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Variational Bayesian Learning of Directed

Graphical Models with Hidden Variables

Matthew J. Beal∗ and Zoubin Ghahramani†

Abstract. A key problem in statistics and machine learning is inferring suitable
structure of a model given some observed data. A Bayesian approach to model
comparison makes use of the marginal likelihood of each candidate model to form
a posterior distribution over models; unfortunately for most models of interest,
notably those containing hidden or latent variables, the marginal likelihood is
intractable to compute.

We present the variational Bayesian (VB) algorithm for directed graphical mod-
els, which optimises a lower bound approximation to the marginal likelihood in a
procedure similar to the standard EM algorithm. We show that for a large class
of models, which we call conjugate exponential, the VB algorithm is a straightfor-
ward generalisation of the EM algorithm that incorporates uncertainty over model
parameters. In a thorough case study using a small class of bipartite DAGs con-
taining hidden variables, we compare the accuracy of the VB approximation to
existing asymptotic-data approximations such as the Bayesian Information Crite-
rion (BIC) and the Cheeseman-Stutz (CS) criterion, and also to a sampling based
gold standard, Annealed Importance Sampling (AIS). We find that the VB algo-
rithm is empirically superior to CS and BIC, and much faster than AIS. Moreover,
we prove that a VB approximation can always be constructed in such a way that
guarantees it to be more accurate than the CS approximation.

Keywords: Approximate Bayesian Inference, Bayes Factors, Directed Acyclic
Graphs, EM Algorithm, Graphical Models, Markov Chain Monte Carlo, Model
Selection, Variational Bayes

1 Introduction

Graphical models are becoming increasingly popular as tools for expressing probabilistic mod-
els found in various machine learning and applied statistics settings. One of the key problems is
learning suitable structure of such graphical models from a data set, y. This task corresponds
to considering different model complexities — too complex a model will overfit the data and
too simple a model underfits, with neither extreme generalising well to new data. Discovering
a suitable structure entails determining which conditional dependency relationships amongst
model variables are supported by the data. A Bayesian approach to model selection, compari-
son, or averaging relies on an important and difficult quantity: the marginal likelihood p(y |m)
under each candidate model, m. The marginal likelihood is an important quantity because,
when combined with a prior distribution over candidate models, it can be used to form the
posterior distribution over models given observed data, p(m |y) ∝ p(m)p(y |m). The marginal
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likelihood is a difficult quantity because it involves integrating out parameters and, for models
containing hidden (or latent or missing) variables (thus encompassing many models of interest
to statisticians and machine learning practitioners alike), it can be intractable to compute.

The marginal likelihood is tractable to compute for certain simple types of graphs; one such
type is the case of fully observed discrete-variable directed acyclic graphs with Dirichlet priors
on the parameters (Heckerman et al. 1995; Heckerman 1996). Unfortunately, if these graphical
models include hidden variables, the marginal likelihood becomes intractable to compute even
for moderately sized observed data sets. Estimating the marginal likelihood presents a difficult
challenge for approximate methods such as asymptotic-data criteria and sampling techniques.

In this article we investigate a novel application of the variational Bayesian (VB)
framework—first described in Attias (1999b)—to approximating the marginal likelihood
of discrete-variable directed acyclic graph (DAG) structures that contain hidden variables.
Variational Bayesian methods approximate the quantity of interest with a strict lower bound,
and the framework readily provides algorithms to optimise the approximation. We describe
the variational Bayesian methodology applied to a large class of graphical models which we
call conjugate-exponential, derive the VB approximation as applied to discrete DAGs with
hidden variables, and show that the resulting algorithm that optimises the approximation
closely resembles the standard Expectation-Maximisation (EM) algorithm of Dempster et al.
(1977). It will be seen for conjugate-exponential models that the VB methodology is an
elegant Bayesian generalisation of the EM framework, replacing point estimates of parameters
encountered in EM learning with distributions over parameters, thus naturally reflecting the
uncertainty over the settings of their values given the data. Previous work has applied the VB
methodology to particular instances of conjugate-exponential models, for example MacKay
(1997), and Ghahramani and Beal (2000, 2001); Beal (2003) describes in more detail the
theoretical results for VB in conjugate-exponential models.

We also briefly outline and compute the Bayesian Information Criterion (BIC) and
Cheeseman-Stutz (CS) approximations to the marginal likelihood for DAGs (Schwarz 1978;
Cheeseman and Stutz 1996), and compare these to VB in a particular model selection task.
The particular task we have chosen is that of finding which of several possible structures for
a simple graphical model (containing hidden and observed variables) has given rise to a set of
observed data. The success of each approximation is measured by how it ranks the true model
that generated the data amongst the alternatives, and also by the accuracy of the marginal
likelihood estimate.

As a gold standard, against which we can compare these approximations, we consider
sampling estimates of the marginal likelihood using the Annealed Importance Sampling (AIS)
method of Neal (2001). We consider AIS to be a “gold standard” in the sense that we believe
it is one of the best methods to date for obtaining reliable estimates of the marginal likelihoods
of the type of models explored here, given sufficient sampling computation. To the best of our
knowledge, the AIS analysis we present constitutes the first serious case study of the tightness
of variational Bayesian bounds. An analysis of the limitations of AIS is also provided. The
aim of the comparison is to establish the reliability of the VB approximation as an estimate of
the marginal likelihood in the general incomplete-data setting, so that it can be used in larger
problems — for example embedded in a (greedy) structure search amongst a much larger class
of models.

The remainder of this article is arranged as follows. Section 2 begins by examining the model
selection question for discrete directed acyclic graphs, and shows how exact marginal likelihood
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calculation becomes computationally intractable when the graph contains hidden variables. In
Section 3 we briefly cover the EM algorithm for maximum likelihood (ML) and maximum a
posteriori (MAP) parameter estimation in DAGs with hidden variables, and derive and discuss
the BIC and CS asymptotic approximations. We then introduce the necessary methodology for
variational Bayesian learning, and present the VBEM algorithm for variational Bayesian lower
bound optimisation of the marginal likelihood — in the case of discrete DAGs we show that this
is a straightforward generalisation of the MAP EM algorithm. In Section 3.6 we describe an
Annealed Importance Sampling method for estimating marginal likelihoods of discrete DAGs.
In Section 4 we evaluate the performance of these different approximation methods on the
simple (yet non-trivial) model selection task of determining which of all possible structures
within a class generated a data set. Section 5 provides an analysis and discussion of the
limitations of the AIS implementation and suggests possible extensions to it. In Section 6 we
consider the CS approximation, which is one of the state-of-the-art approximations, and extend
a result due to Minka (2001) that shows that the CS approximation is a lower bound on the
marginal likelihood in the case of mixture models, by showing how the CS approximation can
be constructed for any model containing hidden variables. We complete this section by proving
that there exists a VB bound that is guaranteed to be at least as tight or tighter than the CS
bound, independent of the model structure and type. Finally, we conclude in Section 7 and
suggest directions for future research.

2 Calculating the marginal likelihood of DAGs

We focus on discrete-valued Directed Acyclic Graphs, although all the methodology described in
the following sections is readily extended to models involving real-valued variables. Consider
a data set of size n, consisting of independent and identically distributed (i.i.d.) observed
variables y = {y1, . . . ,yi, . . . ,yn}, where each yi is a vector of discrete-valued variables. We
model this observed data y by assuming that it is generated by a discrete directed acyclic graph
consisting of hidden variables, s, and observed variables, y. Combining hidden and observed
variables we have z = {z1, . . . , zn} = {(s1,y1), . . . , (sn,yn)}. The elements of each vector zi

for i = 1, . . . , n are indexed from j = 1, . . . , |zi|, where |zi| is the number of variables in the
data vector zi. We define two sets of indices H and V such that those j ∈ H are the hidden
variables and those j ∈ V are observed variables, i.e. si = {zij : j ∈ H} and yi = {zij : j ∈ V}.

Note that zi = {si,yi} contains both hidden and observed variables — we refer to this
as the complete-data for data point i. The incomplete-data, yi, is that which constitutes the
observed data. Note that the meaning of |·| will vary depending on the type of its argument, for
example: |z| = |s| = |y| is the number of data points, n; |si| is the number of hidden variables
(for the ith data point); |sij | is the cardinality (or the number of possible settings) of the jth
hidden variable (for the ith data point).

In a DAG, the complete-data likelihood factorises into a product of local probabilities on
each variable

p(z | θ) =
n∏

i=1

|zi|∏

j=1

p(zij | zipa(j), θ) , (1)

where pa(j) denotes the vector of indices of the parents of the jth variable. Each variable
in the graph is multinomial, and the parameters for the graph are the collection of vectors
of probabilities on each variable given each configuration of its parents. For example, the
parameter for a binary variable which has two ternary parents is a matrix of size (32 × 2)



796 Variational Bayesian EM for DAGs

with each row summing to one. For a variable j without any parents (pa(j) = ∅), then the
parameter is simply a vector of its prior probabilities. Using θjlk to denote the probability
that variable j takes on value k when its parents are in configuration l, then the complete-data
likelihood can be written out as a product of terms of the form

p(zij | zipa(j), θ) =

|zipa(j)|∏

l=1

|zij |∏

k=1

θ
δ(zij ,k)δ(zipa(j) ,l)

jlk (2)

with
∑

k θjlk = 1 ∀ {j, l}. Here we use
∣∣zipa(j)

∣∣ to denote the number of joint settings of
the parents of variable j. We use Kronecker-δ notation: δ(·, ·) is 1 if its arguments are iden-
tical and zero otherwise. The parameters are given independent Dirichlet priors, which are
conjugate to the complete-data likelihood above (thereby satisfying Condition 1 for conjugate-
exponential models (42), which is required later). The prior is factorised over variables and
parent configurations; these choices then satisfy the global and local independence assumptions
of Heckerman et al. (1995). For each parameter θjl = {θjl1, . . . , θjl|zij |

}, the Dirichlet prior is

p(θjl |λjl,m) =
Γ(λ0

jl)∏
k Γ(λjlk)

∏

k

θ
λjlk−1

jlk , (3)

where λ are hyperparameters, λjl = {λjl1, . . . , λjl|zij |
}, and λjlk > 0 ∀ k, λ0

jl =
∑

k λjlk, Γ(·)

is the gamma function, and the domain of θ is confined to the simplex of probabilities that sum
to 1. This form of prior is assumed throughout this article. Since we do not focus on inferring
the hyperparameters we use the shorthand p(θ |m) to denote the prior from here on. In the
discrete-variable case we are considering, the complete-data marginal likelihood is tractable to
compute:

p(z |m) =

∫
dθ p(θ |m)p(z | θ) =

∫
dθ p(θ |m)

n∏

i=1

|zi|∏

j=1

p(zij | zipa(j), θ) (4)

=

|zi|∏

j=1

|zipa(j)|∏

l=1

Γ(λ0
jl)

Γ(λ0
jl +Njl)

|zij|∏

k=1

Γ(λjlk +Njlk)

Γ(λjlk)
, (5)

where Njlk is defined as the count in the data for the number of instances of variable j being
in configuration k with parental configuration l:

Njlk =
n∑

i=1

δ(zij , k)δ(zipa(j), l), and Njl =

|zij |∑

k=1

Njlk . (6)

Note that if the data set is complete — that is to say there are no hidden variables — then
s = ∅ and so z = y, and the quantities Njlk can be computed directly from the data.

