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ABSTRACT
Motivation: We have used state-space models (SSMs) to
reverse engineer transcriptional networks from highly replic-
ated gene expression profiling time series data obtained from
a well-established model of T cell activation. SSMs are a
class of dynamic Bayesian networks in which the observed
measurements depend on some hidden state variables that
evolve according to Markovian dynamics. These hidden vari-
ables can capture effects that cannot be directly measured in a
gene expression profiling experiment, for example: genes that
have not been included in the microarray, levels of regulatory
proteins, the effects of mRNA and protein degradation, etc.
Results: We have approached the problem of inferring the
model structure of these state-space models using both clas-
sical and Bayesian methods. In our previous work, a bootstrap
procedure was used to derive classical confidence intervals for
parameters representing ‘gene–gene’ interactions over time.
In this article, variational approximations are used to per-
form the analogous model selection task in the Bayesian
context. Certain interactions are present in both the clas-
sical and the Bayesian analyses of these regulatory networks.
The resulting models place JunB and JunD at the centre
of the mechanisms that control apoptosis and proliferation.
These mechanisms are key for clonal expansion and for con-
trolling the long term behavior (e.g. programmed cell death)
of these cells.
Availability: Supplementary data is available at http://public.
kgi.edu/˜wild/index.htm and Matlab source code for variational
Bayesian learning of SSMs is available at http://www.cse.
buffalo.edu/faculty/mbeal/software.html
Contact: David_Wild@kgi.edu
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†Current address: Molecular and Computational Biology, University of
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INTRODUCTION
The application of high-density DNA microarray technology
to gene transcription analysis has stimulated the development
of algorithms to classify and describe the complex tran-
scriptional response of a biological system and to reveal
interactions between the components of a cellular system.
Many of the tools that have been applied in an exploratory
manner to the problem of reverse engineering genetic regu-
latory networks from gene expression data have been recently
reviewed by van Someren et al. (2002). Murphy and Mian
(1999) were the first to propose the use of a general class
of graphical models known as Dynamic Bayesian Networks
(DBNs) to model time series gene expression data. Bayesian
networks have a number of features that make them attract-
ive candidates for modeling gene expression data, such as
their ability to handle noisy or missing data, to handle hid-
den variables such as protein levels that may have an effect
on mRNA expression levels, to describe locally interacting
processes and the possibility of making causal inferences
from the derived models. However, much published work to
date has assumed that all the possibly interacting variables
are observed on the microarray. This precludes the existence
of hidden causes or unmeasured genes whose involvement
might dramatically simplify the network structure and there-
fore ease interpretability of the mechanisms in the underlying
biological process. Although microarray technologies have
made it possible to measure time series of the expression
level of many genes simultaneously, we cannot hope to meas-
ure all possible factors contributing to genetic regulatory
interactions, and the ability of Bayesian networks to handle
such hidden variables would appear to be one of their main
advantages as a modeling tool.

We have previously applied linear state-space mod-
eling to reverse engineer transcriptional networks from
highly replicated expression profiling data obtained from
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a well-established model of T cell activation in which
we have monitored a set of relevant genes across a time
series (Rangel et al., 2001, 2004a). Linear Gaussian state-
space models (SSMs), also known as Linear Dynamical
Systems (Roweis and Ghahramani, 1999) or Kalman filter
models (Brown and Hwang, 1997) are a subclass of dynamic
Bayesian networks used for modeling time series data and
have been used extensively in many areas of control and sig-
nal processing. SSMs have a number of features that make
them attractive for modeling gene expression time series data.
They assume the existence of a set of hidden state variables
from which we can make noisy continuous measurements,
and that evolve with Markovian dynamics. In our application,
the noisy measurements are the observed gene expression
levels at each time point, and we assume that the hidden
variables are modeling effects that cannot be measured in
a gene expression profiling experiment, for example: the
effects of genes that have not been included on the microarray,
levels of regulatory proteins, the effects of mRNA and protein
degradation, etc.

