Modeling Dyadic Data with Binary Latent Factors
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Abstract

We introducebinary matrix factorizationa novel model for unsupervised ma-
trix decomposition. The decomposition is learned by fittengion-parametric
Bayesian probabilistic model with binary latent variablesa matrix of dyadic
data. Unlike bi-clustering models, which assign each rowatumn to a single
cluster based on a categorical hidden feature, our binatyife model reflects the
prior belief that items and attributes can be associatell mitre than one latent
cluster at a time. We provide simple learning and inferenutesrfor this new
model and show how to extend it to an infinite model in which tioenber of
features is not a priori fixed but is allowed to grow with theesof the data.

1 Distributed representations for dyadic data

One of the major goals of probabilistic unsupervised leagns to discover underlying or hidden
structure in a dataset by using latent variables to desardmmplex data generation process. In this
paper we focus odyadic data our domains have two finite sets of objects/entities ancias
tions are made odyads(pairs with one element from each set). Examples includesspaatrices
of movie-viewer ratings, word-document counts or productomer purchases. A simple way to
capture structure in this kind of data is to do “bi-clustgfifpossibly using mixture models) by
grouping the rows and (independently or simultaneouslyxtiumns[6, 13, 9]. The modelling as-
sumption in such a case is that movies com&iypes and viewers iil. types and that knowing
the type of movie and type of viewer is sufficient to predict tlesponse. Clustering or mixture
models are quite restrictive — their major disadvantaghas they do not admit a componential or
distributed representation because items cannot sinedtesty belong to several classes. (A movie,
for example, might be explained as coming from a cluster oéfftas” or “comedies”; a viewer as
a “single male” or as a “young mother”.) We might instead pref model (e.g. [10, 5]) in which
objects can be assigned to multiple latent clusters: a nroigét be a drama and have won an Os-
car and have subtitles; a viewer might be single and femaleaamiversity graduate. Inference in
such models falls under the broad aredadftorial learning(e.g. [7, 1, 3, 12]), in which multiple
interacting latent causes explain each observed datum.

In this paper, we assume that both data items (rows) andwti#s (columns) have this kind of
componential structure: each item (row) has associatdd itvith unobserved vector df binary
features; similarly each attribute (column) has a hiddestoreof L binary features. Knowing the
features of the item and the features of the attribute ariécirit to generate (before noise) the
response at that location in the matrix. In effect, we ar¢ofé@ing a real-valued data (response)
matrix X into (a distribution defined by) the produBftWV ", whereU andV are binary feature
matrices, an@V is a real-valued weight matrix. Below, we develop thisary matrix factorization



o] ¢, w° /\
| |
K + Y Y L
: Wk pi T
7|Tk kl l W v
Y . X =fl|lv
Uik T e Vi1
! J
0
(A) (B)

Figure 1:(A) The graphical model representation of the linear-Gaus3lMR model. The concen-
tration parameter and Beta weights for the columnXadre represented by the symbalsndp;.
(B) BMF shown pictorally.

(BMF) model using Bayesian non-parametric priors over thalper and values of the unobserved
binary features and the unknown weights.

2 BMF model description

Binary matrix factorization is a model of ahx J dyadic data matriXX with exchangeable rows
and columns. The entries & can be real-valued, binary, or categorial; BMF models blata
for each type are described below. Associated with each savlatent binary feature vectar;
similarly each column has an unobserved binary veejoiThe primary parameters are represented
by a matrixW of interaction weightsX is generated by a fixed observation procg&s applied
(elementwise) to the linear inner product of the featurebweights, which is the “factorization” or
approximation of the data:

X | UV.W ~ f(UWV',0) (1)

where® are extra parameters specific to the model variant. Thresiljegparametric forms for
the noise (observation) distributighare: Gaussian, with meddWV ™ and covariancél/0)I;
logistic, with meanl/ (1 + exp(—UWYVT)); and Poisson, with mean (and varian@&WVT.
Other parametric forms are also possible. For illustrgbgposes, we will use the linear-Gaussian
model throughout this paper; this can be thought of as a tdedsversion of the linear-Gaussian
model found in [5].