The incomplete-data likelihood results from summing over all settings of the hidden vari-
ables and taking the product over i.i.d. presentations of the data:

p(y | θ) =
n∏

i=1

p(yi | θ) =
n∏

i=1

∑

{zij}j∈H

|zi|∏

j=1

p(zij | zipa(j), θ) . (7)
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Now the incomplete-data marginal likelihood for n cases follows from marginalising out the
parameters of the model with respect to their prior distribution:

p(y |m) =

∫
dθ p(θ |m)

n∏

i=1

∑

{zij}j∈H

|zi|∏

j=1

p(zij | zipa(j), θ) (8)

=
∑

{{zij}j∈H}n
i=1

∫
dθ p(θ |m)

|zi|∏

j=1

p(zij | zipa(j), θ) . (9)

The expression (8) is computationally intractable due to the expectation (integral) over the
real-valued conditional probabilities θ, which couples the hidden variables across i.i.d. data
instances. Put another way (9), pulling the summation to the left of the product over n
instances results in a summation with a number of summands exponential in the number of

data n. In the worst case, (8) or (9) can be evaluated as the sum of
(∏

j∈H
|zij |

)n

Dirichlet

integrals. To take an example, a model with just |si| = 2 hidden variables and n = 100 data
points requires the evaluation of 2100 Dirichlet integrals. This means that a linear increase in
the amount of observed data results in an exponential increase in the cost of inference.

Our goal is to learn the conditional independence structure of the model — that is, which
variables are parents of each variable. Ideally, we should compare structures based on their
posterior probabilities, and to compute this posterior we need to first compute the marginal
likelihood (8).

The next section examines several methods that attempt to approximate the marginal
likelihood (8). We focus on a variational Bayesian algorithm, which we compare to asymptotic
criteria and also to sampling-based estimates. For the moment we assume that the cardinalities
of the variables — in particular the hidden variables — are fixed beforehand; our wish is to
discover how many hidden variables there are and what their connectivity is to other variables
in the graph. The related problem of determining the cardinality of the variables from data
can also be addressed in the variational Bayesian framework, as for example has been recently
demonstrated for Hidden Markov Models (Beal 2003).

3 Estimating the marginal likelihood

In this section we look at some approximations to the marginal likelihood for a model m, which
we refer to henceforth as the scores for m. In Section 3.1 we first review ML and MAP parameter
learning and briefly present the EM algorithm for a general discrete-variable directed graphical
model with hidden variables. Using the final parameters obtained from an EM optimisation,
we can then construct various asymptotic approximations to the marginal likelihood, and so
derive the BIC and Cheeseman-Stutz criteria, described in Sections 3.2 and 3.3, respectively.
An alternative approach is provided by the variational Bayesian framework, which we review in
some detail in Section 3.4. In the case of discrete directed acyclic graphs with Dirichlet priors,
the model is conjugate-exponential (defined below), and the VB framework produces a very
simple VBEM algorithm. This algorithm is a generalisation of the EM algorithm, and as such
be cast in a way that resembles a direct extension of the EM algorithm for MAP parameter
learning; the algorithm for VB learning for these models is presented in Section 3.5. In Section
3.6 we derive an annealed importance sampling method (AIS) for this class of graphical model,
which is considered to be the current state-of-the-art technique for estimating the marginal
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likelihood of these models using sampling. Armed with these various approximations we pit
them against each other in a model selection task, described in Section 4.

3.1 ML and MAP parameter estimation for DAGs

We begin by deriving the EM algorithm for ML/MAP estimation via a lower bound interpreta-
tion (see Neal and Hinton 1998). We start with the incomplete-data log likelihood, and lower
bound it by a functional F(qs(s), θ) by appealing to Jensen’s inequality as follows

ln p(y | θ) = ln

n∏

i=1

∑

{zij}j∈H

|zi|∏

j=1

p(zij | zipa(j), θ) (10)

=

n∑

i=1

ln
∑

si

qsi
(si)

∏|zi|

j=1 p(zij | zipa(j), θ)

qsi
(si)

(11)

≥

n∑

i=1

∑

si

qsi
(si) ln

∏|zi|

j=1 p(zij | zipa(j), θ)

qsi
(si)

(12)

= F({qsi
(si)}

n
i=1, θ) . (13)

The first line is simply the logarithm of equation (7); in the second line we have used the
shorthand si = {zij}j∈H to denote all hidden variables corresponding to the ith data point, and
have multiplied and divided the inner summand (over si) by a variational distribution qsi

(si)
— one for each data point yi. The inequality that folllows results from the concavity of the
logarithm function and results in an expression that is a strict lower bound on the log complete
data likelihood, denoted F({qsi

(si)}
n
i=1, θ). This expression depends on the parameters of the

model, θ, and is a functional of the variational distributions {qsi
}ni=1.

Since F({qsi
(si)}

n
i=1, θ) is a lower bound on a quantity we wish to maximise, we maximise

the bound by taking functional derivatives with respect to each qsi
(si) while keeping the

remaining {qs
i′

(si′)}i′ 6=i fixed, and set these to zero yielding

qsi
(si) = p(si |yi, θ) ∀ i . (14)

Thus the optimal setting of each variational distribution is in fact the exact posterior distri-
bution for the hidden variable for that data point. This is the E step of the celebrated EM
algorithm; with these settings of the distributions {qsi

(si)}
n
i=1, it can easily be shown that

the bound is tight — that is to say, the difference between ln p(y | θ) and F({qsi
(si)}

n
i=1, θ) is

exactly zero.

The M step of the EM algorithm is obtained by taking derivatives of the bound with respect
to the parameters θ, while holding fixed the distributions qsi

(si) ∀ i. Each θjl is constrained
to sum to one, and so we enforce this with Lagrange multipliers cjl,

∂

∂θjlk
F(qs(s), θ) =

n∑

i=1

∑

si

qsi
(si)

∂

∂θjlk
ln p(zij |xipa(j), θj) + cjl (15)

=

n∑

i=1

∑

si

qsi
(si)δ(zij , k)δ(zipa(j), l)

∂

∂θjlk
ln θjlk + cjl = 0 , (16)
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which upon rearrangement gives

θjlk ∝

n∑

i=1

∑

si

qsi
(si)δ(zij , k)δ(zipa(j), l) . (17)

Due to the normalisation constraint on θjl the M step can be written

M step (ML): θjlk =
Njlk

∑|zij |
k′=1Njlk′

, (18)

where the Njlk are defined as

Njlk =
n∑

i=1

〈
δ(zij , k)δ(zipa(j), l)

〉
qsi

(si)
, (19)

where angled-brackets 〈·〉qsi
(si)

are used to denote expectation with respect to the hidden

variable posterior qsi
(si) found in the preceding E step. The Njlk are interpreted as the

expected number of counts for observing settings of children and parent configurations over
observed and hidden variables. In the cases where both j and pa(j) are observed variables,
Njlk reduces to the simple empirical count, as in (6). Otherwise, if j or its parents are hidden,
then expectations need be taken over the posterior qsi

(si) obtained in the E step.

If we require the MAP EM algorithm, we instead lower bound ln p(θ)p(y | θ). The E step
remains the same, but the M step uses augmented counts from the prior of the form in (3) to
give the following update:

M step (MAP): θjlk =
λjlk − 1 +Njlk

∑|zij |
k′=1 λjlk′ − 1 +Njlk′

. (20)

Repeated applications of the E step (14) and the M step (18, 20) are guaranteed to increase the
log likelihood (with equation (18)) or the log posterior (with equation (20)) of the parameters at
every iteration, and converge to a local maximum. We note that MAP estimation is inherently
basis-dependent: for any particular θ∗ having non-zero prior probability, it is possible to find
a (one-to-one) reparameterisation φ(θ) such that the MAP estimate for φ is at φ(θ∗). This
is an obvious drawback of MAP parameter estimation. Moreover, the use of (20) can produce
erroneous results in the case of λjlk < 1, in the form of negative probabilities. Conventionally,
researchers have limited themselves to Dirichlet priors in which every λjlk ≥ 1, although in
MacKay (1998) it is shown how a reparameterisation of θ into the softmax basis results in
MAP updates which do not suffer from this problem (which look identical to (20), but without
the −1 in numerator and denominator). Note that our EM algorithms were indeed carried out
in the softmax basis, which avoids such effects and problems with parameters lying near their
domain boundaries.

3.2 The BIC

The Bayesian Information Criterion approximation (BIC; Schwarz 1978) is the asymptotic limit
to large data sets of the Laplace approximation (Kass and Raftery 1995; MacKay 1995). The
Laplace approximation makes a local quadratic approximation to the log posterior around a
MAP parameter estimate, θ̂,

ln p(y |m) = ln

∫
dθ p(θ |m) p(y | θ) ≈ ln p(θ̂ |m) + ln p(y | θ̂) +

1

2
ln
∣∣−2πH−1

∣∣ , (21)
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where H(θ̂) is the Hessian defined as ∂2 lnp(θ |m)p(y | θ)

∂θ∂θ>

∣∣∣
θ=θ̂

. The BIC approximation is the

asymptotic limit of the above expression, retaining only terms that grow with the number of
data n; since the Hessian grows linearly with n, the BIC is given by

ln p(y |m)BIC = ln p(y | θ̂)−
d(m)

2
lnn , (22)

where d(m) is the number of parameters in model m. The BIC is interesting because it does
not depend on the prior over parameters, and is attractive because it does not involve the
burdensome computation of the Hessian of the log likelihood and its determinant. However
in general the Laplace approximation, and therefore its BIC limit, have several shortcomings
which are outlined below.

The Gaussian assumption is based on the large data limit, and will represent the poste-
rior poorly for small data sets for which, in principle, the advantages of Bayesian integration
over ML or MAP are largest. The Gaussian approximation is also poorly suited to bounded,
constrained, or positive parameters, since it assigns non-zero probability mass outside of the
parameter domain. Moreover, the posterior may not be unimodal for likelihoods with hidden
variables, due to problems of identifiability; in these cases the regularity conditions required
for convergence do not hold. Even if the exact posterior is unimodal, the resulting approxima-
tion may well be a poor representation of the nearby probability mass, as the approximation
is made about a locally maximum probability density. In large models the approximation
may become unwieldy to compute, taking O(nd2) operations to compute the derivatives in the
Hessian, and then a further O(d3) operations to calculate its determinant (d is the number of
parameters in the model) — further approximations would become necessary, such as those
ignoring off-diagonal elements or assuming a block-diagonal structure for the Hessian, which
correspond to neglecting dependencies between parameters.

For BIC, we require the number of free parameters in each structure. In these experiments
we use a simple counting argument and apply the following counting scheme. If a variable j
has no parents in the DAG, then it contributes (|zij | − 1) free parameters, corresponding to the
degrees of freedom in its vector of prior probabilities (constrained to lie on the simplex

∑
k pk =

1). Each variable that has parents contributes (|zij | − 1) parameters for each configuration of
its parents. Thus in model m the total number of parameters d(m) is given by

d(m) =

|zi|∑

j=1

(|zij | − 1)

|zipa(j)|∏

l=1

∣∣zipa(j)l

∣∣ , (23)

where
∣∣zipa(j)l

∣∣ denotes the cardinality (number of settings) of the lth parent of the jth variable.
We have used the convention that the product over zero factors has a value of one to account

for the case in which the jth variable has no parents — that is to say
∏|zipa(j)|

l=1

∣∣zipa(j)l

∣∣ = 1,
if the number of parents

∣∣zipa(j)l

∣∣ is 0.

The BIC approximation needs to take into account aliasing in the parameter posterior. In
discrete-variable DAGs, parameter aliasing occurs from two symmetries: first, a priori identical
hidden variables can be permuted, and second, the labellings of the states of each hidden
variable can be permuted. As an example, let us imagine the parents of a single observed
variable are 3 hidden variables having cardinalities (3, 3, 4). In this case the number of aliases
is 1728 (= 2!× 3!× 3!× 4!). If we assume that the aliases of the posterior distribution are well
separated then the score is given by

ln p(y |m)BIC = ln p(y | θ̂)−
d(m)

2
lnn+ lnS (24)
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where S is the number of aliases, and θ̂ is the MAP estimate as described in the previous
section. This correction is accurate only if the modes of the posterior distribution are well
separated, which should be the case in the large data set size limit for which BIC is useful.
However, since BIC is correct only up to an indeterminate missing factor, we might think that
this correction is not necessary. In the experiments we examine the BIC score with and without
this correction, and also with and without the inclusion of the prior term ln p(θ̂ |m).