The task of deciding upon a suitable dimension for the
hidden state space remains a difficult problem. In our pre-
vious work (Rangel et al., 2001, 2004a), this was determined
by a cross-validation experiment in which we increment the
number of hidden states and monitor the predictive likelihood
using a portion of the data set that has not been used to train the
model. However, the hold-out set error in a cross-validation
experiment is a noisy quantity and, for a reliable measure, a
very large hold-out data set is needed; ideally, we would prefer
to utilize all the data for model learning rather than holding
out a large portion of it.

More recently, Perrin et al. (2003) and Wu et al. (2004)
have also described related SSMs for genetic regulatory net-
works. Perrin et al. (2003) build models with a small number
of hidden states (0, 1 and 2), whilst Wu et al. (2004) use factor
analysis and a Bayesian Information Criterion (BIC) penal-
ized maximum likelihood approach to determine the hidden
state space dimensionality. These approaches suffer from sev-
eral drawbacks, not least in that they cannot provide us with
posterior distributions over all the parameters of the model
that are needed to quantify our uncertainty. We discuss the
advantages of our approach over these methods in the section
Discussion.

A variational Bayesian (VB) treatment of these models
provides a novel way to learn their structure, that is to identify
the optimal dimensionality of their state space. The VB
algorithm provides distributions over the model parameters
and, as has been shown in a series of experiments on synthetic
data, can be used successfully to determine the structure of the
true generating model, including inferring the dimensionality
of the hidden state space (Beal, 2003).

The classical approach used in our previous work tests each
‘gene–gene’ interaction by doing a hypothesis test compar-
ing the bootstrap confidence interval of each parameter to

the null hypothesis that it is zero. The analogous Bayesian
procedure examines the posterior distribution of each para-
meter to determine whether that parameter can be inferred to
have a significantly large positive or negative value. In this art-
icle, we demonstrate how variational Bayesian methods can
be used to approximate the posterior quantities required for
Bayesian learning in SSMs of gene expression time series.
Moreover, we show that this powerful approach provides a
practical framework for elucidating underlying interactions
amongst genes in DNA microarray time-series data.

SYSTEM AND METHODS
The linear dynamical system model
Variables and topology In SSMs, a sequence (y1, . . . , yT )

of p-dimensional real-valued observation vectors, denoted
y1:T , is modeled by assuming that at each time step t , yt

was generated from a k-dimensional real-valued hidden state
variable xt , and that the sequence of xs follow a first-order
Markov process. The joint probability of a sequence of states
and observations is therefore given by:

p(x1:T , y1:T ) =

p(x1)p(y1 | x1)

T∏

t=2

p(xt | xt−1)p(yt | xt ). (1)

The distribution p(x1) over the first hidden state is assumed
Gaussian.1 We focus on models where both the dynamics,
p(xt | xt−1), and output functions, p(yt | xt ), are linear and
time-invariant and the distributions of the state evolution and
observation noise variables are Gaussian, i.e. linear-Gaussian
SSMs:

xt = Axt−1 + wt , wt ∼ N(0, Q) (2)

yt = Cxt + vt , vt ∼ N(0, R) (3)

where A is the (k ×k) state dynamics matrix, C is the (p ×k)

observation matrix, and Q (k × k) and R (p × p) are the
covariance matrices for the state and output noise variables
wt and vt . The parameters A and C are analogous to the
transition and emission matrices, respectively, in a hidden
Markov model (Roweis and Ghahramani, 1999).

A straightforward extension of this model is to allow the
dynamics and observation models to include a dependence on
a series of d-dimensional driving inputs u1:T :

xt = Axt−1 + But + wt , (4)

yt = Cxt + Dut + vt . (5)

1 For computational reasons in our implementation of the SSM, this prior over
the first hidden state x1 is in fact realized via a Gaussian distributed auxiliary
previous hidden state x0, which is integrated out—the details can be found
in Beal (2003), specifically Equation (5.14).
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Here, B (k × d) andD (p × d) are the input-to-state and
input-to-observation matrices, respectively. If we now aug-
ment the driving inputs with a constant bias, then this input
driven model is able to incorporate an arbitrary origin dis-
placement for the hidden state dynamics, and also can induce
a displacement in the observation space. These displacements
can be learnt as parameters of the input-to-state (B) and
input-to-observation (C) matrices.

