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Abstract

Although clustering data into mutually ex-
clusive partitions has been an extremely suc-
cessful approach to unsupervised learning,
there are many situations in which a richer
model is needed to fully represent the data.
This is the case in problems where data
points actually simultaneously belong to mul-
tiple, overlapping clusters. For example a
particular gene may have several functions,
therefore belonging to several distinct clus-
ters of genes, and a biologist may want to
discover these through unsupervised model-
ing of gene expression data. We present a
new nonparametric Bayesian method, the In-
finite Overlapping Mixture Model (IOMM),
for modeling overlapping clusters. The
IOMM uses exponential family distributions
to model each cluster and forms an over-
lapping mixture by taking products of such
distributions, much like products of experts
(Hinton, 2002). The IOMM allows an un-
bounded number of clusters, and assignments
of points to (multiple) clusters is modeled us-
ing an Indian Buffet Process (IBP), (Griffiths
and Ghahramani, 2006). The IOMM has the
desirable properties of being able to focus in
on overlapping regions while maintaining the
ability to model a potentially infinite num-
ber of clusters which may overlap. We derive
MCMC inference algorithms for the IOMM
and show that these can be used to cluster
movies into multiple genres.

∗ZG is also an Associate Research Professor in the Ma-
chine Learning Department at Carnegie Mellon University

1 Introduction

The problem of clustering data has led to many piv-
otal methods and models (Duda et al., 2001; Meila and
Shi, 2000) in pattern recognition and machine learn-
ing which are widely used across many fields. Un-
fortunately, while clustering methods are wonderful
tools for many applications, they are actually quite
limited. Clustering models traditionally assume that
each data point belongs to one and only one cluster;
that is, there are K exhaustive and mutually exclu-
sive clusters explaining the data. In many situations
the data being modeled can have a much richer and
more complex hidden representation than this single,
discrete hidden variable (the cluster or partition as-
signment) which clustering strives to discover. For ex-
ample, there may be overlapping regions where data
points actually belong to multiple clusters (e.g. the
movie “Scream” could belong to both the “horror”
movie cluster and the “comedy” cluster of movies).
Also, in collaborative filtering one might be interested
in predicting which movies someone will like based on
previous movies they have liked, and the patterns of
movie preferences of others. A common approach is to
cluster people; clusters could characterize gender, age,
ethnicity, or simply movie taste (e.g. people who like
horror movies). However, any particular person can
clearly belong to multiple such clusters at the same
time, e.g. a female in her 20s who likes horror movies.

In this paper, we develop a new model for overlapping
clusters based on a principled statistical framework.
Consider the traditional mixture model (Bishop, 2006)
for clustering, which can be written

p(xi|Θ) =
K∑

j=1

πjpj(xi|θj)

where πj represents the mixing weight (or mass) of
cluster j, pj(xi|θj) is the density for cluster j with
parameters θj , and xi represents data point i. This



mixture model can be rewritten

p(xi|Θ) =
∑
zi

p(zi)
K∏

j=1

pj(xi|θj)zij (1)

where zi = [zi1, . . . , ziK ] is a binary vector of length
K, zij ∈ {0, 1}∀ij,

∑
j zij = 1, and P (zi1 =

0, . . . , zi,j−1 = 0, zij = 1, zi,j+1 = 0, . . . , ziK = 0) =
πj . The setting zij = 1 means data point i belongs to
cluster j.

To create a model for overlapping clusters, two modi-
fications can be made to this representation. First of
all, removing the restriction

∑
j zij = 1 allows binary

vectors with multiple ones in each row. In other words,
instead of K possible binary z vectors allowed in the
mixture model, this allows 2K possible assignments
to overlapping clusters. Removing this restriction will
also introduce a normalization constant for the prod-
uct which for exponential family densities Pj(x) will be
easy to compute. Secondly, the number of such over-
lapping clusters K can be taken to infinity by mak-
ing use of the Beta-Binomial model underlying the In-
dian Buffet Process (IBP), (Griffiths and Ghahramani,
2006). This infinite limit means that the model is not
restricted a priori to having a fixed number of clusters;
and it allows the data to determine how many clusters
are required. In the case where the Pj(·) are Gaussian
densities, this model will define overlapping clusters in
terms of the region where the mass of all Gaussians j,
such that zij = 1, overlaps; this region itself will define
a Gaussian since the product of Gaussians is Gaussian.
Other exponential family models (e.g. multinomials for
text data) will work analogously. In sections 2 and 3
we describe this Infinite Overlapping Mixture Model
in detail, and in section 4 we outline how to perform
inference in the model.