3.3 The Cheeseman-Stutz approximation

The Cheeseman-Stutz (CS) approximation makes use of the following identity for the
incomplete-data marginal likelihood:

p(y |m) = p(ẑ |m)
p(y |m)

p(ẑ |m)
= p(ẑ |m)

∫
dθ p(θ |m)p(y | θ,m)∫
dθ p(θ′ |m)p(ẑ | θ′,m)

, (25)

which is true for any completion ẑ = {ŝ,y} of the data. This form is useful because the
complete-data marginal likelihood, p(ẑ |m), is tractable to compute for discrete DAGs with
independent Dirichlet priors: it is just a product of Dirichlet integrals, as given in (5). By
applying Laplace approximations to the integrals in both the numerator and denominator,

about points θ̂ and θ̂
′

in parameter space respectively, and then assuming the limit of an
infinite amount of data in order to recover BIC-type forms for both integrals, we immediately
obtain the following estimate of the marginal (incomplete) likelihood

ln p(y |m) ≈ ln p(y |m)CS ≡ ln p(ŝ,y |m) + ln p(θ̂ |m) + ln p(y | θ̂)−
d

2
lnn

− ln p(θ̂
′
|m)− ln p(ŝ,y | θ̂) +

d′

2
lnn (26)

= ln p(ŝ,y |m) + ln p(y | θ̂)− ln p(ŝ,y | θ̂) . (27)

The last line follows if we choose θ̂
′

to be identical to θ̂ and further assume that the num-
ber of parameters in the models for complete and incomplete data are the same, i.e. d = d′

(Cheeseman and Stutz 1996). In the case of the models examined in this article, we can ensure

that the mode of the posterior in the complete setting is at locations θ̂
′
= θ̂ by completing the

hidden data {si}
n
i=1 with their expectations under their posterior distributions p(si |y, θ̂), or

simply: ŝijk = 〈δ(sij , k)〉qsi
(si)

. This procedure will generally result in non-integer counts Njlk

on application of (19). Upon parameter re-estimation using equation (20), we note that θ̂
′
= θ̂

remains invariant. The most important aspect of the CS approximation is that each term of
(27) can be tractably evaluated as follows:

from (5) p(ŝ,y |m) =

|zi|∏

j=1

|zipa(j)|∏

l=1

Γ(λ0
jl)

Γ(λjl + N̂jl)

|zij |∏

k=1

Γ(λjlk + N̂jlk)

Γ(λjlk)
; (28)

from (7) p(y | θ̂) =
n∏

i=1

∑

{zij}j∈H

|zi|∏

j=1

|zipa(j)|∏

l=1

|zij |∏

k=1

θ̂
δ(zij ,k)δ(zipa(j) ,l)

jlk ; (29)

from (1) p(ŝ,y | θ̂) =

|zi|∏

j=1

|zipa(j)|∏

l=1

|zij |∏

k=1

θ̂
N̂jlk

jlk , (30)
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where the N̂jlk are identical to the Njlk of equation (19) if the completion of the data with
ŝ is done with the posterior found in the M step of the MAP EM algorithm used to find θ̂.
Equation (29) is simply the likelihood output by the EM algorithm, equation (28) is a function
of the counts obtained in the EM algorithm, and equation (30) is a simple computation again.

As with BIC, the Cheeseman-Stutz score also needs to be corrected for aliases in the
parameter posterior, and is subject to the same caveat that these corrections are only accurate
if the aliases in the posterior are well separated. Finally, we note that CS is in fact a lower
bound on the marginal likelihood, and is intricately related to our proposed method that is
described next. In Section 6 we revisit the CS approximation and derive a key result on the
tightness of its bound.

3.4 Estimating marginal likelihood using Variational Bayes

Here we briefly review a method of lower bounding the marginal likelihood, and the cor-
responding deterministic iterative algorithm for optimising this bound that has come to be
known as variational Bayes (VB). Variational methods have been used in the past to tackle
intractable posterior distributions over hidden variables (Neal 1992; Hinton and Zemel 1994;
Saul and Jordan 1996; Jaakkola 1997; Ghahramani and Jordan 1997; Ghahramani and Hinton
2000), and more recently have tackled Bayesian learning in specific models (Hinton and van Camp
1993; Waterhouse et al. 1996; MacKay 1997; Bishop 1999; Ghahramani and Beal 2000). In-
spired by MacKay (1997), Attias (2000) first described the general form of variational Bayes
and showed that it is a generalisation of the celebrated EM algorithm of Dempster et al.
(1977). Ghahramani and Beal (2001) and Beal (2003) built upon this work, applying it to the
large class of conjugate-exponential models (described below). Just as in the standard E step
of EM, we obtain a posterior distribution over the hidden variables, and we now also treat
the parameters of the model as uncertain quantities and infer their posterior distribution as
well. Since the hidden variables and parameters are coupled, computing the exact posterior
distribution over both is intractable and we use the variational methodology to instead work
in the space of simpler distributions — those that are factorised between hidden variables and
parameters.

As before, let y denote the observed variables, x denote the hidden variables, and θ de-
note the parameters. We assume a prior distribution over parameters p(θ |m), conditional on
the model m. The marginal likelihood of a model, p(y |m), can be lower bounded by intro-
ducing any distribution over both latent variables and parameters which has support where
p(x,θ |y,m) does, by appealing to Jensen’s inequality:

ln p(y |m) = ln

∫
dθ dx p(x,y, θ |m) = ln

∫
dθ dx q(x, θ)

p(x,y, θ |m)

q(x, θ)
(31)

≥

∫
dθ dx q(x, θ) ln

p(x,y, θ |m)

q(x, θ)
. (32)

Maximising this lower bound with respect to the free distribution q(x, θ) results in q(x, θ) =
p(x,θ |y,m), which when substituted above turns the inequality into an equality. This does
not simplify the problem, since evaluating the exact posterior distribution p(x,θ |y,m) requires
knowing its normalising constant, the marginal likelihood. Instead we constrain the posterior
to be a simpler, factorised (separable) approximation q(x,θ) = qx(x)qθ(θ), which we are at
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liberty to do as (32) is true for any q(x,θ):

ln p(y |m) ≥

∫
dθ dx qx(x)qθ(θ) ln

p(x,y, θ |m)

qx(x)qθ(θ)
(33)

=

∫
dθ qθ(θ)

[∫
dx qx(x) ln

p(x,y | θ,m)

qx(x)
+ ln

p(θ |m)

qθ(θ)

]
(34)

= Fm(qx(x), qθ(θ)) (35)

= Fm(qx1 (x1), . . . , qxn (xn), qθ(θ)) . (36)

The last equality is a consequence of the data y being i.i.d. and is explained below. The
quantity Fm is a functional of the free distributions, qx(x) and qθ(θ); for brevity we omit the
implicit dependence of Fm on the fixed data set y.

The variational Bayesian algorithm iteratively maximises Fm in (35) with respect to the
free distributions, qx(x) and qθ(θ), which is essentially coordinate ascent in the function space
of variational distributions. It is not difficult to show that by taking functional derivatives
of (35), we obtain the VBE and VBM update equations shown below. Each application of
the VBE and VBM steps is guaranteed to increase or leave unchanged the lower bound on the
marginal likelihood, and successive applications are guaranteed to converge to a local maximum
of Fm(qx(x), qθ(θ)). The VBE step is

VBE step: q(t+1)
xi

(xi) =
1

Zxi

exp

[∫
dθ q

(t)
θ (θ) ln p(xi,yi | θ,m)

]
∀ i , (37)

giving the hidden variable variational posterior

q(t+1)
x (x) =

n∏

i=1

q(t+1)
xi

(xi) , (38)

and the VBM step by

VBM step: q
(t+1)
θ (θ) =

1

Zθ

p(θ |m) exp

[∫
dx q(t+1)

x (x) ln p(x,y | θ,m)

]
. (39)

Here t indexes the iteration number and Zθ and Zxi
are (readily computable) normalisation

constants. The factorisation of the distribution over hidden variables between different data
points in (38) is a consequence of the i.i.d. data assumption, and falls out of the VB optimisation
only because we have decoupled the distributions over hidden variables and parameters. At this
point it is well worth noting the symmetry between the hidden variables and the parameters.
The only distinguishing feature between hidden variables and parameters is that the number
of hidden variables increases with data set size, whereas the number of parameters is assumed
fixed.

Re-writing (33), it is easy to see that maximising Fm(qx(x), qθ(θ)) is equivalent to min-
imising the Kullback-Leibler (KL) divergence between qx(x) qθ(θ) and the joint posterior over
hidden states and parameters p(x,θ |y,m):

ln p(y |m)−Fm(qx(x), qθ(θ)) =

∫
dθ dx qx(x) qθ(θ) ln

qx(x) qθ(θ)

p(x,θ |y,m)
(40)

= KL [qx(x) qθ(θ) ‖ p(x,θ |y,m)] ≥ 0 . (41)
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The variational Bayesian EM algorithm reduces to the ordinary EM algorithm for ML estima-
tion if we restrict the parameter distribution to a point estimate, i.e. a Dirac delta function,
qθ(θ) = δ(θ − θ∗), in which case the M step simply involves re-estimating θ∗. Note that the
same cannot be said in the case of MAP estimation, which is inherently basis dependent, unlike
both VB and ML algorithms. By construction, the VBEM algorithm is guaranteed to mono-
tonically increase an objective function Fm, as a function of distributions over parameters and
hidden variables. Since we integrate over model parameters there is a naturally incorporated
model complexity penalty. It turns out that, for a large class of models that we will examine
next, the VBE step has approximately the same computational complexity as the standard
E step in the ML framework, which makes it viable as a Bayesian replacement for the EM
algorithm. Moreover, for a large class of models p(x,y, θ) that we call conjugate-exponential

(CE) models, the VBE and VBM steps have very simple and intuitively appealing forms. We
examine these points next. CE models satisfy two conditions:

Condition (1). The complete-data likelihood is in the exponential family:

p(xi,yi | θ) = g(θ) f(xi,yi) e
φ(θ)>u(xi,yi) , (42)

where φ(θ) is the vector of natural parameters, u and f are the functions that define the

exponential family, and g is a normalisation constant:

g(θ)−1 =

∫
dxi dyi f(xi,yi) e

φ(θ)>u(xi,yi) . (43)

Condition (2). The parameter prior is conjugate to the complete-data likelihood:

p(θ | η, ν) = h(η,ν) g(θ)η eφ(θ)>ν , (44)

where η and ν are hyperparameters of the prior, and h is a normalisation constant:

h(η,ν)−1 =

∫
dθ g(θ)η eφ(θ)>ν . (45)

From the definition of conjugacy, we see that the hyperparameters of a conjugate prior can
be interpreted as the number (η) and values (ν) of pseudo-observations under the corresponding
likelihood. The list of latent-variable models of practical interest with complete-data likelihoods
in the exponential family is very long, for example: Gaussian mixtures, factor analysis, principal
components analysis, hidden Markov models and extensions, switching state-space models,
discrete-variable belief networks. Of course there are also many as yet undreamt-of models
combining Gaussian, gamma, Poisson, Dirichlet, Wishart, multinomial, and other distributions
in the exponential family. Models whose complete-data likelihood is not in the exponential
family can often be approximated by models which are in the exponential family and have
been given additional hidden variables (for example, see Attias 1999a).

In Bayesian inference we want to determine the posterior over parameters and hidden
variables p(x,θ |y, η,ν). In general this posterior is neither conjugate nor in the exponential
family, and is intractable to compute. We can use the variational Bayesian VBE (37) and VBM
(39) update steps, but we have no guarantee that we will be able to represent the results of the
integration and exponentiation steps analytically. Here we see how models with CE properties
are especially amenable to the VB approximation, and derive the VBEM algorithm for CE
models.
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Given an i.i.d. data set y = {y1, . . .yn}, if the model satisfies conditions (1) and (2), then
the following results (a), (b) and (c) hold.