An input-dependent SSM can be used to model control
systems. Another possible way in which the inputs can be
utilized is to feedback the outputs (data) from previous time
steps in the sequence into the inputs for the current time step.
This means that the hidden state can concentrate on modeling
hidden factors whilst the Markovian dependencies between
successiveoutputs are modeled using the output–input feed-
back construction. We adapt this model for the analysis of
gene expression time series data below.

Without loss of generality, we can set the hidden state evol-
ution noise covariance,Q, to the identity matrix. This is
possible since an arbitrary noise covariance can be incor-
porated into the state dynamics matrixA, and the hidden
state rescaled and rotated to be made commensurate with this
change.

The remaining parameter of a linear-Gaussian SSM is the
covariance matrix,R, of the Gaussian output noise,vt . We
assumeR to be diagonal and we learn the scale of these
diagonal terms. For notational convenience, we collect the
above parameters into a single parameter vector for the model:
θ = (A,B,C,D,R).

The parameters of a SSM can be learned using maximum
likelihood (ML) methods (Shumway and Stoffer, 1982). How-
ever, ML methods are prone to overfitting especially when
fitting models with many variables from relatively small
amounts of data. We now turn to considering a Bayesian ana-
lysis of the SSM, which avoids overfitting and provides error
bars on model parameters. For this, we need to define priors
over all parameters.

Priors In general, the priors on all model parameters are
chosen from the family of conjugate distributions, which
makes it possible to obtain efficient analytical updates in
the variational Bayesian algorithm (Beal and Ghahramani,
2003). These priors are in turn parameterized byhyperpara-
meters that can be optimized so as to adapt to the scale of
the data and so as to select relevant and irrelevant variables
in the model. The general idea of optimizing hyperparamet-
ers to discover which interactions (e.g. between genes and
hidden factors) are relevant is known asAutomatic Relevance
Determinination (ARD).

The model interaction parametersA, B, C andD are given
zero-mean Gaussian priors with precisions (inverse variances)
specified by hyperparametersα, β, γ andδ, respectively.

Keeping in mind that the parameters are collected intoθ =
(A,B,C,D,R), the marginal likelihood, which integrates

over the parameters and hidden states, can then be written
p(y1:T ) = ∫

p(θ , x0:T , y1:T )dθ dx0:T .
All hyperparameters can be optimized during learning.

Preliminary experiments on artificial data (Ghahramani and
Beal, 2001; Beal, 2003) have shown that the VB approach
successfully determines the structure of SSMs.

An SSM for gene expression time series In this article, we
use the input-dependent SSM, and wefeed back the gene
expressions from the previous time step into the input for the
current time step. In doing this, we attempt to discover gene–
gene interactions across time steps, with the hidden state in
this model now really representing unobserved variables. An
advantage of this architecture is that we can now use the ARD
mechanisms to determine which genes are influential across
adjacent time slices.

A graphical model for this setup is given in Figure 1.
When the input is replaced with the previous time step’s
observed data, the equations for the SSM can be rewritten
from Equations (4) and (5) into the form:

xt = Axt−1 + Byt−1 + wt (6)

yt = Cxt + Dyt−1 + vt . (7)

Here,yt denotes the gene expression levels at time stept

andxt the unobserved hidden factors. In practice,y is in fact
the suitably normalized and transformed values of the gene
expression levels. The matrixD in the observation equation
captures gene–gene expression level influences at consecutive
time points whilst the matrixC captures the influence of the
hidden variables on gene expression level at each time point.
Matrix B models the influence of gene expression values from
previous time points on the hidden states andA is the state
dynamics matrix. As a function only of the data at the previous
time stepyt−1, the data at timet can be written

yt = (CB + D)yt−1 + rt , (8)

wherert = vt + Cwt + CAxt−1 includes all contributions
from noise and previous states. Thus, to first order the inter-
action between genej and genei can be characterized by the

x1

u1

y1 y2 y3 yT

x2 xTx3

...

...