This model for overlapping clusters can be seen as
a modern nonparametric generalization of the multi-
ple cause factorial models (Saund, 1994; Ghahramani,
1995). Moreover, it can also be seen as an infinite non-
parametric generalization of the influential products-
of-experts model (Hinton, 2002). These relationships
will be discussed further in section 5. Lastly, we give
experimental results for our model in section 6.

2 Overlapping Mixture Models

We are interested in clustering data such that each
data point is allowed to belong to multiple clusters,
instead of being constrained to a single cluster. In
order to do this we need a sensible way of modeling
individual data points that belong to many clusters,
and which derives from the broad models for each in-
dividual cluster. We modify a traditional finite mix-
ture model (1) to achieve this. First we remove the

restriction that the binary assignment vector, z, for
each data point must sum to 1, and secondly, as we
will discuss in the next section, we use a prior that
allows a potentially infinite number of clusters, where
the actual required number of clusters is inferred auto-
matically from the data. Removing the restiction that
z sums to one in (1), results in a model in which, if a
data point belongs simultaneously to several clusters,
the distribution of that point is given by the product
of component distributions:

p(xi|zi,Θ) =
1
c

∏
k

pk(xi|θk)zik (2)

Here zi = (zi1 . . . ziK) is a binary vector of cluster
assignments for data point i, θk are the parameters
of cluster k, and c is the normalizing constant which
is needed to ensure that the density integrates to one.
Multiplying distributions is a very natural and general
way of encoding the idea of overlapping clusters—each
cluster provides a soft constraint on the probable re-
gion for observing a data point, and overlapping clus-
ters correspond to a conjunction of these constaints.

If the models we are using, p(xi|θk), are in the expo-
nential family then:

p(xi|θk) = g(xi)f(θk)es(xi)
>φ(θk) (3)

where s(xi) are the sufficient statistics, φ(θk) are the
natural parameters, and f and g are non-negative
functions. Substituting into equation (2) we get:

p(xi|zi,Θ) =
g(xi)

P
k zik

c

[∏
k

f(θk)

]
es(xi)

>(P
k zikφ(θk))

(4)
From this we see that, conditioned on zi, the product
of exponential family distributions results in a distri-
bution in the same family (3), but with new natural
parameters φ̃ =

∑
k zikφ(θk). It follows that normal-

ization constants like c are not problematic when the
component densities are in the exponential family.

In the case of Gaussian clusters:

p(xi|zi,µ,Σ) =
1
c

exp

{
−1

2
[x>(

∑
k

zikΣ−1
k )x

−2x>(
∑

k

zikΣ−1
k µk) +

∑
k

zikµ>
k Σ−1

k µk]

}
(5)

Letting S−1 =
∑

k zikΣ−1
k and m =

∑
k zikΣ−1

k µk

from within equation (5), we can see that the new
parameters for the Gaussian product model are Σ̃ = S
and µ̃ = Sm.

