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Abstract

This note describes a method for approximate inference in infinite models that uses determinis-
tic Expectation Propagation instead of Monte Carlo. For infinite Gaussian mixtures, the algorithm
provides cluster parameter estimates, cluster memberships, and model evidence. Model parame-
ters, such as the expected size of the mixture, can be efficiently tuned via EM with EP as the E-step.
The same approach can apply other infinite models such as infinite HMMs.

1 Introduction

Consider a mixture model with an infinite number of components. From data we can obtain a posterior
on the parameters of the components, but since this is infinite-dimensional we need a sensible way to
summarize it. Define

���
to be the parameters of the mixture component which generated point � � .

Points which came from the same component will have the same
���

. The likelihood for � is thus���
	�� ��
�� � � ��� � � � ��� 
 (1)

If the mixture weights come from a Dirichlet process with parameter � , then the prior probability for
the
���

is given by the recursion

��� ��� � ����� 
�� �������� � ��� ��� 
 � �������� � � ! ���#" � ��� � � ! 
 (2)

These equations summarize the infinite mixture model, in a form which is amenable to Expectation
Propagation. The strategy will be to approximate the posterior over � by a simple factorized distribu-
tion: $%� �&
�� � � $'� ��� 
 (3)

In this note, the factors will be Gaussian:$'� ��� 
)(+* �
, �.-0/1� 
 (4)
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2 ADF equations

We want the probability of a particular dataset 	 �324�65 -�787978- �;:%< , given by an integral over � :

���=	 
>� ?%@ ���
	�� ��
;� � ��� ��� � ����� 
BAC� (5)

There are two types of terms in the integrand: likelihood terms and prior terms. EP will iterate across
the terms, approximating them one by one. Let’s start with the prior terms, denoted D � � �#
E� �6� ��� � � ! ��� 
 .
Each of these, as a function of � , will be approximated by a factorized function:FD � � ��
�� �!HG � FD � ! � � ! 
 (6)

The factors are interpreted as ‘messages’, and D � only sends messages to IKJ � . Because the approxi-
mate posterior is disconnected and normal, we must have:FD � ! � � ! 
�� L � !�MONQP � � �R � � ! � , � ! 
TS /VU 5� ! � � ! � , � ! 
0
 (7)/1� � � � !HG � / U 5! � 
 U 5 (8)

, � � /1� � !OG � / U 5! � , ! � (9)

$�W � � � ! 
�� $%� � ! 
0X FD � ! � � ! 
)(YL W �! * �
, W �! -B/ W �! 
 (10)/ W �! � � / U 5! � / U 5� ! 
 U 5 (11), W �! � / W �! � /ZU 5! , ! � /VU 5� ! , � ! 
 (12)

L W �! � L U 5� !\[[[
/ W �! [[[� / ! � MONQP � � �R �=, ! � , W �! 
TS � / ! � / W �! 
 U 5 �
, ! � , W �! 
B
 (13)

For each term, we form the product D � � ��
 $ W � � �#
 and find its moments. First the integral:] � � ? @^D � � �#
 $�W � � �#
BAC�_� �������� � ] �`� � �������� � � ! ��� ] ! � (14)

where
] �a� � ?%b ��� � 
 $�W � � ��� � � 
cA � (15)] ! � � ?%b $�W � � � ! � � 
 $dW � � ��� � � 
cA � (16)
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It is assumed the latter integrals can be solved analytically. Now the first moments:, � � �] � ? @ ��� D � � �#
 $ W � � �#
cAQ�K� � !OG �fe ! ��g� ! � (17)

where
g���`� � �] �a� ? b � ��� � 
 $�W � � ��� � � 
BA � (18)g� ! � � �] ! � ?%b � $dW � � � ! � � 
 $�W � � ��� � � 
BA � (19)

e �a� � �������� � ] �a�] � (20)

e ! � � �������� � ] ! �] � (21)

e �a� � � ! ��� e ! � � �
(22)

, ! � �] � ? @ � ! D � � ��
 $dW � � �#
cAC�K� � �h� e ! � 
 , W �! � e ! � g� ! � (23)

The number e ! � can be interpreted as a soft assignment of point
�

to the cluster of point I , and the
expectation is a sum over possible assignments. Now the second moments:/1� � ,�i� � �] � ? @ � i� D � � �#
 $ W � � �#
cAC�j� � !HG ��e ! �lk� ! � (24)

where
k���`� � �] �a� ? b � i ��� � 
 $�W � � ��� � � 
BA � (25)k� ! � � �] ! � ? b � im$ W � � � ! � � 
 $ W � � ��� � � 
cA � (26)/ ! � ,�i! � �] � ?%@ � i! D � � �#
 $ W � � �#
cAC� (27)

� � �h� e ! � 
 � / W �! � �=, W �! 
 i 
 � e ! � k� ! � (28)/ ! � � �h� e ! � 
 / W �! � e ! � � k� ! � � g� i! � 
 � e ! � � �h� e ! � 
 � g� ! � � , W �! 
 i (29)