B
B

D

D

C

A

Fig. 1. The feedback graphical model with outputs feeding into
inputs. Gene expression levels at timet are represented byyt , whilst
the hidden factors are represented byxt .
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element[CB+D]ij of the matrix. Indeed, this matrix need not
be symmetric and the element represents activation or inhibi-
tion from genej to genei at the next time step depending on
its sign. This is the matrix we will concentrate our analysis on,
since it captures all of the information related to gene–gene
interaction over one time step. We have also shown that, if the
gene expression model is stable, controllable and observable,
then theCB + D matrix remains invariant to any coordin-
ate transformations of the state and is, therefore,identifiable
(Rangelet al., 2004b). The identifiability property is import-
ant, for without it, it would be possible for different values of
the SSM parameters (and hence, different values ofCB +D)
to give rise to identically distributed observables, making the
statistical problem of estimation ill-posed.

ALGORITHM
Variational Bayesian learning
The classical approach tests each gene–gene interaction by
doing a hypothesis test comparing the bootstrap confidence
interval of each parameter to the null hypothesis that it is
zero. The analogous Bayesian procedure examines the pos-
terior distribution of each parameter to determine whether that
parameter can be inferred to have a large positive or negative
value. We now describe how variational methods can be used
to approximate the posterior quantities required for Bayesian
learning in SSMs.

Let y denote the observed variables,x the latent variables
andθ the parameters. The marginal likelihood for a model
m, p(y | m) = ∫

p(y, x, θ | m) dθ dx tells us how well a
particular model structure fits a data set, averaging over all
possible latent variable and parameter values. As opposed to
themaximum likelihood, which always prefers more complex
models, themarginal likelihood embodies the concept of an
automatic Occam’s razor, penalizing models with too many
free parameters (MacKay, 1992; Kass and Raftery, 1995).
This forms the basis of Bayesian model comparison. Unfortu-
nately, the marginal likelihood is computationally intractable
to compute for most models of interest, including SSMs
(Früwirth-Schnatter, 1995). However, we can lower bound
the marginal likelihood by introducing any distribution, over
both latent variables and parameters, that has support where
p(x, θ | y,m) does, and then appealing to Jensen’s inequality
(due to the concavity of the log function):

ln p(y | m) = ln
∫

p(y, x, θ | m) dx dθ

= ln
∫

q(x, θ)
p(y, x, θ | m)

q(x, θ)
dx dθ

≥
∫

q(x, θ) ln
p(y, x, θ | m)

q(x, θ)
dx dθ . (9)

Maximizing this lower bound with respect to the free distri-
butionq(x, θ) results inq(x, θ) = p(x, θ | y,m), which when

substituted above turns the inequality into an equality, but is
still computationally intractable. Instead, we use a simpler,
factorized approximationq(x, θ) = qx(x)qθ (θ):

ln p(y | m) ≥
∫

qx(x)qθ (θ) ln
p(y, x, θ | m)

qx(x)qθ (θ)
dx dθ

= Fm(qx(x),qθ (θ), y). (10)

The quantityF is a function of the free distributionsqx(x)

and qθ (θ). The VB algorithm iteratively maximizesF in
Equation (10) with respect to the free distributions,qx(x) and
qθ (θ). We use elementary calculus of variations to take func-
tional derivatives of the lower bound with respect toqx(x) and
qθ (θ), each while holding the other fixed. This results in the
following update equations where the superscript(�) denotes
the iteration number:

VB-E step :

q(�+1)
x (x) ∝ exp

[∫
ln p(x,y | θ ,m) q

(�)
θ (θ) dθ

]
(11)

VB-M step :

q
(�+1)
θ (θ) ∝

p(θ | m) exp

[∫
ln p(x,y | θ ,m) q(�+1)

x (x)dx
]

. (12)

Clearly, qθ (θ) and qx(x) are coupled, so we iterate these
equations until convergence. Readers familiar with the EM
algorithm (Dempsteret al., 1977) may note the similar-
ity between this iterative algorithm and EM. We call this
procedure theVariational Bayesian EM Algorithm, and we
name the two update equations the VB-E and VB-M steps
in direct analogy to the E and M steps of EM. In Beal and
Ghahramani (2003), this relationship is described in detail
and it is also shown that this algorithm minimizes the KL
divergence between the approximationqθ (θ)qx(x) and the
true posteriorp(x, θ | y,m).

