Gatsby Technical Report:
Propagating Uncertainty in POMDP Value
[teration with Gaussian Processes

Eric Tuttle and Zoubin Ghahramani
Gatsby Computational Neuroscience Unit
University College London
17 Queen Square, London WCIN 3AR, UK
{eric,zoubin}@gatsby.ucl.ac.uk

August 27, 2004

Abstract

In this paper, we describe the general approach of trying to solve
Partially Observable Markov Decision Processes with approximate value
iteration. Methods based on this approach have shown promise for tack-
ling larger problems where exact methods are doomed, but we explain
how most of them suffer from the fundamental problem of ignoring in-
formation about the uncertainty of their estimates. We then suggest a
new method for value iteration which uses Gaussian processes to form
a Bayesian representation of the uncertain POMDP value function. We
evaluate this method on several standard POMDPs and obtain promising
results.

1 Introduction

The problem of how to make decisions and plan strategies under uncertainty is of
tremendous importance to areas of machine learning, operations research, man-
agement science, and many other fields. One general model for such problems
which allows for uncertainty in the state of the world as well as in the effects
of decisions is the Partially Observable Markov Decision Process (POMDP).
While the POMDP model is attractive because of its more realistic uncertainty
assumptions compared to Markov Decision Processes (MDPs), it has stubbornly
resisted efficient solution algorithms for problems of any size to be of practical
interest. This is true both for exact and approximate algorithms.

A wide variety of approximate algorithms have been proposed to find near-
optimal policies in POMDPs. While an exact algorithm can build a solution
secure in the knowledge that at each stage every bit of information is 100%
correct, once approximations are introduced errors are likely to be made and this

confidence is no longer merited. A problem we have with many of the existing
approximate algorithms for POMDPs is that they do not attempt to account
for the varying amounts of inaccuracy and uncertainty of the information with
which they construct a solution. Some of the bits of information used are more
likely to be correct than others, and in that case any algorithm which ignores
this is likely not to perform as well as it could.

It is this motivation which leads us to introduce a new algorithm combining
approximate value iteration and Gaussian processes as a Bayesian representation
of the uncertain value function. This enables the algorithm to place more weight
on approximations it believes are good and to avoid being misled by mistakes.
We will discuss this and other advantages of the Gaussian Process representation
further in Section 3. But first we must introduce the central ideas.

2 Overview of the framework

Our discussion and algorithm depend on two frameworks, one for planning and
one for regression. We give a brief overview of each in turn.

2.1 POMDPs

The POMDP model is a generalized form of the MDP model and can be de-
scribed by a tuple {S, A, T, R,§,O}. The first four objects are defined just as
in an MDP: S is a (finite) set of states of the world, A is a (finite) set of ac-
tions which the agent has available to it, T'(s',s,a), T : S x A — S defines the
transitions between states, specifying for each possible action a the probability
of moving from state s to state s’, and R(s,a), R: S x A — R gives the imme-
diate reward (r) the agent receives for taking action a in state s. The POMDP
framework adds to the MDP , a (finite) set of observations which the agent
can perceive in the world, and O(s',0,a), O : S x A — Q, which specifies the
probability that the agent will perceive observation o after taking action a and
arriving in state s'. As in MDPs, we often also specify a discount factor v which
indicates the amount by which the agent should devalue a reward one time step
in the future.

The goal of the agent in a POMDP is to maximize its expected total sum of
future rewards E[EtT:0 ytr¢] where T is the number of time steps left to go in
a finite-horizon problem, or oo in an infinite-horizon problem. Finding a policy
which achieves this goal is referred to as solving the POMDP. Unlike in an MDP,
however, the agent in a POMDP is not assumed to have knowledge of the state;
it only perceives the world noisily through observations as defined by O. Thus,
even though the underlying world behaves as an MDP, the agent cannot form
an optimal policy based upon the state alone. It must keep a complete history
of its actions and observations, or a sufficient statistic, in order to act optimally.
One such sufficient statistic is the belief state b, which is a vector of length |S]|
whose elements b; = b(s;) specify the agent’s belief that it is in state s;.