In the case of binary data and multivariate Bernoulli
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Figure 1: Product of two Gaussians. Here the product of

the two blue Gaussians (µ1 = −1, µ2 = 1 and σ2
1 = 0.2,

σ2
2 = 0.6) is the red Gaussian.

clusters:

p(xi|zi,Θ) =
1
c

exp{
∑
k,d

zikxid log(
θkd

1− θkd
)} (6)

where d indexes the dimensions of xi. Using equa-
tion (6) we can derive that the new parameters for the
Bernoulli product model are:

Θ̃d =
∏

k θzik

kd∏
k(1− θkd)zik +

∏
k θzik

kd

. (7)

These product models have the desirable property that
multiple cluster assignments will help focus the model
on a particular overlapping region. See Figure 1 for
a simple illustration. The two blue Gaussians each
model independent Gaussian clusters (z1 = [1 0] and
z2 = [0 1]); the red Gaussian models the overlap of
the two blue Gaussians clusters and defines the over-
lapping cluster z3 = [1 1].

3 Infinite Overlapping Mixture
Models via the IBP

The model in the previous section defines a generative
distribution for overlapping clusters by forming con-
junctions of component models. The key component
in this model is the binary vector zi which indicates
which clusters data point i belongs to. We have de-
fined in the previous section how the component mod-
els are combined, given the binary assignment vector
zi; we now turn to the distribution over these binary
assignment vectors.

A very simple model assigns each element zik an inde-
pendent Bernoulli distribution

zik|πk ∼ Bernoulli(πk) (8)

where πk is the mixing proportion, or probability of
belonging to cluster k. Note that the πk need not sum

to 1 over k, since belonging to one cluster does not
exclude belonging to others. We give each πk a Beta
distribution

πk|α ∼ Beta(
α

K
, 1) (9)

which is conjugate to the Bernoulli, where α controls
the expected number of clusters a data point will be-
long to.

A classical problem in clustering, which also occurs in
our overlapping clustering model, is how to choose the
number of clusters K. While it is possible to perform
model comparison for varying K, this is both compu-
tationally costly and statistically hard to justify (Neal,
2000). A more elegant solution is to define a nonpara-
metric model which allows an unbounded number of
clusters, K.

In order to derive the nonparametric model, we have
defined the prior over πk in (9) to scale so that as K
grows larger, the prior probability of each data point
belonging to cluster k decreases. Using this scaling it
is possible to take the limit K → ∞, integrate out
all the mixing proportions π, and still obtain a well-
defined distribution over the binary assignment vec-
tors z. This distribution over the assignment vectors
results in a process known as the Indian Buffet Process
(IBP), (Griffiths and Ghahramani, 2006).

The IBP defines a distribution which can be used to
represent a potentially infinite number of hidden fea-
tures, or in this case cluster assignments, associated
with data points. More specifically, it defines a dis-
tribution over infinite binary matrices, Z, which can
be derived by starting with a distribution over finite
N ×K matrices given by (8) and (9), where N is the
number of data items, K is the number of features, and
the ith row of Z is zi, and taking the limit as K goes
to infinity. Exchangeability of the rows is preserved,
and the columns are independent.

The IBP is a simple generative process which re-
sults from this distribution, with an analogy to cus-
tomers eating from Indian Buffets. N customers line
up on one side of an Indian Buffet with infinitely
many dishes. The first customer serves himself from
Poisson(α) dishes (at which point his plate is full). The
next customers serve themselves dishes in proportion
to their popularity, such that customer i serves herself
dish k with probability mk

i , where mk is the number of
previous customer which have served themselves that
dish. After passing all previously sampled dishes, cus-
tomer i then proceeds to try Poisson(α

i ) new dishes.
In terms of binary matrices, each of the N customers
is a row in the matrix, each dish is a column, and each
binary value in the matrix, zik, indicates whether cus-
tomer i helped themselves to dish k. A sample of such
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Figure 2: The first 50 rows of the IBP sample (Z ma-

trix) which was used to assign data points to clusters in

Figure 5b.

a matrix is shown in Figure 2.