If the prior is conjugate and the joint model (including lat-
ent variables) is in the exponential family, the maximization
of the VB lower bound on the marginal likelihood results
in a simple and analytically tractable generalization of the
EM algorithm (Beal and Ghahramani, 2003). The VB–EM
algorithm reduces to the ordinary EM algorithm if we restrict
the parameter density to a point estimate (i.e. Dirac delta
function), qθ (θ) = δ(θ − θ∗). The VB-E step has about
the same time complexity as the E step, and is, in all ways,
identical (except that it is rewritten in terms of the expec-
ted natural parameters of the exponential family). The key
difference is that the VB-M step computes a Bayesiandis-
tribution over parametersq(�)

θ (θ) rather than a point estimate
θ (�). This difference is what makes it possible to capture an
automatic Occam’s razor and select beween alternative genetic
regulatory networks.
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Applying the arguments in Equation (10) to this case, we
lower bound the log marginal likelihood for the SSM:

ln p(y1:T |u1:T )

≥
∫

dθ dx0:T qθ (θ)qx(x0:T ) ln
p(θ , x0:T , y1:T |u1:T )

qθ (θ)qx(x0:T )

= F(qx(x0:T ),qθ (θ), y1:T ) . (13)

and use the variational Bayesian EM (VB–EM) algorithm to
optimize the lower bound.

The hyperparameters,α, β, γ , δ, a andb, and the prior
parameters,�0 andµ0, can be updated so as to maximize the
lower bound on the marginal likelihood [Equation (13)]. By
taking derivatives ofF with respect to the hyperparameters,
updates can be derived, which are detailed in Beal (2003). The
complete learning algorithm for SSMs consists of repeated
iterations of the VB-E step, VB-M step, calculation ofF and
hyperparameter updates. In practice, one does not need to
computeF at all for learning. It may also be inefficient to
update the hyperparameters after every iteration of VB–EM,
and for some applications in which the user is certain of their
prior specifications, a hyperparameter learning scheme may
not be required at all.

IMPLEMENTATION
Experimental data
The data used in this article are the results of two experiments
with interarray replications that we have performed to char-
acterize the response of a human T cell line (Jurkat) to PMA
and ionomicin treatment. Details of data collection and pre-
processing are described elsewhere (Rangelet al., 2004a). In
the first experiment, we monitored the expression of 88 genes
using cDNA array technology across 10 time points. In the
second, an identical experimental protocol was used but addi-
tional genes were added to the arrays. Genes that displayed
very poor reproducibility between the two experiments were
removed, leaving 58 genes. For the purpose of training the
SSM, log transformed expression profiles for the same gene
in the two experiments were scaled together using a variant of
the method of Bolstadet al. (2002) adapted to our data with
the assumption that all 44 replicates of each time series have
a similar underlying distribution.

Results from the variational Bayesian model
We examined the gene–gene influences represented by ele-
ments of the matrix[CB + D]. The variational Bayesian
model provides us with posterior distributions (albeit approx-
imate) for the parametersC, B andD, which are given by
the update Equations (11 and 12). Using the posterior distri-
butions for these parameters, we compute the distribution of
each of the elements in the combined matrix[CB + D]. We
consider an element of this matrix as providing evidence for
a candidate gene–gene interaction if the element’s posterior

distribution is positioned significantly far from the zero point
(of no influence). Significance in this scenario corresponds
to the zero point being more thann standard deviations from
the posterior mean for that entry. Since these distributions are
Gaussian (Beal, 2003), and may lie above or below the zero
point (corresponding to activation or inhibition), we can use
the standard Z-statistic for normally distributed variables: the
threshold values ofn are then given by 2.7478, 2.8782 and
3.0902 for 99.4, 99.6 and 99.8% confidences, respectively.