After taking an action a and seeing observation o, the agent updates its
belief state using Bayes’ Rule:
O(s',0,a) >, T(s',s,a)b(s)
P(ola,b)

b'(s") = P(s'la,0,b) =

The denominator, P(o|a,b), is a normalizing constant and is given by the sum
of the numerator over all values of s’. We refer to the function which returns b’
as the state estimator SE(b, a,0).

It turns out we can transform a POMDP into a “belief state MDP” [1].
Under this transformation, the belief states b become the (continuous) states of
an MDP. The actions of the belief MDP are the same as the original POMDP,
but the transition and reward functions are transformed to yield the following
form of Bellman’s equation for belief MDPs:

V*(b) = max Y b(s)R(s,a) +vY_ Plola,b)V*(SE(b,a,0)) (1)

As in any MDP, the optimal policy which the agent is trying to learn is the
one which is greedy with respect to this optimal value function. The problem is
that there are an infinite number of the continuous belief states, so solving this
equation is hopeless. Value iteration, in which we compute V* in the limit by
iteratively applying the updates in (1) to an initial choice for V', also seems at
first glance hopeless since the updates at each step would have to be computed
over all of the continuous simplex of beliefs.

Exact solutions for the finite-horizon case take advantage of the fact that
value functions for finite-horizon belief MDPs are piecewise-linear convex func-
tions, and thus can be represented by a finite number of hyperplanes in belief-
value space. Value iteration updates can be performed directly on the set of
hyperplanes. In the infinite-horizon case, there can be infinitely many linear
pieces to the convex value function, but we can get arbitrarily close to the true
value function by taking the horizon far enough and using value iteration.

Unfortunately, value iteration is intractable for most POMDP problems with
more than a few states. The size of the set of hyperplanes defining the value
function can grow exponentially (in |Q|) with each step. Many attempts have
been made to increase the efficiency of Sondik’s original algorithm by pruning
the set of hyperplanes. Identifying hyperplanes necessary to the exact solution
also turns out to be intractable. Finding the exact optimal solution for a finite-
horizon problem has been shown to be PSPACE-hard, and the story for the
infinite horizon is worse (reviewed in [2]). This has led many researchers to
examine approximate methods, one important class of which is value function
approximation. In these methods, at each step of value iteration the true value
function V is replaced by an approximate one, V.

In this paper we will not be working directly with the value function, but
with the action-value function Q(s,a) (also called the Q-function), which is

given by:

Q(b,a) = Z b(s)R(s,a) + Z P(ola,b) moz}x[Q(SE(b, a, 0),)]

The Q-function Q(b, a) gives the value of taking action a in state b and thereafter
following the policy which is greedy with respect to V. It is related to the value
function by V' (b) = max, Q(b, a).

2.2 Gaussian processes

Gaussian processes have received a great deal of attention as a method of per-
forming Bayesian regression. A Gaussian process regressor defines a distribution
over possible functions that could fit the data. In particular, the distribution of a
function y(x) is a Gaussian process if the probability density p(y(x1), - ..,y(Xn))
for any finite set of points {x1,...,xn} is a (multivariate) Gaussian. (See [3]
for an introduction to Gaussian processes).

Typically, the mean of this process is taken to be 0 and our prior knowledge
about the function is encoded in our choice of covariance function K (x;,x;).
This function can have any form so long as it is guaranteed to produce a positive
semi-definite covariance matrix for any choice of points {x;,x;}.

