types of relationships.

Acknowledgements: We thank Vikas Sindhwani for the preprocessed Cora database
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