(a) The VBE step yields:

qx(x) =

n∏

i=1

qxi
(xi) , (46)

and qxi
(xi) is in the exponential family:

qxi
(xi) ∝ f(xi,yi) e

φ
>

u(xi,yi) = p(xi |yi,φ) , (47)

with a natural parameter vector

φ =

∫
dθ qθ(θ)φ(θ) ≡ 〈φ(θ)〉qθ(θ) (48)

obtained by taking the expectation of φ(θ) under qθ(θ) (denoted using angle-brackets
〈·〉). For invertible φ, defining θ̃ such that φ(θ̃) = φ, we can rewrite the approximate
posterior as

qxi
(xi) = p(xi |yi, θ̃) . (49)

(b) The VBM step yields that qθ(θ) is conjugate and of the form:

qθ(θ) = h(η̃, ν̃) g(θ)η̃ eφ(θ)>ν̃ , (50)

where η̃ = η + n, ν̃ = ν +
∑n

i=1 u(yi), and u(yi) = 〈u(xi,yi)〉qxi
(xi)

is the expectation

of the sufficient statistic u. We have used 〈·〉qxi
(xi)

to denote expectation under the

variational posterior over the latent variable(s) associated with the ith datum.

(c) Results (a) and (b) hold for every iteration of variational Bayesian EM — i.e. the forms
in (47) and (50) are closed under VBEM.

Results (a) and (b) follow from direct substitution of the forms in (42) and (44) into the VB
update equations (37) and (39). Furthermore, if qx(x) and qθ(θ) are initialised according to
(47) and (50), respectively, and conditions (42) and (44) are met, then result (c) follows by
induction.

As before, since qθ(θ) and qxi
(xi) are coupled, (50) and (47) do not provide an analytic

solution to the minimisation problem, so the optimisation problem is solved numerically by
iterating between these equations. To summarise, for CE models:

VBE Step: Compute the expected sufficient statistics {u(yi)}
n
i=1 under the hidden

variable distributions qxi
(xi), for all i.

VBM Step: Compute the expected natural parameters φ = 〈φ(θ)〉 under the parameter

distribution given by η̃ and ν̃.

A major implication of these results for CE models is that, if there exists such a θ̃ satisfying
φ(θ̃) = φ, the posterior over hidden variables calculated in the VBE step is exactly the
posterior that would be calculated had we been performing a standard E step using θ̃. That
is, the inferences using an ensemble of models qθ(θ) can be represented by the effect of a point
parameter, θ̃. The task of performing many inferences, each of which corresponds to a different
parameter setting, can be replaced with a single inference step tractably.
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EM for MAP estimation Variational Bayesian EM

Goal: maximise p(θ |y,m) w.r.t. θ Goal: lower bound p(y |m)

E Step: compute VBE Step: compute

q
(t+1)
x (x) = p(x |y, θ(t)) q

(t+1)
x (x) = p(x |y,φ

(t)
)

M Step: VBM Step:

θ(t+1) = arg maxθ

∫
dx q

(t+1)
x (x) ln p(x,y, θ) q

(t+1)
θ (θ) ∝ exp

∫
dx q

(t+1)
x (x) ln p(x,y, θ)

Table 1: Comparison of EM for ML/MAP estimation with VBEM for CE models.

We can draw a tight parallel between the EM algorithm for ML/MAP estimation, and our
VBEM algorithm applied specifically to conjugate-exponential models. These are summarised
in table 1. This general result of VBEM for CE models was reported in Ghahramani and Beal
(2001), and generalises the well known EM algorithm for ML estimation (Dempster et al.
1977). It is a special case of the variational Bayesian algorithm (equations (37) and (39)) used
in Ghahramani and Beal (2000) and in Attias (2000), yet encompasses many of the models
that have been so far subjected to the variational treatment. Its particular usefulness is as
a guide for the design of models, to make them amenable to efficient approximate Bayesian
inference.

The VBE step has about the same time complexity as the E step, and is in all ways
identical except that it is re-written in terms of the expected natural parameters. The VBM step
computes a distribution over parameters (in the conjugate family) rather than a point estimate.
Both ML/MAP EM and VBEM algorithms monotonically increase an objective function, but
the latter also incorporates a model complexity penalty by integrating over parameters and
thereby embodying an Occam’s razor effect.

3.5 The variational Bayesian lower bound for discrete-valued DAGs

We wish to approximate the incomplete-data log marginal likelihood (8) given by

ln p(y |m) = ln

∫
dθ p(θ |m)

n∏

i=1

∑

{zij}j∈H

|zi|∏

j=1

p(zij | zipa(j), θ) . (51)

We can form the lower bound using (33), introducing variational distributions qθ(θ) and
{qsi

(si)}
n
i=1 to yield

ln p(y |m) ≥

∫
dθ qθ(θ) ln

p(θ |m)

qθ(θ)
+

n∑

i=1

∫
dθ qθ(θ)

∑

si

qsi
(si) ln

p(zi | θ, m)

qsi
(si)

= Fm(qθ(θ), q(s)) . (52)
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We now take functional derivatives to write down the variational Bayesian EM algorithm. The
VBM step is straightforward:

ln qθ(θ) = ln p(θ |m) +
n∑

i=1

∑

si

qsi
(si) ln p(zi | θ,m) + c , (53)

with c a constant required for normalisation. Given that the prior over parameters factorises
over variables, as in (3), and the complete-data likelihood factorises over the variables in a
DAG, as in (1), equation (53) can be broken down into individual terms:

ln qθjl
(θjl) = ln p(θjl |λjl,m) +

n∑

i=1

∑

si

qsi
(si) ln p(zij | zipa(j), θ, m) + cjl , (54)

where zij may be either a hidden or observed variable, and each cjl is a Lagrange multiplier
from which a normalisation constant is obtained. Since the prior is Dirichlet, it is easy to
show that equation (54) has the form of the Dirichlet distribution — thus conforming to result
(b) in (50). We define the expected counts under the hidden variable variational posterior
distribution

Njlk =
n∑

i=1

〈
δ(zij , k)δ(zipa(j), l)

〉
qsi

(si)
. (55)

That is, Njlk is the expected total number of times the jth variable (hidden or observed) is in
state k when its parents (hidden or observed) are in state l, where the expectation is taken with
respect to the variational distribution qsi

(si) over the hidden variables. Then the variational
posterior for the parameters is given simply by

qθjl
(θjl) = Dir (λjlk +Njlk : k = 1, . . . , |zij |) . (56)

For the VBE step, taking derivatives of (52) with respect to each qsi
(si) yields

ln qsi
(si) =

∫
dθ qθ(θ) ln p(zi | θ,m) + c′i =

∫
dθ qθ(θ) ln p(si,yi | θ,m) + c′i , (57)

where each c′i is a Lagrange multiplier for normalisation of the posterior. Since the complete-
data likelihood p(zi | θ,m) is in the exponential family and we have placed conjugate Dirichlet
priors on the parameters, we can immediately utilise the result in (49) which gives simple forms
for the VBE step:

qsi
(si) ∝ qzi

(zi) =

|zi|∏

j=1

p(zij | zipa(j), θ̃) . (58)

Thus the approximate posterior over the hidden variables si resulting from a variational
Bayesian approximation is identical to that resulting from exact inference in a model with
known point parameters θ̃ — the choice of θ̃ must satisfy φ(θ̃) = φ. The natural parameters
for this model are the log probabilities {ln θjlk}, where j specifies which variable, l indexes the
possible configurations of its parents, and k the possible settings of the variable. Thus

ln θ̃jlk = φ(θ̃jlk) = φjlk =

∫
dθjl qθjl

(θjl) ln θjlk . (59)

Under a Dirichlet distribution, the expectations are differences of digamma functions

ln θ̃jlk = ψ(λjlk +Njlk)− ψ(

|zij |∑

k=1

λjlk +Njlk) ∀ {j, l, k} , (60)
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where the Njlk are defined in (55), and ψ(·) is the digamma function. Since this expectation
operation takes the geometric mean of the probabilities, the propagation algorithm in the VBE

step is now passed sub-normalised probabilities as parameters:
∑|zij |

k=1 θ̃jlk ≤ 1 ∀ {j, l}. This
use of sub-normalised probabilities also occurred in MacKay (1997) in the context of variational
Bayesian Hidden Markov Models.

The expected natural parameters become normalised only if the distribution over parame-
ters is a delta function, in which case this reduces to the MAP inference scenario of Section 3.1.
In fact, using the property of the digamma function for large arguments, limx→∞ ψ(x) = lnx,
we find that equation (60) becomes

lim
n→∞

ln θ̃jlk = ln(λjlk +Njlk)− ln(

|zij |∑

k=1

λjlk +Njlk) , (61)

which has recovered the MAP estimator for θ (20), up to the −1 entries in numerator and
denominator which become vanishingly small for large data, and vanish completely if MAP is
performed in the softmax parameterisation (see MacKay 1998). Thus in the limit of large data
VB recovers the MAP parameter estimate.

To summarise, the VBEM implementation for discrete DAGs consists of iterating between
the VBE step (58) which infers distributions over the hidden variables given a distribution
over the parameters, and a VBM step (56) which finds a variational posterior distribution over
parameters based on the hidden variables’ sufficient statistics from the VBE step. Each step
monotonically increases or leaves unchanged a lower bound on the marginal likelihood of the
data, and the algorithm is guaranteed to converge to a local maximum of the lower bound. The
VBEM algorithm uses as a subroutine the algorithm used in the E step of the corresponding
EM algorithm, and so the VBE step’s computational complexity is the same as for EM — there
is some overhead in calculating differences of digamma functions instead of ratios of expected
counts, but this is presumed to be minimal and fixed. As with BIC and Cheeseman-Stutz, the
lower bound does not take into account aliasing in the parameter posterior, and needs to be
corrected as described in Section 3.2.

3.6 Annealed Importance Sampling (AIS)

AIS (Neal 2001) is a state-of-the-art technique for estimating marginal likelihoods, which breaks
a difficult integral into a series of easier ones. It combines techniques from importance sampling,
Markov chain Monte Carlo, and simulated annealing (Kirkpatrick et al. 1983). AIS builds on
work in the Physics community for estimating the free energy of systems at different tempera-
tures, for example: thermodynamic integration (Neal 1993), tempered transitions (Neal 1996),
and the similarly inspired umbrella sampling (Torrie and Valleau 1977). Most of these, as well
as other related methods, are reviewed in Gelman and Meng (1998).

Obtaining samples from the posterior distribution over parameters, with a view to forming
a Monte Carlo estimate of the marginal likelihood of the model, is usually a very challenging
problem. This is because, even with small data sets and models with just a few parameters, the
distribution is likely to be very peaky and have its mass concentrated in tiny volumes of space.
This makes simple approaches such as sampling parameters directly from the prior or using
simple importance sampling infeasible. The basic idea behind annealed importance sampling is
to move in a chain from an easy-to-sample-from distribution, via a series of intermediate distri-
butions, through to the complicated posterior distribution. By annealing the distributions in
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this way the parameter samples should hopefully come from representative areas of probability
mass in the posterior. The key to the annealed importance sampling procedure is to make use
of the importance weights gathered at all the distributions up to and including the final poste-
rior distribution, in such a way that the final estimate of the marginal likelihood is unbiased.
A brief description of the AIS procedure follows. We define a series of inverse-temperatures
{τ (k)}Kk=0 satisfying

0 = τ (0) < τ (1) < · · · < τ (K − 1) < τ (K) = 1 . (62)

We refer to temperatures and inverse-temperatures interchangeably throughout this section.
We define the function:

fk(θ) ≡ p(θ |m)p(y | θ,m)τ(k) , k ∈ {0, . . . , K} . (63)

Thus the set of functions {fk(θ)}Kk=0 form a series of unnormalised distributions which inter-

polate between the prior and posterior, parameterised by τ . We also define the normalisation
constants Zk ≡

∫
dθ fk(θ), and note that Z0 =

∫
dθ p(θ |m) = 1 from normalisation of

the prior and that ZK =
∫
dθ p(θ |m)p(y | θ,m) = p(y |m), which is exactly the marginal

likelihood we wish to estimate. We can estimate ZK , or equivalently ZK

Z0
, using the identity

p(y |m) =
ZK

Z0
≡
Z1

Z0

Z2

Z1
. . .