To make this concrete, consider the case of Gaussian components with fixed variance:�6� � � � ��� 
�( * � ���n-Oo 
 (30)��� � 
�( * �
,qp -0/ p 
 (31)��� � 
 $ W � � ��� � � 
�� * � �Qr g���a�.- � / U 5p � � / W �� 
 U 5 
 U 5 
s* �=,�p r , W �� -0/ p � / W �� 
 (32)g���a� � � /VU 5p � � / W �� 
 U 5 
 U 5 � /VU 5p ,qp � � / W �� 
 U 5 , W �� 
 (33)$ W � � � ! � � 
 $ W � � ��� � � 
�� * � �Qr'g� ! �.- �B� / W �! 
 U 5 � � / W �� 
 U 5 
 U 5 
t* �
, W �! r , W �� -0/ W �! � / W �� 
 (34)g� ! � � �0� / W �! 
 U 5 � � / W �� 
 U 5 
 U 5 �0� / W �! 
 U 5 , W �! � � / W �� 
 U 5 , W �� 
 (35)

From this you can read off
]

,
g�
, and

k�
.
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3 EP

The EP algorithm is:

1. Initialize each $%� ��� 
 with the likelihood term ��� � � � ��� 
 , which does not need to be approximated.

2. Until all
FD � converge, loop

� � � -�797878-mu :

(a) Deletion. Remove
FD � from $ to get the ‘old’ approximation $ W � (11,12).

(b) Incorporate evidence. Compute the moments of D � � �&
 $ W � � �#
 to get a new $%� �#
 .
(c) Update. Re-estimate

FD � by division (apply (11,12) in reverse).

The input to the algorithm is � � -Oov- ,\p -0/ p 
 and the data. The output is �=, �.-0/1� 
 and a soft assign-
ment matrix e ! � . From the assignment matrix we can estimate the probability that two points are
from the same component, and the expected number of components. For the former, apply dynamic
programming. For the latter, just take

gw � x � e �a� . The prior expected number of components is� �=yz� � � u 
 � yz� �{
0
 , so setting this equal to
gw

gives an update rule for � . This is equivalent to the
M-step in an EM algorithm for � , where the E-step is handled by EP.

During the deletion step, the covariance
/ W �! may turn out not positive definite. In this case, it is

sufficient to skip term
�

for that iteration of EP.

The cost of this algorithm is | � AC} u i 
 per iteration.
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4 Example

Figure 1(a) plots 8 points in two dimensions, generated by sampling from two Gaussians, * �B~ ��� 7`� �� 7`���=-m� 
 and * �0~ � 7`� � 7`���=-m� 
 . Thus the true
���

take on two distinct values. The model parameters were
set to ,qp � ~���� � , / p � R ��� , and

o � � . Figure 1(b) plots � ~ ��� � 	 � , for each
�
, computed in two ways:

approximately by EP and exactly by expanding the prior into
u��

terms. Relative to the exact means,
the EP means are pulled inward, implying a bias toward fewer clusters. � was estimated to be 0.38,
so that the expected number of components was 1.82. The exact ����� ���
	 
)� ����� 7 R � , and the estimate
from EP was

�v�d� 7 � �
.

The probabilities in figure 1(c) strongly suggest that points 1–4 came from one component and points
5–8 came from another, which is indeed how the data were generated.
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Figure 1: (a) A sample from two Gaussians. (b) The EP approximate posterior for each
���

is plotted as a
mean ’x’ and 1-standard deviation ellipse. Compare to the exact posterior means ’o’. (c) The estimated
probabilities that two points came from the same Gaussian (darker means higher probability).

5 Ordering

The model defined by (2) is independent of the order of points. However, the approximation computed
by EP, because of the factorization assumption, does depend on the order. Thus the ordering of points
is a parameter of the approximation algorithm.

To demonstrate the dependence on order, 100 random orderings were tried on the above dataset. Fig-
ure 2 plots the root-mean-squared error in the means � ~ ��� � 	 � versus (a) the estimated evidence and
(b) the total flops, for each ordering. There appears to be no connection with evidence, but some
connection with flops. The best orderings tend to be ones where EP converges quickly.

Inspection of the best orderings shows that they are anti-correlated—they put nearby points far apart
in the ordering. For example, in the above plot the best ordering was (3,4,7,5,6,1,2,8), which has error
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Figure 2: Accuracy of EP over 100 random permutations of the data. The red line in (a) marks the
exact value of ����� �6�=	 
 .
0.05. This makes sense because of the factorization assumption—points which are distant will have
nearly independent

���
’s. Another way to say it is that we want e �a� to be as big as possible for the first

few points.

A heuristic algorithm that works well is to pick points one at a time, always picking the point which
is furthest away from previously picked points, but close to an unpicked point. This can be viewed as
a crude version of Mettu & Plaxton (2002). This rule produces the ordering (5,4,3,7,6,2,1,8), which is
the order used to produce the plots in section 4, and has error 0.04.

Another approach is to throw out (2) and reformulate the prior in an order-independent way. To date,
we have not found a way which retains the | � u i 
 complexity of the algorithm. It is tempting to simply
redefine (2) to depend on all other

� ! , not just I�� � , but that does not define a proper probability
model.
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