Suppose we have observed a set of (training) points and target function
values D = {(x,,t,)}_,. We believe the underlying function y(x) to be dis-
tributed as a Gaussian process with covariance function K, and that the target
values t are related to the true function by the addition of Gaussian noise. Then,

t=y+n~N(0,C)

where 7 ~ N(0,X) is the noise term and C = K + ¥, with K;; = K (x;,%;)

Suppose we then wish to know the value of the function at some new (test)
points {x!,}M_,. Since the joint distribution of the function at all of the points
is Gaussian, the conditionals are also Gaussian and given by:

y() D ~ N (K (x,x')7C 1, K(x', x') - K(x,x')T K (x, %)

where K(x,x') is a matrix of covariance between training and test points, and
K(x',x') is a matrix of covariance between the test points and themselves.
Thus, if we need a prediction for the function value at a test point we can use
the mean as the most probable choice, and we also have information about how
certain we are about that value in the form of the (co-)variances of the function
values. The computational cost of making a prediction at M test points based
upon N observed points scales as O(N? + M N), the first term being the cost
of inverting an N x N matrix. As differentiation is a linear operator, it is also
straightforward to compute the mean and variance of any derivatives of the
function, which also have Gaussian distributions. And if derivative values are
known for points in the training set, these can also be incorporated as observed
data [4].

One fairly general choice for a covariance function which encodes belief in
the smoothness of the underlying function, is

1
K(x;,x;) = VeXP(—§||Xz’ —x5l%) +p (2)

where p is a scalar and the norm || - ||w is defined as ||v||}, = vI Wv with W a
diagonal matrix having elements wg. The hyperparameters wy define an inverse
length scale for the function in dimension d, v gives the expected amplitude of
the function, and p is a bias term that accommodates non-zero-mean functions.
These (positive) hyperparameters control the way the function behaves between
observed data points, and can be tuned using maximum likelihood or MAP
methods.

3 Gaussian Process Value Iteration

As mentioned above, many authors have considered methods for finding ap-
proximately optimal policies for POMDPs by constructing approximate value
functions which do not grow uncontrollably in complexity with time. A large
subclass of such approximate methods involve computing the approximate value
function at only a finite set of points in belief space and then performing value
iteration on those (or another finite set of) points, extrapolating the value be-
tween known points where necessary. A few of these methods can be shown to
converge or to provide bounds on the true value function, and some (notably
curve-fitting methods which attempt to learn a parametrized form of the value
function) are known to diverge on certain MDPs [2].

One major drawback to all of these methods is that in computing one step
of value iteration (or “backup” operation) for a given point b in belief space, the
values of all points reachable from b are treated equally in the sense that they
are all presumed equally correct. For example, suppose we take our set of belief
points at which we will try to learn the value function to be {b1, b2, b3}. Suppose
further that under the dynamics of our POMDP, b, and bs are absorbing belief
states (they can only transition to themselves), and in one step b; can only
reach (with equal probability) bs, b3, and some fourth belief state by. At every
step of value iteration, the value at by and b3 will be exact, while the value at
by will be somehow interpolated from the others and may be wildly inaccurate.
The value at b; is updated according to the values at b, b3, and by weighted
equally, with no accounting for the possibly great disparity in their accuracy.

It would be much better if there were a way to incorporate our knowledge
about the accuracy of the value function at any point in belief space. This
would enable the algorithm to avoid fitting uncertain points if doing so seems
inconsistent with other information, and to be wary of areas in belief space
promising large rewards if those areas are believed to be potentially inaccurate.
Accounting for value function uncertainty in a Bayesian way requires that we
introduce a prior distribution over the value function. This is the motivation
behind the use of Gaussian processes to model the value function.

One might raise this objection to the use of Gaussian processes to model
POMDP value functions: a Gaussian process prior can enforce neither convex-
ity nor piecewise-linearity, and so we know from the start that we are choos-
ing a prior which does not in fact capture our true beliefs about the func-
tion. However, with enough iterations, POMDP value functions often begin
to look smooth, and in the infinite horizon they need not be piecewise linear
at all. In fact, other authors have found a smooth approximation of the func-
tion, especially during the initial steps of approximate value iteration, to be
advantageous[5]. A Gaussian process can also be given piecewise-linear trends
through the appropriate choice of a covariance function. Furthermore, since we
know the global length scale in belief space is about 1 in every dimension (belief
states lie on the probability simplex), restricting the the inverse length scale
hyperparameters of the covariance function to lie roughly between 0 and 1 will
tend to cause the function to be either nearly convex or nearly concave in all
dimensions, and observed data should enforce the former. Finally, given enough
data points, Gaussian processes with suitably-chosen covariance functions can
come very close to fitting most functions.