ZK

ZK−1
=

K∏

k=1

Rk . (64)

Each of the K ratios in this expression can be individually estimated without bias using im-
portance sampling: the kth ratio, denoted Rk, can be estimated from a set of (not necessarily
independent) samples of parameters {θ(k,c)}c∈Ck

, which are drawn from the higher tempera-
ture τ (k − 1) distribution (the importance distribution) — i.e. each θ(k,c)

∼ fk−1(θ), and the
importance weights are computed at the lower temperature τ (k). These samples are used to
construct the Monte Carlo estimate for Rk:

Rk ≡
Zk

Zk−1
=

∫
dθ

fk(θ)

fk−1(θ)

fk−1(θ)

Zk−1
≈

1

Ck

∑

c∈Ck

fk(θ(k,c))

fk−1(θ
(k,c))

, with θ
(k,c)

∼ fk−1(θ) (65)

R̂k =
1

Ck

∑

c∈Ck

p(y | θ(k,c),m)τ(k)−τ(k−1) . (66)

The variance of the estimate of eachRk depends on the constituent distributions {fk(θ), fk−1(θ)}
being sufficiently close so as to produce low-variance weights (the summands in (65)). Neal
(2001) shows that it is a sufficient condition that the Ck each be chosen to be exactly one
for the product of the ĉRk estimators to be an unbiased estimate of the marginal likelihood,
p(y |m), in (64). It is an open research question as to whether values of ĉRk can be shown to
lead to an unbiased estimate. In our experiments (Section 4) we use Ck = 1 and so remain in
the realm of an unbiased estimator.

Metropolis-Hastings for discrete-variable models

In general we expect it to be difficult to sample directly from the forms fk(θ) in (63), and so
Metropolis-Hastings (Metropolis et al. 1953; Hastings 1970) steps are used at each tempera-
ture to generate the set of Ck samples required for each importance calculation in (66). In the
discrete-variable graphical models covered in this article, the parameters are multinomial prob-
abilities, hence the support of the Metropolis proposal distributions is restricted to the simplex
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of probabilities summing to 1. One might suggest using a Gaussian proposal distribution in the
softmax parameterisation, b, of the current parameters θ, like so: θi ≡ e

bi/
∑|θ|

j ebj . However
the Jacobian of the transformation from this vector b back to the vector θ is zero, and it is
hard to construct a reversible Markov chain.

A different and intuitively appealing idea is to use a Dirichlet distribution as the proposal
distribution, with its mean positioned at the current parameter. The precision of the Dirichlet
proposal distribution at inverse-temperature τ (k) is governed by its strength, α(k), which is
a free variable to be set as we wish, provided it is not in any way a function of the sampled
parameters. An MH acceptance function is required to maintain detailed balance: if θ′ is the
sample under the proposal distribution centered around the current parameter θ(k,c), then the
acceptance function is:

a(θ′, θ(k,c)) = min

(
fk(θ′)

fk(θ(k,c))

Dir(θ(k,c) | θ′, α(k))

Dir(θ′ | θ(k,c), α(k))
, 1

)
, (67)

where Dir(θ | θ, α) is the probability density of a Dirichlet distribution with mean θ and
strength α, evaluated at θ. The next sample is instantiated as follows:

θ
(k,c+1) =

{
θ′ if w < a(θ′, θ(k,c)) (accept)

θ(k,c) otherwise (reject) ,
(68)

where w ∼ U(0, 1) is a random variable sampled from a uniform distribution on [0, 1]. By
repeating this procedure of accepting or rejecting C ′

k ≥ Ck times at the temperature τ (k),

the MCMC sampler generates a set of (dependent) samples {θ(k,c)}
C′

k
c=1. A subset of these

{θ(k,c)}c∈Ck
, with |Ck| = Ck ≤ C

′
k, is then used as the importance samples in the computation

above (66). This subset will generally not include the first few samples, as these samples are
likely not yet samples from the equilibrium distribution at that temperature, and in the case
of Ck =1 will contain only the most recent sample.

An algorithm to compute all ratios

The entire algorithm for computing all K marginal likelihood ratios is given in Algorithm
3.1. It has several parameters, in particular: the number of annealing steps, K; their inverse-
temperatures (the annealing schedule), {τ (k)}Kk=1; the parameters of the MCMC importance
sampler at each temperature {C ′

k, Ck, α(k)}Kk=1, which are the number of proposed samples,
the number used for the importance estimate, and the precision of the proposal distribution,
respectively. We remind the reader that the estimate has only been proven to be unbiased in
the case of Ck = 1.

Algorithm 3.1 produces only a single estimate of the marginal likelihood; a particular
attraction of AIS is that one can take averages of estimates from a number G of AIS runs to
form another unbiased estimate of the marginal likelihood with lower variance: [ZK/Z0]

(G) =

G−1
∑G

g=1

∏K(g)

k=1 R
(g)
k . In Section 5 we discuss the performance of AIS for estimating the

marginal likelihood of the graphical models used in this article, addressing the specific choices
of proposal widths, number of samples, and annealing schedules used in the experiments.
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1. Initialise θini ∼ f0(θ) i.e. from the prior p(θ |m)

2. For k = 1 to K annealing steps

(a) Run MCMC at temperature τ(k − 1) as follows:

i. Initialise θ(k,0) ← θini from previous temp.

ii. Generate the set {θ(k,c)}C
′

k

c=1 ∼ fk−1(θ) as follows:

A. For c = 1 to C ′
k

Propose θ′
∼ Dir(θ′ |θ(k,c−1), α(k))

Accept θ(k,c) ← θ′ according to (67) and (68)

End For

B. Store θini ← θ(k,C′
k)

iii. Store a subset of these {θ(k,c)}c∈Ck
with |Ck| = Ck ≤ C ′

k

(b) Calculate Rk ≡ Zk

Zk−1
u

1
Ck

∑Ck

c=1
fk(θ(k,c))

fk−1(θ(k,c))

End For

3. Output {lnRk}Kk=1 and ln ẐK =
∑K

k=1 lnRk as the approximation to lnZK

Algorithm 3.1: AIS. Computes ratios {Rk}Kk=1 for the marginal likelihood estimate.

4 Experiments

In this section we experimentally examine the accuracy of each of the scoring methods described
in the previous section. To this end, we first describe the class defining our space of hypothesised
structures, then choose a particular member of the class as the “true” structure; we generate
a set of parameters for that structure, and then generate varying-sized data sets from that
structure with those parameters. Each score is then used to estimate the marginal likelihoods
of each structure in the class, for each possible data set size. From these estimates, a posterior
distribution over the structures can be computed for each data set size. Our goal is to assess
how closely these approximate distributions reflect the true posterior distributions. We use
three metrics: i) the rank given to the true structure (i.e. the modal structure has rank 1); ii)
the difference between the estimated marginal likelihoods of the top-ranked and true structures;
iii) The Kullback-Leibler divergence of the approximate to the true posterior distributions.

A specific class of graphical model: We examine discrete directed bipartite graphical mod-
els, i.e. those graphs in which only hidden variables can be parents of observed variables, and
the hidden variables themselves have no parents. For our in depth study we restrict ourselves to
graphs which have just k = |H| = 2 hidden variables, and p = |V| = 4 observed variables; both
hidden variables are binary i.e. |sij | = 2 for j ∈ H, and each observed variable has cardinality
|yij | = 5 for j ∈ V.
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yi1

si1 si2

yi2 yi3 yi4

i=1...n

Figure 1: The true structure that was used to generate all the data sets used in the

experiments. The hidden variables (top) are each binary, and the observed variables

(bottom) are each five-valued. This structure has 50 parameters, and is two links away

from the fully-connected structure. In total, there are 136 possible distinct structures

with two (identical) hidden variables and four observed variables.

The number of distinct graphs: In the class of graphs described above, with k distinct
hidden variables and p observed variables, there are 2kp possible structures, corresponding
to the presence or absence of a directed link between each hidden and each conditionally
independent observed variable. If the hidden variables are unidentifiable, which is the case in
our example model where they have the same cardinality, then the number of possible graphs
is reduced due to permutation symmetries. It is straightforward to show in this example that
the number of distinct graphs is reduced from 22×4 = 256 down to 136.

The specific model and generating data: We chose the particular structure shown in Figure
1, which we call the “true” structure. This structure contains enough links to induce non-trivial
correlations amongst the observed variables, whilst the class as a whole has few enough nodes
to allow us to examine exhaustively every possible structure of the class. There are only three
other structures in the class which have more parameters than our chosen structure: These are:
two structures in which either the left- or right-most visible node has both hidden variables
as parents instead of just one, and one structure which is fully connected. One should note
that our chosen true structure is at the higher end of complexity in this class, and so we might
find that scoring methods that do not penalise complexity do seemingly better than naively
expected.

Evaluation of the marginal likelihood of all possible alternative structures in the class is done
for academic interest only, since for non-trivial numbers of variables the number of structures is
huge. In practice one can embed different structure scoring methods in a greedy model search
outer loop (for example, see Friedman 1998) to find probable structures. Here, we are not so
much concerned with structure search per se, since a prerequisite for a good structure search
algorithm is an efficient and accurate method for evaluating any particular structure. Our aim
in these experiments is to establish the reliability of the variational bound as a score, compared
to annealed importance sampling, and the currently employed asymptotic scores such as the
BIC and Cheeseman-Stutz criteria.
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The parameters of the true model: Conjugate uniform symmetric Dirichlet priors were
placed over all the parameters of the model — that is to say λjlk = 1 ∀{jlk} in (3). This
particular prior was arbitrarily chosen for the purposes of the experiments; we do not expect it
to influence the trends in our conclusions. For the network shown in Figure 1, parameters were
sampled from the prior, once and for all, to instantiate a true underlying model, from which
data was then generated. The sampled parameters are shown below (their sizes are functions
of each node’s and its parents’ cardinalities):

θ1 =
[
.12 .88

]
θ3 =

[
.03 .03. .64 .02 .27
.18 .15 .22 .19 .27

]
θ6 =

[
.10 .08 .43 .03 .36
.30 .14 .07 .04 .45

]

θ2 =
[
.08 .92

]
θ4 =




.10 .54 .07 .14 .15

.04 .15 .59 .05 .16

.20 .08 .36 .17 .18

.19 .45 .10 .09 .17


 θ5 =




.11 .47 .12 .30 .01

.27 .07 .16 .25 .25

.52 .14 .15 .02 .17

.04 .00 .37 .33 .25


 ,

where {θj}
2
j=1 are the parameters for the hidden variables, and {θj}

6
j=3 are the parameters

for the remaining four observed variables, yi1, . . . ,yi4. Each row of each matrix denotes the
probability of each multinomial setting for a particular configuration of the parents, and sums
to one (up to rounding error). Note that there are only two rows for θ3 and θ6, as both these
observed variables have just a single binary parent. For variables yi2 and yi3, the four rows
correspond to the parent configurations: {[1 1], [1 2], [2 1], [2 2]} (with parameters θ5 and
θ6 respectively). In this particular instantiation of the parameters, both the hidden variable
priors are close to deterministic, causing approximately 80% of the data to originate from the
[2 2] setting of the hidden variables. This means that we may need many data points before
the evidence for two hidden variables outweighs that for one.