To complete the description of the model, we need to specify plistributions over the feature
matricesU, V and the weight®V. We adopt the same priors over binary matrices as previously
described in [5]. For finite sized matric&s with 7 rows andK columns, we generate a biag
independently for each coluninusing a Beta prior (denotd) and then conditioned on this bias
generate the entries in colurénindependently from a Bernoulli with mea.

|, K~ B(a/K B) a\aa,ba ~ G(aq, ba)
Ulr ~ HHW“”“I—Wk] ””“—HW (1 — ) e
i=1 k=1

wheren;, = >, u;x. The hyperprior on the concentratianis a Gamma distribution (denotet,
whose shape and scale hyperparameters control the exgeattéidn of zeros/ones in the matrix.
The biasesr are easily integrated out, which creates dependenciesbatthe rows, although
they remain exchangeable. The resulting prior dependsamihe number, of active features
in each column. An identical prior is used &h, with J rows andL columns, but with different
concentration prioA. The variable3 was set tal for all experiments.

The appropriate prior distribution over weights dependshenobservation distributioifi(-). For
the linear-Gaussian variant, a convenient priofWhis a matrix normal with prior mealv° and



covariance(1/¢) 1. The scalep of the weights and output precisieh(if needed) have Gamma
hyperpriors:

VV|VVO=(Z3 ~ N(W07 (1/(13)1)

¢lag. by ~ Glag, by)
9 | (lg,bg ~ g((lg, bg)

In certain cases, when the prior on the weights is conjugatieet output distribution modéf, the
weights may be analytically integrated out, expressingriagginal distribution of the datX|U, V
only in terms of the binary features. This is true, for exagpthen we place a Gaussian prior on
the weights and use a linear-Gaussian output process.

Remarkably, the Beta-Bernoulli prior distribution ov@r(and similarlyV) can easily be extended
to the case wher& — oo, creating a distribution over binary matrices with a fixeantner 7 of
exchangeable rows and a potentially infinite number of caolsifalthough the expected number of
columns which are not entirely zero remains finite). Suchs#idution, the Indian Buffet Process
(IBP) was described by [5] and is analogous to the Dirichleicpss and the associated Chinese
restaurant process (CRP) [11]. Fortunately, as we will 8derence with this infinite prior is not
only tractable, but is also nearly as efficient as the finirsioa.

3 Inference of features and parameters

As with many other complex hierarchical Bayesian modelaceference of the latent variables
andV in the BMF model is intractable (ie there is no efficient way#mmple exactly from the pos-
terior nor to compute its exact marginals). However, as widny other non-parametric Bayesian
models, we can employ Markov Chain Monte Carlo (MCMC) methtudcreate an iterative proce-
dure which, if run for sufficiently long, will produce corrggosterior samples.

3.1 Finite binary latent feature matrices

The posterior distribution of a single entry W (or V) given all other model parameters is propor-
tional to the product of the conditional prior and the dakalihood. The conditional prior comes
from integrating out the biases in the Beta-Bernoulli model and is proportional the numbier o
active entries in other rows of the same column plus a termdar activations. Gibbs sampling for
single entries olJ (or V) can be done using the following updates:

P(uik = 1‘Ufik:V:W7X) O(Oé/K + n7i7k)P(X‘Ufik7uik = 17V7W) (2)
P(uix =0U_4,V,W,X) = CB+{UT—=1)=n_ix) P (XU _jt,uixr =0,V,W) (3)

wheren_; , = Zhﬂ unk, U_; €xcludes entryk, andC' is a normalizing constant. (Conditioning

ona, K andf is implicit.) When conditioning oW, we only need to calculate the ratio of likeli-
hoods corresponding to row (Note that this is not the case when the weights are intedraat.)

This ratio is a simple function of the model's predictidq*; = > winvjwy (Whenu;, = 1) and
E = >, winvjiwp (Whenu, = 0). In the linear-Gaussian case:

log — 85" — (i — #;;)°]

P(uzk = 1‘U7ik,V,W,X) (a/K+TL i, k
:l - 5 91 2
Plu =00 4, V,W,X) 2B +T—1)—n ix) Z s Ll