Markov Chain Monte Carlo algorithms have been used
to do inference in this model (Griffiths and Ghahra-
mani, 2005; Görür et al., 2006). These algorithms need
to compute the full conditional distribution of the as-
signment variables:

P (zik = 1|Z−(ik), X) ∝ P (X|Z)P (zik = 1|Z−(ik))
(10)

where X is the complete data matrix and Z is the
full binary feature matrix, and Z−(ik) is the binary
matrix excluding element zik. In order to compute
the last term in equation (10), we can generalize from
the finite binary matrix case. Starting from (8) and
(9) and integrating out πk gives:

P (zik = 1|z−i,k) =
∫ 1

0

P (zik|πk)P (πk|z−i,k)dπk

=
m−i,k + α

K

N + α
K

(11)

where m−i,k =
∑

j 6=i zjk and z−i,k is zi excluding.
Taking the limit as K →∞ results in:

P (zik = 1|z−i,k) =
m−i,k

N
(12)

for any k in which m−i,k > 0. The number of new
features associated with i should be drawn from a
Poisson( α

N ) distribution. The IBP is described in full
detail in (Griffiths and Ghahramani, 2005).

Incorporating this IBP prior over the assignment vec-
tors into the OMM defined in section 2 results in an
Infinite Overlapping Mixture Model (IOMM), with all
the components required to do inference and learning.

4 IOMM Learning

We use Markov Chain Monte Carlo (MCMC) to do
inference in our Infinite Overlapping Mixture Model
(IOMM). The MCMC algorithm that we implemented
is based on Figure (3). Since the product model is
non-conjugate we use Metropolis-Hastings (MH) to re-
sample the model parameters, Θ.

Initialize Θ
for j = 1 to NumIters do

for i = 1 to N do
for k = 1 to k+ do

zik ∼ zik|z−i,k,xi,Θ
end for
Propose adding new clusters
Accept or reject proposal

end for
Resample Θ|Z,X using MH proposal

end for

Figure 3: MCMC for IOMM, where k+ is the number of

clusters which data points, excluding i, belong to.

At each iteration we resample the binary matrix, Z,
using Gibbs sampling for existing clusters k (i.e. those
clusters which have data points other than i as mem-
bers), where:

p(zik = 1|z−i,k,xi,Θ) ∝ m−i,k

N
p(xi|Θ, zik = 1, z−i,k)

and

p(zik =0|z−i,k,xi,Θ) ∝ N−m−i,k

N
p(xi|Θ, zik =0, z−i,k)

After resampling the existing cluster assignments for a
data point i, we then propose adding assignments of i
to new clusters using Metropolis-Hastings and follow-
ing (Meeds et al., 2007). Here the number of new clus-
ters and their parameters are proposed jointly, where
the number of new clusters is drawn from a Poisson( α

N )
and the new parameters for those cluster are drawn
from the prior.

After resampling the entire Z matrix we resample each
θ′kd drawing from the proposal distribution centered
around the current value of θkd. The acceptance ratio
for θ′kd is:

a =
p(xd|Z,θ′d)p(θ′d)
p(xd|Z,θd)p(θd)

T (θkd|θ′kd, ω)
T (θ′kd|θkd, ω)

(13)

where θ′d is θd substituting θ′kd for θkd, T is the tran-
sition probability between different values of θkd, and



Figure 4: Left: IOMM where the cluster component den-

sities are Gaussian (contours at 1 s.d.). Right: Factorial

Model. In each figure, the original Gaussian clusters are

shown in red, while the Gaussian cluster modeling member-

ship in both of the original clusters is shown in blue. The

IOMM is able to focus in on the area where the original two

Gaussians overlap, taking their (unrestricted) covariances

into account. The factorial model yields a Gaussian whose

mean is the sum of the means of the original two Gaussians,

and the (typically axis-aligned) covariance is restricted to

be the same for all clusters, since it results from the same

additive noise.

ω controls the width of this transition proposal distri-
bution. For example, for binary data we can use mul-
tivariate Bernoulli clusters 6, 7. A sensible proposal
for θkd might be θ′kd ∼ Beta(ωθkd, ω(1− θkd)).

5 Related Work

The infinite overlapping mixture model has many in-
teresting relationships to other statistical models. In
this section we review some of these relationships,
highlighting similarities and differences.