A number of SSMs were trained using the VB–EM
algorithm starting from 10 different random initializations
and with k = 1, . . . , 20 hidden state dimensions. Figure 2
shows the variation of the median value ofF with hidden
state dimensionk (also plotted are the individualF values
from each of the 10 random seeds). The medianF value
peaks aroundk = 14. Figure 3 shows the number of signific-
ant gene–gene interactions that are consistently repeated in all
10 runs at each value ofk; there are three plots, correspond-
ing to three significance levels. Regardless of the significance
level we choose, we can see that the number of significant
interactions has leveled off by aroundk = 14, which corres-
ponds to the peak inF graph. Importantly, some interactions
appear robustly even in models that incorporate many hid-
den variables. Note that models with no hidden variables,
k = 0 [equivalent to the linear models of D’Haeseleeret al.
(1999) and Holteret al. (2001)], give a much higher estim-
ate of the number of direct interactions, which may result
in a very misleading impression of the underlying genetic
regulatory networks. The resulting networks have been visu-
alized using the software application, Cytoscape (Ideker
et al., 2002), and a figure representing the robust, highly
significant interactions may be found on the supplementary
website http://public.kgi.edu/˜wild/VBLDS/index.htm.

DISCUSSION
In order to compare the models derived from a classical
bootstrap approach (Rangelet al., 2001, 2004a) and the VB
methods described in this article, we have identified the
gene–gene interactions shared between them. Biologically
interesting interactions identified in Rangelet al. (2004a) are
represented in a large number of VB models. For example,
the interaction between Fyb and IL-2 target genes is suppor-
ted in at least 60% of the VB models starting from different
random seeds withk = 9 hidden states [the number of hidden
states used by Rangelet al. (2004a)] at a significance level of
99.8%.

A careful analysis of the VB SSMs withk = 14 hid-
den states has also revealed interesting biological properties.
The most interesting feature is a sub-network representing
the interaction between Jun-D and Jun-B, with a number of
genes involved in programmed cell death (Fig. 4). The model
is consistent with a recently proposed hypothesis in Weitz-
man (2001). Mammals have three members of the Jun protein
family. These proteins (Jun-B, c-Jun and Jun-D) form dimers
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Fig. 2. Variation ofF with hidden state dimensionk for 10 random initializations of VBEM. The line represents the medianF value.
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Fig. 4. (A) The current hypothesis on the role of Jun proteins in
controlling apoptosis and proliferation. Jun-B is pro-apoptotic and
inhibits proliferation whereas Jun-D is both an anti-proliferative and
anti-apoptotic signal. (B) The the connections between Jun proteins
and apoptotic genes as revealed by the VB SSM.Jun-B (gene 54)
is clearly modeled as a pro-apoptotic gene [activatingCaspase 8
(gene 18) andCaspase 4 (gene 38) and repressing the survival factor
MAPK8 (gene 53)]. On the contrary,Jun-D (gene 11) is repress-
ing Caspase 7 (gene 52) and the cell cycle regulatorcdc2 (gene
31). Numbers on the edges represent the number of models from
10 different randon seeds in which the interaction is supported at a
confidence level of 99.8%

with each other or with members of related Fos and ATF fam-
ilies to constitute the AP-1 transcription factor (Angel and
Karin, 1991). Experiments in which Jun genes were artificially
over-expressed in fibroblasts suggested that Jun members
might play distinct roles in regulating cell proliferation, trans-
formation and apoptosis (Weitzman, 2000). Jun-D appears to
protect from apoptosis (Weitzman, 2000), whereas Jun-B neg-
atively regulates cell growth through activation of p16INK4a
inhibitor and repression of cyclin D1 expression and is thought
to inhibit programmed cell death (Bakiri, 2000; Passegu and
Wagner, 2000). Our model reproduces this scenario (Fig. 4)
and predicts that Jun-B would act as transcriptional activator
of the apoptotic genesCaspase 4 (supported in 90% of the
VB models trained with different random seeds) andCaspase
8 (supported in 50% of the models) and as transcriptional
repressor of the survival factor MAPK8 (Hesset al., 2000;
supported in 30% of the models). TheJun-D gene is pre-
dicted to repress the expression of another apoptosis related
gene (Caspase 7) (in 20% of the models) and the cell cycle
regulator genecdc2 (in 30% of the models).