In the linear-Gaussian case, we can easily derive anald@itls sampling updates for the weights
‘W and hyperparameters. To simplify the presentation, weidena “vectorized” representation of
our variables. Lek be anl J column vector taken column-wise frol, w be aK L column vector
taken column-wise fronW and A be al.J x KL binary matrix which is the kronecker product
V @ U. (In “Matlab notation”,x = X(:),w = W(:) andA = kron(V,U).) In this notation, the
data distribution is written a|A,w,0 ~ N (Aw, (1/6)I). Given values folU andV, samples
can be drawn fow, ¢, andé using the following posterior distributions (where coiatiing on
w?, ¢,0,a4,bg, ag, by is implicit):

wx,A ~ N((@ATA+¢I)” (9ATx+¢w°),(0ATA+¢I)”)



slw ~ 6 (ao+KL/2 (ot 30w w) (v w)))
0%, Aw ~ Q<a9+I.]/2, <b9+%(x—Aw)T(x—Aw)>>

Note that we do not have to explicitly compute the matixFor computing the posterior of linear-
Gaussian weights, the matriX™ A can be computed aA™ A = kron(V'™V,U"U). Similarly,
the expressior " x is constructed by computinfg ™ XV and taking the elements column-wise.

3.2 Infinite binary latent feature matrices

One of the most elegant aspects of non-parametric Bayesiaieling is the ability to use a prior
which allows a countably infinite number of latent featur€ke number of instantiated features is
automatically adjusted during inference and depends oanfmunt of data and how many features
it supports. Remarkably, we can do MCMC sampling using safihite priors with essentially no
computational penalty over the finite case. To derive theskates (e.g. for row of the matrixU),

it is useful to consider partitioning the columnsWfinto two sets as shown below.

Let set A have at least one non-zero entry

in rows other than.. Let set B be all other
columns, including the set of columns wher
the only non-zero entries are found in raw
and the countably infinite number of all-zero
columns. Sampling values for elements in row
i of set A given everything else is straightfor-
ward, and involves Gibbs updates almost iden
tical to those in the finite case handled by equg
tions (2) and (3); ag{ — oo andk in set A we
get:
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Puy =1U_4,V,W) = C-n_;; P(X|U_j,uy =1, V,W) (4)

P(ujp =0U_4, VW) = C-(B+1—-1-n_;;) P(X|U_j,uy =0,V,W) (5)
When sampling new values for set B, the columns are exchailgeand so we are really only
interested in the number of entrieg; in set B which will be turned on in row. Sampling
the number of entries set tocan be done with Metropolis-Hastings updates. Lét}|ng) =

Poissor(n’;|a/ (8 + I — 1)) be the proposal distribution for a move which replaces theeaitin g
active entries witm} active entries in set B. The reverse proposal {&:gz|n}). The acceptance

probability ismin (1,7, s, ), Wherer,, ., is

P (npX)J (nplng) _

_ P (X[ny) Poissotiny|a/ (8 + 1 —1))J (nglny) _ P (X|n})
P (np/X) J (wilng) ~ P

X|npg) Poissofing|a/ (8 + I —1))J (nglng) P (X|ng)

(6)

This assumes a conjugate situation in which the weidNtsare explicitly integrated out of the
model to compute the marginal likelihodd(X|n%). In the non-conjugate case, a more compli-
cated proposal is required. Instead of proposing we jointly propose:}; and associated feature
parametersvy; from their prior distributions. In the linear-Gaussian rebdvherew?; is a set of
weights for features in set B, the proposal distribution is:

J (n,whnp,wp) = Poissor(ny|a/ (8 + I — 1)) Normal(w|n};, ¢) (7)

We need actually sample only the finite portiorwof, whereu;;, = 1. As in the conjugate case, the
acceptance ratio reduces to the ratio of data likelihoods:

P (X|nj, wp)
= — 8
B P(X|’I’LB,WB) ( )

Tns ,wsﬁn‘}*yw

3.3 Faster mixing transition proposals

The Gibbs updates described above for the entri@$,8f andW are the simplest moves we could
make in a Markov Chain Monte Carlo inference procedure ferBiMF model. However, these



limited local updates may result in extremely slow mixing.plractice, we often implement larger
moves in indicator space using, for example, Metropolistifigs proposals on multiple features
for row ¢ simultaneously. For example, we can propose new valuesfa@ral columns in row

of matrix U by sampling feature values independently from their camwl@ priors. To compute
the reverse proposal, we imagine forgetting the currenfigoration of those features for roiv
and compute the probability under the conditional priorm@fgnsing the current configuration. The
acceptance probability of such a proposal is (the maximumnitfy and) the ratio of likelihoods
between the new proposed configuration and the current eoafign.