The likelihood function in equation (2) is a product of
likelihoods from different component densities, which
is highly reminiscent of the products of experts (PoE)
model (Hinton, 2002). In a PoE, the data model is:

p(xi|Θ) =
1
c

∏
k

pk(xi|θk).

Comparing to (2), we see that while in the IOMM,
for each data point, xi a product of a subset of the
experts is taken depending on the setting of zi, in the
PoE, each data point is assumed to be generated by the
product of all experts. This would appear to be a large
difference; however we will now show that it is not.
Consider the special case of a PoE where each expert
is a mixture of a uniform and a Gaussian distribution
(a “unigauss” distribution), described in Section 4 of
Hinton (2002).1 For this model, using 1(x) = 1, ∀x, to

1Strictly speaking a “uniform” on the reals is improper,
but this can be approximated by a Gaussian with very large
variance.

denote the unnormalized uniform distribution (where
normalization is subsumed in c above):

pk(xi|θk) = (1− πk)1(xi) + πk N (xi|µk,Σk)

=
∑

zik∈{0,1}

p(xi|zik,θk)p(zik|θk) (14)

where p(zik = 1|θk) = πk and p(xi|zik,θk) =
N (xi|µk,Σk)zik . Conditioning on zi we now see that

p(xi|zi,Θ) ∝
∏
k

N (xi|µk,Σk)zik

which is of the same form as in the IOMM (2). More
generally, we can therefore view our IOMM as an infi-
nite nonparametric Bayesian Product of Experts, un-
der the assumption that each expert is a mixture of a
uniform and an exponential family distribution.

Another line of thought relates the IOMM to multiple
cause or factorial models (Saund, 1994; Hinton and
Zemel, 1994; Ghahramani, 1995; Sahami et al., 1996).
Factorial models are closely related to factor analysis.
Each data point xi is represented by a latent vector
zi = (zi1, . . . , ziK). In factor analysis, zi is assumed
to be multivariate Gaussian, and xi and zi are as-
sumed to be linearly related. A factorial model can
be obtained by letting each zik be discrete, the binary
case zik ∈ {0, 1} corresponds to data points having
2K possible feature vectors. The corresponding distri-
butions over data for each possible feature vector are
formed by somehow combining parameters associated
with the individual features. In (Hinton and Zemel,
1994; Ghahramani, 1995), the parameters of the indi-
vidual features are simply added to form the mean of
the distribution of xi given zi, with subsequent Gaus-
sian noise added. That is, E[xi] = Azi, where A is
some D ×K matrix whose columns are means for the
individual features, and the binary vector zi picks out
which columns to include in the sum for each point.
This idea was used to model gene expression data by
(Lu et al., 2004); it was also independently re-invented
by (Segal et al., 2003; Battle et al., 2005) and also
used to discover multiple overlapping processes in gene
expression data. Recently, the model of Segal et al.
(2003) was extended by Banerjee et al. (2005) from
Gaussians to other exponential family distributions.

While all the models we have reviewed in the previ-
ous paragraph are clearly useful and share with the
IOMM the idea of using a binary latent vector zi to
model presence or absence of a hidden feature (which
could be seen as indicating membership in a particu-
lar “cluster”), they do not make reasonable models for
overlapping clusters. The additive combination rule of
the factorial models E[xi] = Azi does not capture the
intuition of overlapping clusters, but rather of multi-
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Figure 5: Two draws from the IOMM with Gaussian cluster models. a) left: A draw with 6 independent Gaussian

clusters. Label A shows data points which belong to both the red and magenta clusters, label B shows data points which

belong to both the red and blue clusters, and label C shows datapoints which belong to both the magenta and blue

clusters. b) right: A larger draw from the IOMM with more independent clusters. Part of the IBP sample (Z matrix)

used for assignments of data points to clusters is shown in Figure 2

ple processes that add together (Figure 4). For exam-
ple, if the first and second columns of A are identical
(a1 = a2), then one would expect that data points
that simultaneously belong to both the first and sec-
ond cluster (zi1 = 1 = zi2) should have the same mean
as the first cluster (a1). While this is the case for the
IOMM due to the overlapping model we define (2), this
is not the case in any of the factorial models described
in the previous paragraph.