Incrementally larger nested data sets were generated from these parameter settings, with
n ∈ {10, 20 ,40, 80, 110, 160, 230, 320, 400, 430, 480, 560, 640, 800, 960, 1120, 1280, 2560,
5120, 10240}. The items in the n = 10 data set are a subset of the n = 20 and subsequent data
sets, etc. The particular values of n were chosen from an initially exponentially increasing data
set size, followed by inclusion of some intermediate data sizes to concentrate on interesting
regions of behaviour.

4.1 Comparison of scores to AIS

All 136 possible distinct structures were scored for each of the 20 data set sizes given above,
using MAP, BIC, CS, VB and AIS scores. We ran EM on each structure to compute the MAP
estimate of the parameters (Section 3.1), and from it computed the BIC score (Section 3.2).
Even though the MAP probability of the data is not strictly an approximation to the marginal
likelihood, it can be shown to be an upper bound and so we include it for comparison. We also
computed the BIC score including the parameter prior, denoted BICp, which was obtained by
including a term ln p(θ̂ |m) in equation (24). From the same EM optimisation we computed
the CS score (Section 3.3). We then ran the variational Bayesian EM algorithm with the same
initial conditions to give a lower bound on the marginal likelihood (Section 3.5). To avoid
local optima, several optimisations were carried out with different parameter initialisations,
drawn each time from the prior over parameters. The same initial parameters were used
for both EM and VBEM; in the case of VBEM the following protocol was used to obtain a
parameter distribution: a conventional E-step was performed at the initial parameter to obtain
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{p(si|yi, θ)}ni=1, which was then used in place of qs(s) for input to the VBM step, which was
thereafter followed by VBE and VBM iterations until convergence. The highest score over
three random initialisations was taken for each algorithm; empirically this heuristic appeared
to avoid local maxima problems. The EM and VBEM algorithms were terminated after either
1000 iterations had been reached, or the change in log likelihood (or lower bound on the log
marginal likelihood, in the case of VBEM) became less than 10−6 per datum.

For comparison, the AIS sampler was used to estimate the marginal likelihood (see Section
3.6), annealing from the prior to the posterior in K = 16384 steps. A nonlinear annealing
schedule was employed, tuned to reduce the variance in the estimate, and the Metropolis
proposal width was tuned to give reasonable acceptance rates. We chose to have just a single
sampling step at each temperature (i.e. C ′

k = Ck = 1), for which AIS has been proven to give
unbiased estimates, and initialised the sampler at each temperature with the parameter sample
from the previous temperature. These particular choices are explained and discussed in detail
in Section 5. Initial marginal likelihood estimates from single runs of AIS were quite variable,
and for this reason several more batches of AIS runs were undertaken, each using a different
random initialisation (and random numbers thereafter); the total of G batches of estimates
were averaged according to the procedure given at the end of Section 3.6 to give the AIS(G)

score. In total, G = 26 batches of AIS runs were carried out.

Scoring all possible structures

Figure 2 shows the MAP, BIC, BICp, CS, VB and AIS(26) scores obtained for each of the 136
possible structures against the number of parameters in the structure. Score is measured on
the vertical axis, with each scoring method (columns) sharing the same vertical axis range for
a particular data set size (rows). The horizontal axis of each plot corresponds to the number of
parameters in the structure (as described in Section 3.2). For example, at the extremes there
is one structure with 66 parameters (the fully connected structure) and one structure with
18 parameters (the fully unconnected structure). The structure that generated the data has
exactly 50 parameters. In each plot we can see that several structures can occupy the same
column, having the same number of parameters. This means that, at least visually, it is not
always possible to unambiguously assign each point in the column to a particular structure.

The scores shown are those corrected for aliases (see equation (24)). Plots for uncorrected
scores are almost identical. In each plot, the true structure is highlighted by a ‘◦’ symbol, and
the structure currently ranked highest by that scoring method is marked with a ‘×’. We can see
the general upward trend for the MAP score, which prefers more complicated structures, and
the pronounced downward trend for the BIC and BICp scores, which (over-)penalise structure
complexity. In addition, one can see that neither upward or downward trends are apparent for
VB or AIS scores. The CS score tends to show a downward trend similar to BIC and BICp,
and while this trend weakens with increasing data, it is still present at n = 10240 (bottom
row). Although not verifiable from these plots, the vast majority of the scored structures and
data set sizes, the AIS(26) score is higher than the VB lower bound, as we would expect.

The plots for large n show a distinct horizontal banding of the scores into three levels; this
is an interesting artifact of the particular model used to generate the data. For example, we
find on closer inspection some strictly followed trends: all those model structures residing in
the upper band have the first three observable variables (j = 3, 4, 5) governed by at least one of
the hidden variables; all those structures in the middle band have the third observable (j = 5)
connected to at least one hidden variable.
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MAP BIC BICp CS VB AIS(26)

10

160

640

1280

2560

5120

10240

Figure 2: Scores for all 136 of the structures in the model class, by each of six scoring

methods. Each plot has the score (approximation to the log marginal likelihood) on

the vertical axis, with tick marks every 40 nats, and the number of parameters on the

horizontal axis (ranging from 18 to 66). The middle four scores have been corrected for

aliases (see Section 3.2). Each row corresponds to a data set of a different size, n: from

top to bottom we have n = 10, 160, 640, 1280, 2560, 5120, 10240. The true structure is

denoted with a ‘◦’ symbol, and the highest scoring structure in each plot marked by the

‘×’ symbol. Every plot in the same row has the same scaling for the vertical score axis,

set to encapsulate every structure for all scores.
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n MAP BIC* BICp* CS* VB* BIC BICp CS VB AIS(26)

10 21 127 55 129 122 127 50 129 115 20

20 12 118 64 111 124 118 64 111 124 92

40 28 127 124 107 113 127 124 107 113 17

80 8 114 99 78 116 114 99 78 116 28

110 8 109 103 98 114 109 103 98 113 6

160 13 119 111 114 83 119 111 114 81 49

230 8 105 93 88 54 105 93 88 54 85

320 8 111 101 90 44 111 101 90 33 32

400 6 101 72 77 15 101 72 77 15 22

430 7 104 78 68 15 104 78 68 14 14

480 7 102 92 80 55 102 92 80 44 12

560 9 108 98 96 34 108 98 96 31 5

640 7 104 97 105 19 104 97 105 17 28

800 9 107 102 108 35 107 102 108 26 49

960 13 112 107 76 16 112 107 76 13 1

1120 8 105 96 103 12 105 96 103 12 1

1280 7 90 59 8 3 90 59 6 3 1

2560 6 25 17 11 11 25 15 11 11 1

5120 5 6 5 1 1 6 5 1 1 1

10240 3 2 1 1 1 2 1 1 1 1

Table 2: Ranking of the true structure by each of the scoring methods, as the size

of the data set is increased. Asterisks (*) denote scores uncorrected for parameter

aliasing in the posterior. These results are from data generated from only one instance

of parameters under the true structure’s prior over parameters.

In this particular example, AIS finds the correct structure at n = 960 data points, but
unfortunately does not retain this result reliably until n = 2560. At n = 10240 data points,
BICp, CS, VB and AIS all report the true structure as being the one with the highest score
amongst the other contending structures. Interestingly, BIC still does not select the correct
structure, and MAP has given a structure with sub-maximal parameters the highest score,
which may well be due to local maxima in the EM optimisation.

Ranking of the true structure

Table 2 shows the ranking of the true structure, as it sits amongst all the possible 136 structures,
as measured by each of the scoring methods MAP, BIC, BICp, CS, VB and AIS(26); this is also
plotted in Figure 3(a), where the MAP ranking is not included for clarity. Higher positions in
the plot correspond to better rankings: a ranking of 1 means that the scoring method has given
the highest marginal likelihood to the true structure. We should keep in mind that, at least for
small data set sizes, there is no reason to assume that the true posterior over structures has
the true structure at its mode. Therefore we should not expect high rankings at small data set
sizes.
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For small n, for the most part the AIS score produces different (higher) rankings for the
true structure than do the other scoring methods. We expect AIS to perform accurately with
small data set sizes, for which the posterior distribution over parameters is not at all peaky, and
so this suggests that the other approximations are performing poorly in comparison. However,
for almost all n, VB outperforms BIC, BICp and CS, consistently giving a higher ranking to
the true structure. Of particular note is the stability of the VB score ranking with respect to
increasing amounts of data as compared to AIS (and to some extent CS). Columns in Table 2
with asterisks (*) correspond to scores that are not corrected for aliases, and are omitted from
Figure 3(a). These corrections assume that the posterior aliases are well separated, and are
valid only for large amounts of data and/or strongly-determined parameters. The correction
nowhere degrades the rankings of any score, and in fact improves them very slightly for CS,
and especially so for VB.

KL divergence of the methods’ posterior distributions from the AIS estimate

In Figure 3(c) we plot the Kullback-Leibler (KL) divergence between the AIS computed pos-
terior and the posterior distribution computed by each of the approximations BIC, BICp, CS,
and VB. We see quite clearly that VB has the lowest KL by a long way out of all the ap-
proximations, over a wide range of data set sizes, suggesting it is remaining most faithful to
the true posterior distribution as approximated by AIS. The increase of the KL for the CS
and VB methods at n = 10240 is almost certainly due to the AIS sampler having difficulty
at high n (discussed below in Section 5), and should not be interpreted as a degradation in
performance of either the CS or VB methods. It is interesting to note that the BIC, BICp,
and CS approximations require a vast amount of data before their KL divergences reduce to
the level of VB.

Computation Time

Scoring all 136 structures at 480 data points on a 1GHz Pentium III processor, with an
implementation in Matlab, took: 200 seconds for the MAP EM algorithms required for
BIC/BICp/CS, 575 seconds for the VBEM algorithm required for VB, and 55000 seconds
(15 hours) for a single set of runs of the AIS algorithm (using 16384 samples as in the main
experiments); note the results for AIS here used averages of 26 runs. The massive computa-
tional burden of the sampling method (approx 75 hours for just 1 of 26 runs) makes CS and
VB attractive alternatives for consideration.

4.2 Performance averaged over the parameter prior

The experiments in the previous section used a single instance of sampled parameters for the
true structure, and generated data from this particular model. The reason for this was that,
even for a single experiment, computing an exhaustive set of AIS scores covering all data set
sizes and possible model structures takes in excess of 15 CPU days.

In this section we compare the performance of the scores over many different sampled
parameters of the true structure (shown in Figure 1). 106 parameters were sampled from the
prior and incremental data sets generated for each of these instances as the true model. MAP
EM and VBEM algorithms were employed to calculate the scores as described in Section 4.1.
For each instance of the true model, calculating scores for all data set sizes used and all possible
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Figure 3: (a) Ranking given to the true structure by each scoring method for varying

data set sizes (higher in plot is better), by BIC, BICp, CS, VB and AIS(26) methods.

(b) Differences in log marginal likelihood estimates (scores) between the top-ranked

structure and the true structure, as reported by each method. All differences are exactly

zero or negative (see text). Note that these score differences are not normalised for the

number of data n. (c) KL divergences of the approximate posterior distributions from

the estimate of the posterior distribution provided by the AIS method; this measure is

zero if the distributions are identical.
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Figure 4: (a) Median ranking of the true structure as reported by BIC, BICp, CS and

VB methods, against the size of the data set n, taken over 106 instances of the true

structure. (b) The highest ranking given to the true structure under BIC, BICp, CS

and VB methods, against the size of the data set n, taken over 106 instances of the true

structure.

structures, using three random restarts, for BIC/BICp/CS and VB took approximately 2.4 and
4.2 hours respectively on an Athlon 1800 Processor machine, which corresponds to about 1.1
and 1.9 seconds for each individual score.