Another advantage of Gaussian processes is that by providing estimates of
uncertainty it is possible to determine which areas of belief space deserve more
exploration. Finally, as mentioned earlier it is strightforward to calculate the
curvature of the mean function at any point. This can be used to diagnose
belief states which locally violate the convexity constraint, again allowing further
resources to be used to refine the value estimate.

Most of our proposed algorithm follows from the preceding discussion, but
care must be taken to propagate uncertainty. We model each of the |A| action-
value functions Q(-,a) as a Gaussian process. At some iteration ¢, the action-
value for any belief state is:

Qi(b,a) = D b(s)R(s,a) +7)_ Plola,b) max Q;—1(SE(b,a,0),0) (3)

What is the distribution of Q¢(b,a)? The |Q||A| points Q:—1(SE(b,a,0),a) on
which @Q(b,a) is based come from |A| Gaussian processes, and each of those
processes defines a multivariate normal distribution: Qy_1(-,a) ~ N (ta,Xa)
where we index the elements of u, and X, with (bo), e.g. fia,po, bo being
shorthand for SE(b,a,0). The major problem in computing the distribution
over Q¢ (b, a) is the max operator. We consider two approximate ways for dealing
with it.

In both methods we will assume the |A| random vectors Q1 (-, @) are inde-
pendent of one another. In the first method, we approximate the max operator
as simply passing through the random variable with the highest mean. That is,

mgX[Qtfl(SE(b, a, 0)7 a)] = Qtfl(SE(ba a, O)a a* (bo))

where o*(bo) = argmax,fiqap. This approximation will be a good one when
the means are more than a standard deviation or two from each other. In
our algorithm, we will wish to compute the Q value Q;(-,a) for N different

sample points. So the above approximation results in the joint distribution for

T .
Q;_, = [maxa[Qi—1(b101,a)],. .., maxa[Qs—1(bnojg,)]] " (for an appropriate
ordering) being Gaussian with mean and block-diagonal covariance matrix:

2% Ea; 0 0
Hax = y Ugr = 0 .. 0
Pay, 0 0 o,

Here each of the p,x is a (possibly empty) vector containing all of the means
o bo Tor which a;(bo) = a*(bo). Similarly, the b,0;-th element of each (possibly
empty) matrix Y4+ is taken from the matrix ¥, for which ;(b,0;) = a*(bn0;).

The second approximation method takes into account the effects of the max
operator, but at the expense of ignoring correlations among the function val-
ues. We now consider only the marginals Q¢—1(SE(b, a, 0), @) with distributions
N (tapos 7% ,) given by the Gaussian process for Q;—i(-,a). Clark [6] calcu-
lates the moments for the distribution of the max of two normally distributed
variables ¢ and g». When ¢; and g2 are independent (as we’ve assumed for val-
ues from different Q-functions) with means and variances (u1,0%) and (u2,0%),
respectively, the first two moments of max(q;,¢2) are given by:

E[max(qi,q2)] = pm®(m)+ pa®(—m) + sp(m)
E[(max(q1,¢2))°] = (4] +01)®(m) + (u* + 03)®(—m) + (1 + p2)sp(m)

where s? = 07 +02%, m = (u1 —p2)/s, and @ is the cdf and ¢ is the pdf for a zero-
mean, unit variance normal. Clark also gives evidence that this distribution may
often be well-approximated by a Gaussian, suggesting a method for inductively
computing the distribution of the max of three or more normal variables by
taking max of the third with the max of the first two moment-matched to a
normal, and so on. Applying this method to compute the distributions for
all N|Q| max operations yields a set of Q-values, each marginally distributed
approximately as N (fo+ (50),b0) Ta* (bo),b0)- 1f We now assume that all Q-values
(even those from the same Q-function) are approximately independent, then
Q;_, will again be distributed as a Gaussian with mean and diagonal covariance
matrix:

2
,ua*(blal),lnol Ua*(b1o1),b101 0 0
Par = : y Var = 0 0
2
ua*(bNo|O\)’bNo|O\ 0 0 o.a*(bN0|o‘),bNO|o‘

Both methods produce a Gaussian approximation for the max of a set of
normally distributed vectors. And since Qf = [Qt(bl,a),...,Qt(bN,a)]T is
related to Q7 _; by a linear transformation via equation (3), we have that

Q! =g+ GQ;_; ~N(Gpa+ +8 GEa-G")

where G and g represent the Bellman linear transform in equation (3).

So we have now arrived at the distribution for our Q-functions after one
step of value iteration. These Q-value distributions form the training input
for the Gaussian process at the next iteration, with the mean specifying the
observed target values and the covariance matrix specifying the covariance of
the Gaussian noise on those observations. Again, the clear advantage of the
Gaussian process framework is the straighforward nature of doing regression
with uncertain targets. In this way the uncertainty in the Q-function estimates
can be propagated backwards through the Bellman backup operator in equation
(3).

Now that we have explained our method for interpolating between sampled
values, all that remains to discuss about the algorithm is the method for choosing
the sample points: the belief points by,...,by at which the Q-values are com-
puted at every iteration. There are many possible ways of heuristically choosing
these points. Other authors have considered random selection of belief points,
using the corners of the belief simplex and the most valuable points reachable
from them in a few steps, adding promising mixtures of existing sample points,
and various methods of stochastically simulating the belief MDP and using the
points reached in these simulations. See [2],[7] for an overview.

In all problems we consider, an initial belief state with which the agent begins
at time 0 is always specified. In this case, there may be infinitely many valid (in
that they lie on the simplex) points in belief space which can never be reached,
and we need only worry about “covering” in some sense the set of points reach-
able from the initial state. For this reason, we focused on stochastic simulation
methods. Pineau, et al. [7] propose a method they call Stochastic Simulation
with Exploratory Action which, for each belief point in the set, stochastically
simulates every possible action and then adds only the point reached which is
furthest (in the 1-norm sense) from the points already in the set. The idea is
to prevent any belief point that our agent will encounter from being too far
from the set, in which case the interpolation is likely to be inaccurate. This
method does not make use of the agent’s current approximation to the value
function at one stage to select the points for the next stage, and may focus on
points which our agent will never encounter under its policy. Nevertheless, we
found that it worked well as a method for choosing points. We also considered
a hybrid of this method and simulation with e-greedy action: after a few steps
of value iteration under one set of belief points we would select a new set by
simulating trajectories through belief space starting from the initial belief and
using an e-greedy policy with respect to our current Q-function approximations.
The belief set would be created by starting with the initial point and repeatedly
adding from the list of encountered belief points the point which was furthest
(in the 1-norm) from the points already in the set, until some maximum number
of points was reached.

tiger-grid hallway hallway2
Method Reward |B| | Goal% Reward |B| | Goal% Reward |B]
GP 2.26 300 100 0.49 200 42 0.24 300
Disabled GP 1.78 300 71 0.38 300 37 0.24 300
PBVI 2.25 470 96 0.53 86 98 0.34 95
PBUA 230 660 | 100 0.53 300 | 100 0.35 1840

Table 1: Comparison of approximate value iteration methods on three standard
POMDP problems. Figures given are the total discounted reward received, the
number of belief points sampled, and the percentage of trials on which the goal
state was reached (where applicable).