6 Experiments

Since the IOMM is a generative model, we first tried
generating from the model using full covariance Gaus-
sians (5). Figure 5 shows two illustrative datasets that
were generated in 2D along with the Gaussians which
represent each independent cluster in the model. The
IBP sample (or Z matrix) from which Figure 5b was
generated is given in Figure 2. The parameters for
each independent cluster were drawn from the prior
(Normal-Inverse Wishart), and the data points were
drawn from the product of Gaussians which corre-
sponded to their cluster assignments from the Z ma-
trix. We can see from these figures that even with a
small number of components the IOMM can generate
richly structured data sets.

We also generated data from the IOMM with Bernoulli
clusters, and then used this synthetic data to test
IOMM learning. This synthetic data consisted of
N = 100 data points in D = 32 dimensions, and had
K = 11 underlying independent clusters. We ran our
MCMC sampler for 4000 iterations, burning in the first

1000. Because the clusters that specific columns in the
Z matrix correspond to can be permuted, we cannot
directly compare the learned Z matrix to the true Z
matrix which generated the data. Instead we com-
pute the matrix U = ZZ>, which is invariant to col-
umn permutations. This N ×N matrix computes the
number of shared clusters between each pair of data
points in the data set, and is therefore a good column
invariant way of determining how well the underlying
cluster assignment structure is being discovered. Since
we have many MCMC samples from which to compute
the learned U matrix (which we will call Û), we av-
erage all the U matrices together to get Û . The true
U matrix, U∗, is constructed from the true Z matrix.
Both U∗ and Û are shown in Figure 6. Since U∗ is a
single sample and Û is averaged over many samples,
Û is a little lighter (it is reasonable to expect that a
few samples will assign a data point to even improb-
able clusters) and smoother, but the structure of Û is
extremely similar to that of U∗. We then rounded the
values in Û to the nearest integer and compared with
U∗. Table 1 provides summary statistics for Û in terms
of the percentage of pairs of data points in Û which
share the exact same number of clusters as the same
pair in U∗, differ by at most 1 cluster, and differ by
at most 2 clusters. Figure 8 is a box plot showing the
distribution of the number of inferred overlaps in Û for
each true number of overlaps in U∗. We can see that
the model gives reasonable estimates of the number of
overlaps, but is less able to estimate the rare cases of
large numbers of overlaps. Lastly, Figure 7 plots the
inferred number of clusters at each MCMC iteration,
and suggests reasonable mixing of the sampler.



Figure 6: The U∗ (left) and learned Û (right) matrices showing the number of shared clusters for each pair of data points

in the synthetic data set.
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Figure 8: A box plot showing the distribution of inferred

number of shared clusters in Û for each true number of

shared cluster in U∗, for every data point pair.

Statistic Percent
|(Û − U∗)| ≤ 0 69.96
|(Û − U∗)| ≤ 1 99.12
|(Û − U∗)| ≤ 2 100.00

Table 1: Summary statistics for learned Û . Reports the

percentage of pairs in Û which have the same number of

shared clusters as the same pair in U∗, or are off by at most

1 or 2 shared clusters.

Lastly, we used the IOMM to cluster movies by genre
using the MovieLens data set of people rating movies.
We normalized the data over movies such that the rat-
ings for each movie summed to 1 and then binarized
the matrix so that a (movie,user) entry was given a
value 1 if the new rating value was greater than the
mean of the values of all movies that user rated. We
then removed users with less than 20 movies given
value 1, and movies which less than 10 users assigned
a value 1 to. This resulted in a binary matrix of 797
movies by 426 users from which we selected 500 movies
at random. These 500 movies belonged to 18 different
genres. Unfortunately, an unsupervised learning al-
gorithm does not know what a genre is, and would
be very unlikely to cluster movies in accordance with
them unless we specify them in advance. In partic-
ular people’s movie preferences are not simply corre-
lated with genres, and there are many other latent
factors which can determine preference (e.g. actors,
budget, recency, script, etc.) Instead, we took a semi-
supervised approach, randomly selecting 200 movies,
fixing the Z matrix for those data points to their cor-
rect genres, and trying to learn the remaining 300
movies using the cluster information given by the fixed
200. We ran our IOMM sampler for 3000 iterations,
burning in the first 1000 samples. If a movie was as-