Figure 4(a) shows the median ranking given to the true structure by each scoring method,
computed over the 106 randomly sampled parameter settings. This plot corresponds to a
smoothed version of Figure 3(a), but unfortunately cannot contain AIS averages for the com-
putational reasons mentioned above. For the most part VB outperforms the other scores,
although there is a region in which VB seems to underperform CS, as measured by this median
score. For several cases, the VBEM optimisation reached the maximum number of allowed
iterations before it had converged, whereas EM always converged. Allowing longer runs should
result in improved VB performance. The VB score of the true structure is generally much closer
to that of the top-ranked structure than is the case for any of the other scores. Figure 4(b)
shows the best performance of the BIC, BICp, CS and VB methods over the 106 parameter
instances in terms of the rankings. Lastly, we can examine the success rate of each score at
picking the correct structure: Figure 5 shows the fraction of times that the true structure is
ranked top by the different scoring methods, and other measures of performance.

5 AIS analysis, limitations, and extensions

The technique of annealed importance sampling is currently regarded as a state-of-the-art
method for estimating the marginal likelihood in discrete-variable directed acyclic graphical
models. In this section the AIS method is critically examined to gauge its reliability as a tool
for judging the performance of the BIC, CS and VB scores.
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Figure 5: (a) The success rate of the scoring methods BIC, BICp, CS and VB, as

measured by the fraction of 106 trials in which the true structure was given ranking 1

amongst the 136 candidate structures, plotted as a function of the data set size. (b)
The posterior probability of the true structure, averaged over 106 trials. Note that for

each trial, a posterior probability of greater that .5 is sufficient to guarantee that the

true structure ranks top. (c) The fraction of trials in which the true structure was given

posterior probability > 1
136 , i.e. greater than uniform probability.
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The implementation of AIS has considerable flexibility: the user must specify the length,
granularity and shape of the annealing schedules, the form of the Metropolis-Hastings (MH)
sampling procedure, the number of samples taken at each temperature, etc. These and other
parameters were described in Section 3.6; here we clarify our choices of settings and discuss
some further ways in which the sampler could be improved.

How can we be sure that the AIS sampler is reporting the correct answer for the marginal
likelihood of each structure? To be sure of a correct answer, one should use as long and
gradual an annealing schedule as possible, containing as many samples at each temperature
as is computationally viable. In the AIS experiments in this article, we always opted for a
single sample at each step of the annealing schedule, initialising the parameter at the next
temperature at the previous sample, and ensured that the schedule itself was as finely grained
as we could afford. This reduces the variables at our disposal to a single parameter, namely
the total number of samples taken in each run of AIS, which is then directly related to the
schedule granularity.

We examine the performance of the AIS sampler as a function of the number of samples.
Figure 6(a) shows several AIS estimates of the marginal likelihood for the data set of size
n = 480 under the model having the true structure. Each trace corresponds to a different point
of initialisation of the AIS algorithm, obtained by sampling a parameter from the prior using 10
different random seeds. The top-most trace is initialised at the true parameters (which we as
the experimenter have access to). Each point on a trace corresponds to a different temperature
schedule for the AIS sampler with that initialising seed. Thus, a point at the right of the
plot with high K corresponds to a schedule with many small steps in temperature, whereas a
point at the left with low K corresponds to a coarser temperature schedule. Also plotted for
reference are the VB and BIC estimates of the log marginal likelihood for this data set under
the true structure, which are not functions of the annealing schedule. We know that the VB
score is a lower bound on the log marginal likelihood, and so those estimates from AIS that
consistently fall below this score must be indicative of an inadequate annealing schedule shape,
duration and/or MH design.

For short annealing schedules, which are necessarily coarse to satisfy the boundary require-
ments on τ in equation (62), it is clear that the AIS sampling is badly under-estimating the log
marginal likelihood. The rapid annealing schedule does not give the sampler time to locate and
exploit regions of high posterior probability, forcing it to neglect representative volumes of the
posterior mass. Conversely, the AIS run started from the true parameters over-estimates the
marginal likelihood, because it is prevented from exploring regions of low probability. Thus,
for coarse schedules of less than about K = 1000 samples, the AIS estimate of the log marginal
likelihood seems biased and has very high variance. Note that the AIS algorithm gives unbiased
estimates of the marginal likelihood, but not necessarily the log marginal likelihood.

We see that all runs converge for sufficiently long annealing schedules, with AIS passing
the BIC score at about 1000 samples, and the VB lower bound at about 5000 samples. Thus,
loosely speaking, where the AIS and VB scores intersect we can consider their estimates to be
roughly equally reliable. At n = 480 the VB scoring method requires about 1.5s to score the
structure, whereas AIS at n = 480 and K = 213 requires about 100s. Thus for this scenario,
VB is 70 times more efficient at scoring the structures (at its own reliability).

In this article’s main experiments, a value of K = 214 = 16384 steps was used, and it is
clear from Figure 6(a) that we can be fairly sure of the AIS method reporting a reasonably
accurate result at this value of K, at least for n = 480. However, how would we expect these
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Figure 6: (a) Logarithm of AIS estimates (vertical) of the marginal likelihood for differ-

ent initial conditions of the sampler (different traces) and different duration of annealing

schedules (horizontal), for the true structure with n = 480 data points. The top-most

trace is that corresponding to setting the initial parameters to the true values that gen-

erated the data. Shown are also the BIC score (dashed) and the VB lower bound (solid).

(b) Acceptance rates of the MH proposals along the entire annealing schedule, for one

batch of AIS scoring of all structures, against the size of the data set, n. The dotted

lines are the sample standard deviations across all structures for each n. (c) Acceptance

rates of the MH proposals for each of four quarters of the annealing schedule, for one

batch of AIS scoring of all structures, against the size of the data set, n. Standard errors

of the means are omitted for clarity. (d) Non-linear AIS annealing schedules, plotted

for six different values of eτ . In the experiments performed in this article, eτ = 0.2.
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n 10. . . 560 640 800 960 1120 1280 2560 5120 10240

single

# AIS(1) < VB* ≤5.7 12.3 8.5 12.3 10.4 17.0 25.5 53.8 71.7

# AIS(1) < VB ≤7.5 15.1 9.4 14.2 12.3 20.8 31.1 59.4 74.5

% M-H rej. <40.3 41.5 43.7 45.9 47.7 49.6 59.2 69.7 79.2

averaged

# AIS(5) < VB* 0 0.0 0.0 0.0 0.0 0.7 3.7 13.2 50.0

# AIS(5) < VB ≤1.9 0.0 0.0 0.0 1.5 2.2 5.1 19.9 52.9

Table 3: AIS violations: for each size data set, n, we show the percentage of times,

over the 136 structures, that a particular single AIS run reports marginal likelihoods

below the VB lower bound. These are given for the VB scores that are uncorrected

(*) and corrected for aliases. Also shown are the average percentage rejection rates of

the MH sampler used to gather samples for the AIS estimates. The bottom half of the

table shows the similar violations by the AIS score made from averaging the estimates

of marginal likelihoods from five separate runs of AIS (see Section 3.6).

plots to look for larger data sets in which the posterior over parameters is more peaky and
potentially more difficult to navigate during the annealing?

A good indicator of the mobility of the MH sampler is the acceptance rate of proposed
samples. Figure 6(b) shows the fraction of accepted proposals during the annealing run, aver-
aged over AIS scoring of all 136 possible structures, plotted against the size of the data set, n;
the error bars are the standard errors of the mean acceptance rate across scoring all structures.
We can see that at n = 480, the acceptance rate is rarely below 60%, and so one would indeed
expect to see the sort of convergence shown in Figure 6(a). However, for the larger data sets
the acceptance rate drops to 20%, implying that the sampler is having difficulty obtaining
representative samples from the posterior distributions in the annealing schedule. Fortunately
this drop is only linear in the logarithm of the data size.

By examining the reported AIS scores, both for single and pooled runs, over the 136
structures and 20 data set sizes, and comparing them to the VB lower bound, we can see how
often AIS violates the lower bound. Table 3 compares the number of times the reported AIS
scores AIS(1) and AIS(5) are below the VB lower bound, along with the rejection rates of the
MH sampler that were plotted in Figure 6(b) (not a function of G). From the table we see that
for small data sets, the AIS method reports “valid” results and the MH sampler is accepting a
reasonable proportion of proposed parameter samples. However, at and beyond n = 560, the
AIS sampler degrades to the point where it reports “invalid” results for more than half the 136
structures it scores. However, since the AIS estimate is noisy and we know that the tightness
of the VB lower bound increases with n, this criticism could be considered too harsh — indeed
if the bound were tight, we would expect the AIS score to violate the bound on roughly 50%
of the runs anyway. The lower half of the table shows that, by combining AIS estimates from
separate runs, we obtain an estimate that violates the VB lower bound far less often, and
as expected we see the 50% violation rate for large amounts of data. This is a very useful
result, and obviates to some extent the MH sampler’s deficiency in all five runs. Diagnostically
speaking, this analysis is good example of the use of readily-computable VB lower bounds for
evaluating the reliability of the AIS method post hoc.
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Let us return to examining why the sampler is troubled for large data set sizes. Figure
6(c) shows the fraction of accepted MH proposals during each of four quarters of the annealing
schedule used in the experiments. The rejection rate tends to increase moving from the be-
ginning of the schedule (the prior) to the end (the posterior), the degradation becoming more
pronounced for large data sets. This is most probably due to the proposal width remaining
unchanged throughout all the AIS implementations; ideally, one would use a predetermined
sequence of proposal widths which would be a function of the amount of data, n, and the
position along the schedule.

We can use a heuristic argument to roughly predict the optimal proposal width to use for
the AIS method. From mathematical arguments the precision of the posterior distribution
over parameters is approximately proportional to the size of the data set n. Furthermore, the
distribution being sampled from at step k of the AIS schedule is effectively that resulting from a
fraction τ (k) of the data. Therefore, these two factors imply that the width of the MH proposal
distribution should be inversely proportional to

√
nτ (k). In the case of multinomial variables,

since the variance of a Dirichlet distribution is approximately inversely proportional to the
strength α, then the optimal strength of the proposal distribution should be αopt ∝ nτ (k) if its
precision is to match the posterior precision. Note that we are at liberty to set these proposal
precisions arbitrarily beforehand without causing the sampler to become biased.

We have not yet discussed the shape of the annealing schedule: should the inverse-
temperatures {τ (k)}Kk=1 change linearly from 0 to 1, or follow some other function? The
particular annealing schedule in these experiments was chosen to be nonlinear, lingering at
higher temperatures for longer than at lower temperatures, according to

τ (k) =
eτk/K

1 − k/K + eτ
k ∈ {0, . . . , K} . (69)

For any setting of eτ > 0, the series of temperatures is monotonic and the initial and final
temperatures satisfy (62): τ (0) = 0, and τ (K) = 1. For large eτ the schedule becomes linear,
and is plotted for different values of eτ in Figure 6(d). A setting of eτ =0.2 was found to reduce
the degree of hysteresis in the annealing ratios.

6 Comparison to Cheeseman-Stutz (CS) approximation

In this section we present two important theoretical results regarding the approximation of
Cheeseman and Stutz (1996), covered in Section 3.3. We briefly review the CS approximation,
as used to approximate the marginal likelihood of finite mixture models, and then show that it
is in fact a lower bound on the marginal likelihood in the case of mixture models (Minka 2001),
and that similar CS constructions can be made for any model containing hidden variables. This
observation brings CS into the family of bounding approximations, of which VB is a member.
We then conclude the section by presenting a construction that proves that VB can be used to
obtain a bound that is always tighter than CS.