Ultimately, the validation of different computational
approaches to reverse engineering must be experimental.
Knock out and over-expression experiments need to be per-
formed to verify that the inferred interactions are really
representative of the biological complexity we intend to
model. Such experiments are often non-trivial and difficult to
do in a systematic way. The models we have generated show
that even a perfectly reasonable and well-supported biological
hypothesis needs testing. Figure 4 shows the sub-network
connecting Jun-B and Jun-D to programmed cell death. This

network is well-supported, but the current literature does not
directly show that increased levels ofCaspase 4 trigger the
expression ofJun-D and consequent inhibition ofCaspase 7.
The experimental verification of these models is one focus
of our current research, as is the application of our methodo-
logy in a well-defined system of biological interest that can be
easily manipulated experimentally and for which information
about its genome and investigative tools are available. The
infection of the human intestine epithelial cells line Caco-2
by theEscherichia coli enterohaemorragic strain EHEC O157
is an excellent example of such system. Although a large
amount of information is available about regulatory networks
in organisms such asE.coli (Rosenfeld and Alon, 2003) and
Saccharomyces cerevisiae (Leeet al., 2002), we are unaware
of publicly available microarray datasets that contain the
necessary degree of replication, which the simulations we
have performed with synthetic data indicate are required for
accurate network reconstruction (Rangelet al., 2004b).

As in our previous work (Rangelet al., 2004a), we do
not find a one-to-one correspondence between the hidden
variables and known biological effects or unmeasured reg-
ulatory genes. Two models can have equivalent gene–gene
interactions but different implementations of those in terms of
hidden variables. The hidden variables were, however, import-
ant in practice since they played a large role in mediating the
gene–gene interactions over time (Fig. 3). In our model, the
hidden variables are likely to represent a combination of com-
plex molecular events (such as a combination of genes and
possibly entire pathways) linking two genes. In this scenario,
allowing hidden factors is an essential part of our overall goal
of developing biologically realistic models.

The variational Bayesian methodology we have described
has several distinct advantages over other methods that have
recently appeared in the literature. For example, Perrinet al.
(2003) use a regularized form of ML learning, with a regular-
ization parameter that they suggest is best determined using
cross-validation techniques. In addition, they use different
initializations of the learning algorithm to obtain empir-
ical estimates of the uncertainty over the parameters. Wu
et al. (2004) use an EM algorithm for factor analysis to
find the hidden states and then fit the state dynamics mat-
rix by solving a separate least squares problem, rather than
using an EM algorithm for directly fitting ML parameters of
SSMs. This method will not find the ML parameters of the
models. Not only does the VB methodology described in this
article provide an algorithm that updatesall parameters of
the model during learning on all of the available data, but
it also provides analytical forms for the posterior distribu-
tion of every parameter without recourse to multiple restarts;
indeed Perrinet al.’s limitation to justk = 2 hidden dimen-
sions may be due to the computational infeasibility of running
numerous SSMs to cover the cloud of uncertainty in higher
than two dimensions. Wuet al. (2004) use a BIC (Bayesian
Information Criterion) penalized ML approach to determine
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the hidden state space dimensionality,k; unfortunately, the
BIC is only valid for very large data sets, tends to over-penalize
more complex models and does not provide a mechanism to
represent posterior distributions over model parameters and,
therefore, is unable to elucidate the sort of gene–gene inter-
actions we are interested in examining. Furthermore, neither
the model described by Perrinet al. (2003) nor Wuet al.
(2004) utilize inputs to feed back the outputs from the previ-
ous time step. Consequently, these models do not allow genes
to affect the hidden states (the B matrix in our model) and do
not allow genes to affect other genes directly (the D matrix in
our model).

This article has dealt solely with the case of linear dynamics
and linear output processes with Gaussian noise. Whilst this
is a good first approximation, we expect that a more realistic
model of genetic regulatory interactions would have non-
linear interactions, reflecting, for example saturation effects
in the expression levels of a gene or multiplicative effects
where the simultaneous expression of two genes is required
to effect a third. The development of such models is another
focus of our current research.
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