4 Empirical results

Following [7], we ran our algorithm on a series of three POMDP problems from
[8] which have become somewhat standard for the testing of scalable POMDP al-
gorithms. These are hallway (60 states), hallway?2 (92 states), and tiger-maze
(36 states). We used the covariance function given by (2), plus an additional di-
agonal noise term to give the algorithm extra flexibility. For comparison, we also
ran a handicapped version of our algorithm and implemented a version of the
SPOVA algorithm proposed in [5]. The handicapped Gaussian process was not
allowed to propagate its uncertainty, in order to explore the practical benefit of
this ability. The SPOVA model assumes the softmax form V' (b) = [3_4(b-8)¥]"/*
for the value function, for some value of k (smaller k¥ corresponds to a smoother
approximation) and set of hyperplanes {$}. In our version, the hyperplanes are
learned at each step of value iteration by minimizing the squared error between
the approximator and the value given by one backup over the set of observed
belief points. This implementation demonstrates the pitfalls of curve-fitting al-
gorithms which cannot use uncertainty information, as SPOVA rarely reached
goal states and was left out of the table.. Table 1 summarizes the results. We
have also included, as a reference, the results achieved by two other state-of-
the-art algorithms (PBVI and PBUA) as reported in [7].

5 Conclusion and future work

We have presented an algorithm for approximate value iteration in POMDPs
which uses Gaussian processes to propagate and interpret uncertainty in its
approximations at each step. The algorithm was shown to perform competi-
tively on standard problems which are considered fairly large and challenging,
and certainly beyond the scope of exact methods at present. The exception
was the hallway2 problem, which had the largest state space. We believe our
alogorithm needed more than 300 belief point samples to perform at a compet-
itive level, but computational constraints prevented that. The algorithm was
also contrasted with another curve-fitting algorithm and with a version of itself

unable to propagate uncertainty in order to demonstrate the usefulness of this.

The method we presented can be extended in many ways. We mentioned
earlier that the uncertainty measure and easy derivative calculations offered
by Gaussian processes provide additional information for the selection of belief
training points, but have not yet attempted to implement an algorithm which
uses this information. The interpolation part of the algorithm can also be
combined with many other point-selection procedures and can use a fixed set
of sample belief points or be interleaved with belief set updates. Derivative
“observations” can also be used to constrain the Gaussian process to have a
given curvature or slope at the observed points, at the cost of having to solve
larger linear systems.

We have so far only considered a curve-fitting type of approximate value
iteration, but a vector-valued Gaussian process could be used to provide a dis-
tribution over hyperplanes so that the uncertainty propagation method could be
extended to algorithms which make use of the piece-wise linearity of POMDP
value functions to build up solutions in the form of sets of hyperplanes. Finally,
the primary limitation of Gaussian processes is the need to invert an N x N
matrix where N is the number of training points. If we want at least few
sample points per dimension of belief space, this limits the application of the
gaussian process method to POMDPs with only a few hundered states. How-
ever, there are many approximate inversion schemes (such as [9]) to be explored
which might enable the method to handle thousands of states, such as the tag
problem presented as a challenge in [7].

Acknowledgments

We would like to thank Michael Duff, Geoff Gordon, and Joelle Pineau for useful
discussions about value iteration in POMDPs.

References

[1] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial Intelligence,
101:99-134, 1998.

[2] Milos Hauskrecht. Value function approximations for partially observable markov
decision processes. Journal of Artificial Intelligence Research, 13:33-94, 2000.

[3] David J.C. MacKay. Introduction to gaussian processes. Technical report, Cam-
bridge University, 1997.

[4] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen.
Derivative observations in gaussian processes models of dynamic systems. In NIPS
15, 2003.

[5] Ronald Parr and Stuart Russell. Approximating optimal policies for partially
observable stochastic domains. In IJCAI 1995.

[6] Charles E. Clark. The greatest of a finite set of random variables. Operations
Research, March-April 1961.

10

[7] Joelle Pineau, Geoff Gordon, and Sebastian Thrun. Point-based value iteration:
And anytime algorithm for POMDPs. In IJCAI, 2003.

[8] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning
policies for partially observable environments: scaling up. In JCML, 1995.

[9] J. Skilling. Bayesian numerical analysis. In Jr. W. T. Grandy and P. Milonni,
editors, Physics and Probability. Cambridge University Press, Cambridge, 1993.

11