Let m be a directed acyclic graph with parameters θ giving rise to an i.i.d. data set denoted
by y = {y1, . . . ,yn}, with corresponding discrete hidden variables s = {s1, . . . , sn} each of
cardinality k. Let θ̂ be a result of an EM algorithm which has converged to a local maximum
in the likelihood p(y | θ), and let ŝ = {ŝi}

n
i=1 be a completion of the hidden variables, chosen

according to the posterior distribution over hidden variables given the data and θ̂, such that
ŝij = p(sij = j |y, θ̂) ∀ i = 1, . . . , n.
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Since we are completing the hidden variables with real, as opposed to discrete values, this
complete data set does not in general correspond to a realisable data set under the generative
model. This point raises the question of how its marginal probability p(ŝ,y |m) is defined. We
will see in the following theorem and proof (Theorem 6) that both the completion required of
the hidden variables and the completed data marginal probability are well-defined, and follow
from equations (77) and (78) below.

The CS approximation is given by

p(y |m) ≈ p(y |m)CS = p(ŝ,y |m)
p(y | θ̂)

p(ŝ,y | θ̂)
. (70)

The CS approximation exploits the fact that, for many models of interest, the first term on
the right-hand side — the complete-data marginal likelihood — is tractable to compute (this
is the case for discrete-variable directed acyclic graphs with Dirichlet priors, as explained in
Section 3.3). The term in the numerator of the second term on the right-hand side is simply the
likelihood, which is an output of the EM algorithm (as is the parameter estimate θ̂), and the
denominator is a straightforward calculation that involves no summations over hidden variables
or integrations over parameters.

Theorem 6.1: (Cheeseman-Stutz is a lower bound) Let θ̂ be the result of the M step

of EM, and let {p(si |yi, θ̂)}ni=1 be the set of posterior distributions over the hidden variables

obtained in the next E step of EM. Furthermore, let ŝ = {ŝi}
n
i=1 be a completion of the hidden

variables, such that ŝij = p(sij = j |y, θ̂) ∀ i = 1, . . . , n. Then the CS approximation is a lower

bound on the marginal likelihood:

p(y |m)CS = p(ŝ,y |m)
p(y | θ̂)

p(ŝ,y | θ̂)
≤ p(y |m) . (71)

Minka (2001) previously observed that in the specific case of mixture models, the Cheeseman-
Stutz criterion is a lower bound on the marginal likelihood, and this could explain the reports
of good performance in the literature (Cheeseman and Stutz 1996; Chickering and Heckerman
1997). Our contribution here is a proof of the result given in (71) that is generally applicable
to any model with hidden variables, by using marginal likelihood bounds with approximations
over the posterior distribution of the hidden variables only. We follow this with a corollary
that allows us to always improve on the CS bound using VB.

Proof of Theorem 6.1: The marginal likelihood can be lower bounded by introducing a
distribution over the settings of each data point’s hidden variables qsi

(si):

p(y |m) =

∫
dθ p(θ)

n∏

i=1

p(yi | θ) ≥

∫
dθ p(θ)

n∏

i=1

exp

{∑

si

qsi
(si) ln

p(si,yi | θ)

qsi
(si)

}
. (72)

We place a similar lower bound over the likelihood

p(y | θ̂) =

n∏

i=1

p(yi | θ̂) ≥

n∏

i=1

exp

{∑

si

qsi
(si) ln

p(si,yi | θ̂)

qsi
(si)

}
, (73)

which can be made an equality if, for each data point, q(si) is set to the exact posterior
distribution given the parameter setting θ,

p(y | θ̂) =

n∏

i=1

p(yi | θ̂) =

n∏

i=1

exp

{∑

si

q̂si
(si) ln

p(si,yi | θ̂)

q̂si
(si)

}
, (74)
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where
q̂si

(si) ≡ p(si |y, θ̂) , (75)

which is the result obtained from an exact E step with the parameters set to θ̂. Now rewrite
the marginal likelihood bound (72), using this same choice of q̂si

(si), separate those terms that
depend on θ from those that do not, and substitute in to equation (74) to obtain:

p(y |m) ≥

n∏

i=1

exp

{∑

si

q̂si
(si) ln

1

q̂si
(si)

}
·

∫
dθ p(θ)

n∏

i=1

exp

{∑

si

q̂si
(si) ln p(si,yi | θ)

}

(76)

=
p(y | θ̂)

∏n
i=1 exp

{∑
si
q̂si

(si) ln p(si,yi | θ̂)
}
∫
dθ p(θ)

n∏

i=1

exp

{∑

si

q̂si
(si) ln p(si,yi | θ)

}
(77)

=
p(y | θ̂)∏n

i=1 p(ŝi,yi | θ̂)

∫
dθ p(θ)

n∏

i=1

p(ŝi,yi | θ) , (78)

where ŝi are defined such that they satisfy:

ln p(ŝi,y | θ̂) =
∑

si

q̂si
(si) ln p(si,yi | θ) =

∑

si

p(si |y, θ̂) ln p(si,yi | θ) , (79)

where the second equality follows from the setting used in (75) that achieves a tight bound. The
existence of such a completion follows from the fact that, in discrete-variable directed acyclic
graphs of the sort considered in Chickering and Heckerman (1997), the hidden variables appear
only linearly in logarithm of the joint probability p(s,y | θ). Equation (78) is the Cheeseman-
Stutz criterion of (27) and (71), and is also a lower bound on the marginal likelihood.

It is possible to derive CS-like approximations for types of graphical model other than
discrete-variables DAGs. In the above proof, no constraints were placed on the forms of the
joint distributions over hidden and observed variables, other than in the simplifying step in
equation (78).

Finally, the following corollary gives some theoretical justification to the empirically ob-
served superior performance of VB over CS. We present an original key result: that variational
Bayes can always obtain a tighter bound than the Cheeseman-Stutz approximation.

Corollary 6.2: (VB is at least as tight as CS) That is to say, it is always possible to

find distributions qs(s) and qθ(θ) such that

ln p(y |m)CS ≤ Fm(qs(s), qθ(θ)) ≤ ln p(y |m) . (80)

Proof of Corollary 6.2: Consider the following forms for qs(s) and qθ(θ):

qs(s) =
n∏

i=1

qsi
(si) , with qsi

(si) = p(si |yi, θ̂) , (81)

qθ(θ) ∝ 〈ln p(θ)p(s,y | θ)〉qs(s) . (82)

We write the form for qθ(θ) explicitly:

qθ(θ) =
p(θ)

∏n
i=1 exp

{∑
si
qsi

(si) ln p(si,yi | θ)
}

∫
dθ′ p(θ′)

∏n
i=1 exp

{∑
si
qsi

(si) ln p(si,yi | θ
′)
} , (83)
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and note that this is exactly the result of a VBM step. We substitute (83) directly into the
VB lower bound stated in equation (33):

Fm(qs(s), qθ(θ)) =

∫
dθ qθ(θ)

n∑

i=1

∑

si

qsi
(si) ln

p(si,yi | θ)

qsi
(si)

+

∫
dθ qθ(θ) ln

p(θ)

qθ(θ)
(84)

=

∫
dθ qθ(θ)

n∑

i=1

∑

si

qsi
(si) ln

1

qsi
(si)

+

∫
dθ qθ(θ) ln

∫
dθ′ p(θ′)

n∏

i=1

exp

{∑

si

qsi
(si) ln p(si,yi | θ

′)

}
(85)

=

n∑

i=1

∑

si

qsi
(si) ln

1

qsi
(si)

+ ln

∫
dθ p(θ)

n∏

i=1

exp

{∑

si

qsi
(si) ln p(si,yi | θ)

}
, (86)

which is exactly the logarithm of equation (76). And so with this choice of qθ(θ) and qs(s),
we achieve equality between the CS and VB approximations in (80). We complete the proof
of Corollary 6.2 by noting that any further VB optimisation is guaranteed to increase or leave
unchanged the lower bound, and hence surpass the CS lower bound. We would expect the
VB lower bound starting from the CS solution to improve upon the CS lower bound in all

cases, except in the very special case when the MAP parameter θ̂ is exactly the variational

Bayes point, defined as θBP ≡ φ−1(〈φ(θ)〉qθ(θ)). Since VB is a lower bound on the marginal
likelihood, the entire statement of (80) is proven.

7 Summary

In this paper we have presented various scoring methods for approximating the marginal likeli-
hood of discrete directed graphical models with hidden variables. We presented EM algorithms
for ML and MAP parameter estimation, showed how to calculate the asymptotic criteria of BIC
and Cheeseman-Stutz, and derived the VBEM algorithm for approximate Bayesian learning
which maintains distributions over the parameters of the model and has the same complexity
as the EM algorithm. We also presented an Annealed Importance Sampling method designed
for discrete-variable DAGs.

Our experiments show that VB consistently outperforms BIC and CS, and that VB per-
forms, respectively, as well as and more reliably than AIS for intermediate and large sizes of
data. The AIS method has many parameters to tune and requires knowledge of the model
domain to design efficient and reliable sampling schemes and annealing schedules. VB, on the
other hand, has not a single parameter to set or tune, and can be applied without any expert
knowledge, at least in the class of singly-connected discrete-variable DAGs with Dirichlet priors
which we have considered in this paper. Perhaps the most compelling evidence for the relia-
bility of the VB approximation is given in Figure 3(c), which shows that the KL divergences
of the VB-computed posterior distributions from the AIS standards are much smaller than for
the other competing approximations.

It may be that there exists a better AIS scheme than sampling in parameter space. To be
more specific, for any completion of the data the parameters of the model can be integrated
out tractably (at least for the class of models examined in this chapter); thus an AIS scheme
which anneals in the space of completions of the data may be more efficient than the current
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scheme which anneals in the space of parameters.1 However, this latter scheme may only be
efficient for models with little data compared to the number of parameters, as the sampling
space of all completions increases linearly with the amount of data. This avenue of research is
left to further work.

This paper has presented a novel application of variational Bayesian methods to discrete
DAGs. In the literature there have been other attempts to solve this long-standing model
selection problem in DAGs with hidden variables. For example, the structural EM algorithm
of Friedman (1998) uses a structure search algorithm which uses a scoring algorithm very similar
to the VBEM algorithm presented here, except that for tractability, the distribution over θ is
replaced by the MAP estimate, θMAP. We have shown here how the VB framework enables
us to use the entire distribution over θ for inference of the hidden variables. Very recently,
Rusakov and Geiger (2005) have presented a modified BIC score that is asymptotically correct
for the type of models we have examined in this article; future work will involve comparing VB
to this modified BIC score in the non-asymptotic regime.

We have proved that the Cheeseman-Stutz score is a lower bound on the marginal likelihood
in the case of general graphical models with hidden variables, extending the mixture model
result of Minka (2001); and more importantly we proved that there exists a construction which
is guaranteed to produce a variational Bayesian lower bound that is at least as tight as the
Cheeseman-Stutz score (Corollary 6.2 to Theorem 6.1). This construction builds a variational
Bayesian approximation using the same MAP parameter estimate used to obtain the CS score.
However, we did not use this construction in our experiments, preferring the EM and VBEM
algorithms to evolve separately (although similar parameter initialisations were employed for
fairness). As a result we cannot guarantee that the VB bound is in all runs tighter than the CS
bound, as the dynamics of the optimisations for MAP learning and VB learning may in general
lead even identically initialised algorithms to different optima in parameter space (or parameter
distribution space). Nevertheless, we have still seen improvement in terms of ranking of the
true structure by VB as compared to CS. Empirically, the VB lower bound was observed to be
lower than the CS score in only 173 of the 288320 total scores calculated (only about 0.06%),
whereas had we used the construction, which we note is available to us for any graphical model
with hidden variables, then this would have occurred exactly zero times.

Traditionally, the statistics community have concentrated on MCMC sampling and asymp-
totic criteria for computing marginal likelihoods for model selection and averaging. This article
has applied the variational Bayes algorithm to scoring directed graphs and shown it to be empir-
ically superior to existing criteria and, more importantly, theoretically superior to the popular
Cheeseman-Stutz criterion. We believe that VB will prove to be of use in many other models,
improving the efficiency of inference and model selection tasks without compromising accuracy.
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