signed to a genre in over half the sampled Z matrices,
we said that the movie was assigned to that genre by
the IOMM. We compared these IOMM results to two
sets of results obtained by using a Dirichlet Process
Mixture model (DPM), which can only assign each
movie to a single genre. DPM inference was run semi-
supervised on the same data set by replicating each
of the 200 fixed movies mi times, once for each of the
mi genres they belong to. We compared the IOMM re-
sults to the DPM results using an F1 score, which takes
into account both precision and recall, and which can
be computed from the true MovieLens assignments of
movies to genres. The difference between the two sets
of DPM results is that in DPM1 genre membership is
decided in the same way as in the IOMM, thus allow-
ing movies to belong to only one genre. In DPM2, we
allow movies to belong to multiple genres by saying
that a movie belongs to a genre if the movie was as-
signed to that genre in at least M/(K + 1) samples,
where M is the total number of samples and K is the
known true number of genres that movie actually be-
longs to. These results are presented in table 2, on the
11 genres with at least 10 movie members in the fixed
set.

We can see that the IOMM has a better F1 score on 9
of the 11 genres, illustrating that the flexibility of as-
signing movies to multiple genres leads to better per-
formance even when evaluating single genre member-
ship. It is worth noting that the DPM in this case
is fully conjugate and that we took care to integrate
out all parameters, resulting in a sampler with much
faster mixing. Despite this, the DPM was not able to
capture the genre assignments as well as the IOMM.

7 Discussion

We presented a new nonparametric Bayesian method,
the Infinite Overlapping Mixture Model, for modeling
overlapping clusters. The IOMM extends traditional
mixture models to allow data points membership in an
unrestricted number of clusters, where the total num-
ber of clusters is itself unbounded. The IOMM uses
products of models in the exponential family to model
overlaps, allowing it to focus in on overlapping regions.
We derived MCMC inference algorithms for the IOMM
and applied it to the problem of clustering movies into
genres, where we showed that its performance is su-
perior to that of Dirichlet Process Mixtures, which re-
strict movies to a single genre. Our novel approach to
discovering overlapping clusters should be applicable
to data modeling problems in a wide range of fields.
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D. Görür, Jäkel, and C. Rasmussen. A choice model with
inifinitely many latent features. In ICML, 2006.

T. Griffiths and Z. Ghahramani. Infinite latent feature
models and the indian buffet process. Technical report,
Gatsby CNU, 2005.

T. Griffiths and Z. Ghahramani. Infinite latent feature
models and the indian buffet process. In NIPS, 2006.

G. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14, 2002.

G. E. Hinton and R. Zemel. Autoencoders, minimum de-
scription length, and helmholtz free energy. In NIPS,
1994.

X. Lu, M. Hauskrecht, and R. Day. Modeling cellular pro-
cesses with variational bayesian cooperative vector quan-
tizer. In PSB, 2004.

E. Meeds, Z. Ghahramani, S. Roweis, and R. Neal. Mod-
eling dyadic data with binary latent factors. In NIPS,
2007.

M. Meila and J. Shi. Learning segmentation by random
walks. In NIPS, 2000.

R. Neal. Markov chain sampling methods for Dirichlet
process mixture models. Journal of Computational and
Graphical Statistics, 9, 2000.

M. Sahami, M. A. Hearst, and E. Saund. Applying the
multiple cause mixture model to text categorization. In
ICML, 1996.

E. Saund. Unsupervised learning of mixtures of multiple
causes in binary data. In NIPS, 1994.

E. Segal, A. Battle, and D. Koller. Decomposing gene
expression into cellular processes. In PSB, 2003.