Split-merge moves may also be useful for efficiently sangpfiom the posterior distribution of
the binary feature matrices. Jain and Neal [8] describé-spirge algorithms for Dirichlet process
mixture models with non-conjugate component distribligidive have developed and implemented
similar split-merge proposals for binary matrices with IBRors. Due to space limitations, we
present here only a sketch of the procedure. Two nonzer@sritrU are selected uniformly at
random. If they are in the same column, we propose splittiag) tcolumn; if they are in different
columns, we propose merging their columns. The key diffegdretween this algorithm and the Jain
and Neal algorithm is that the binary features are not camsd to sum to unity in each row. Our
split-merge algorithm also performs restricted Gibbs saancolumns olJ to increase acceptance
probability.

3.4 Predictions

A major reason for building generative models of data is talble to impute missing data values
given some observations. In the linear-Gaussian modepréwtictive distribution at each iteration
of the Markov chain is a Gaussian distribution. The intéceiveights can be analytically integrated
out at each iteration, also resulting in a Gaussian posteeimoving sampling noise contributed by
having the weights explicitly represented. Computing tkace predictive distribution, however,
conditional only on the model hyperparameters, is anaifidntractable: it requires integrating
over all binary matrice¥J andV, and all othemuisanceparameters (e.g., the weights and preci-
sions). Instead we integrate over these parameters ittipligi averaging predictive distributions
from many MCMC iterations. This posterior, which is condiital only on the observed data and hy-
perparameters, is highly complex, potentially multime@daid non-linear function of the observed
variables.

By averaging predictive distributions, our algorithm inefily integrates ovefU and'V. In our
experiments, we show samples from the posteriol§ @ndV to help explain what the model is
doing, but we stress that the posterior may have significastson many possible binary matrices.
The number of features and their degrees of overlap will eagr MCMC iterations. Such variation
will depend, for example, on the current valuexadind (higher values will result in more features)
and precision values (higher weight precision resultsss iariation in weights).

4 Experiments

4.1 Modified “bars” problem

A toy problem commonly used to illustrate additive featurenwltiple cause models is tHears
problem([2, 12, 1]). Vertical and horizontal bars are combined imsavay to generate data sam-
ples. The goal of the illustration is to show recovery of theht structure in the form of bars. We
have modified the typical usage of bars to accommodate tharli®aussian BMF with infinite fea-
tures. Data consists dfvectors of size&8> where each vector can be reshaped into a square image.
The generation process is as follows: sintdas the same number of rows as the dimension of the
images,V is fixed to be a set of vertical and horizontal bars (when ngstianto an image)U is
sampled from the IBP, and global precisichand¢ are set tal /2. The weightsW are sampled
from zero mean Gaussians. Model estimate&l@&ndV were initialized from an IBP prior.

In Figure 2 we demonstrate the performance of the linears&ian BMF on the bars data. We train
the BMF with 200 training examples of the type shown in thermg in Figure 2. Some examples
have their bottom halves labeledssingand are shown in the Figure with constant grey values. To
handle this, we resample their values at each iterationeokthrkov chain. The bottom row shows
the expected reconstruction using MCMC sample&JofV, and W. Despite the relatively high



noise levels in the data, the model is able to capture the ommplationships between bars and
weights. The reconstruction of vertical bars is very goobe Teconstruction of horizontal bars is
good as well, considering that the model has no informatgarding the existence of horizontal
bars on the bottom half.
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Figure 2: Bars reconstructiof;) Bars randomly sampled from the complete dataset. The bottom
half of these bars were removed and labetesisingduring learning(B) Noise-free versions of the
same data(C) The initial reconstruction. The missing values have beétostheir expected value,

0, to highlight the missing region(D) The average MCMC reconstruction of the entire image. (E)
Based solely on the information in the top-half of the or@idata, these are the noise-free nearest
neighbours in pixel space.
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Figure 3: Bars features. The top row shows valueV&ndW VT used to generate the data. The
second row shows a sample¥¥fandWV ™ from the Markov chainWV ™ can be thought of as a
set of basis images which can be added together with binafficients U) to create images.

By examining the features captured by the model, we can stated the performance just described.
In Figure 3 we show the generating,tare, values ofV andW'V ™ along with one sample of those
features from the Markov chain. Because the model is gesrbiat adding multipléVV™ basis
images shown on the right of Figure 3, multiple bars are use@dch image. This is reflected in the
captured features. The learn®dV ™ are fairly similar to the generatin@/’ V', but the former are
composed of overlapping bar structure (learivgd

4.2 Digits

In Section 2 we briefly stated that BMF can be applied to datdetsother than the linear-Gaussian
model. We demonstrate this with@gistic BMF applied to binarized images of handwritten digits.
We train logistic BMF with 100 examples each of digits2, and3 from the USPS dataset. In
the first five rows of Figure 4 we again illustrate the abilifyBMF to impute missing data values.
The top row shows all 16 samples from the dataset which hadlib#tom halves labeledhissing
Missing values are filled-in at each iteration of the Markbwain. In the third and fourth rows we
show the mean and mod®(z;; = 1) > 0.5) of the BMF reconstruction. In the bottom row we
have shown the nearest neighbors, in pixel space, to th@rtgaéxamples based only on the top
halves of the original digits.

In the last three rows of Figure 4 we show the features cagtioyehe model. In row F, we show
the average image of the data which have each featukeam. It is clear that some row features
have distinct digit forms and others are overlapping. In @wthe basis image®&v V™ are shown.
By adjusting the features that are non-zero in each roWf dmages are composed by adding basis
images together. Finally, in row H we shdw. These pixel features mask out different regions in



pixel space, which are weighted together to create the basaiges. Note that there afé features
in rows F and G, and. features in row H.
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Figure 4: Digits reconstruction(A) Digits randomly sampled from the complete dataset. The
bottom half of these digits were removed and labetessingduring learning.(B) The data shown

to the algorithm. The top half is the original data val(€) The mean of the reconstruction for
the bottom halves(D) The mode reconstruction of the bottom halv@s) The nearest neighbours
of the original data are shown in the bottom half, and weraébliased solely on the information
from the top halves of the image@:) The average of all digits for eadh feature.(G) The feature
WYV reshaped in the form of digits. By adding these featurestt@gewhich theU features do,
reconstructions of the digits is possibléd) V reshaped into the form of digits. The first image
represents a bias feature.

4.3 Gene expression data

Gene expression data is able to exhibit multiple and ovpntapclusters simultaneously; finding
models for such complex data is an interesting and activeareh area ([10], [13]). The plaid
model[10], originally introduced for analysis of gene eagsion data, can be thought of as a non-
Bayesian special case of our model in which the ma¥Wxis diagonal and the number of bi-
nary features is fixed. Our goal in this experiment is merelyllustrate qualitatively the ability
of BMF to find multiple clusters in gene expression data, safehich are overlapping, others
non-overlapping. The data in this experiment consists wkrcorresponding to genes and columns
corresponding to patients; the patients suffer from onwoftypes of acute Leukemia [4]. In Figure
5 we show the factorization produced by the final state in tlagidglv chain. The rows and columns
of the data and its expected reconstruction are orderedthatlcontiguous regions iX were ob-
servable. Some of the many feature pairings are highlighté& BMF clusters consist of broad,
overlapping clusters, and small, non-overlapping clsst®ne of the interesting possibilities of us-
ing BMF to model gene expression data would be to fix certaimrons of U or V with knowledge
gained from experiments or literature, and to allow the nhtmladd new features that help explain
the data in more detalil.

5 Conclusion

We have introduced a new modeipary matrix factorizationfor unsupervised decomposition of
dyadic data matrices. BMF makes use of non-parametric Batyesethods to simultaneously dis-
cover binary distributed representations of both rows asdrons of dyadic data. The model ex-
plains each row and column entity using a componential codeposed of multiple binary latent
features along with a set of parameters describing how #eifes interact to create the observed
responses at each position in the matrix. BMF is based orrarbfécal Bayesian model and can be
naturally extended to make use of a prior distribution whiehmits an infinite number of features,
at very little extra computational cost. We have given MCMG@oathms for posterior inference
of both the binary factors and the interaction parametenslitioned on some observed data, and



Figure 5: Gene expression resultd) The top-left isX sorted according to contiguous features in
the finalU andV in the Markov chain. The bottom-left 8" and the top-right i€J. The bottom-
right is W. (B) The same afA), but the expected value &, X = UWV ™. We have highlighted
regions that have both,;, andv; on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

demonstrated the model’s ability to capture overlappingestire and model complex joint distribu-
tions on a variety of data. BMF is fundamentally differemrfr bi-clustering algorithms because of
its distributed latent representation and from factoriatiels with continuous latent variables which
interact linearly to produce the observations. This allawauch richer latent structure, which we
believe makes BMF useful for many applications beyond thesame outlined in this paper.
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