
Spectral Methods for Automatic Multiscale Data Clustering

Arik Azran
Gatsby Computational Neuroscience Unit

University College London
London WC1N 3AR, UK
arik@gatsby.ucl.ac.uk

Zoubin Ghahramani∗

Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, UK
zoubin@eng.cam.ac.uk

Abstract

Spectral clustering is a simple yet powerful method for
finding structure in data using spectral properties of an as-
sociated pairwise similarity matrix. This paper provides
new insights into how the method works and uses these to
derive new algorithms which given the data alone automat-
ically learn different plausible data partitionings. The main
theoretical contribution is a generalization of a key result
in the field, the multicut lemma [7]. We use this generaliza-
tion to derive two algorithms. The first uses the eigenvalues
of a given affinity matrix to infer the number of clusters in
data, and the second combines learning the affinity matrix
with inferring the number of clusters. A hierarchical imple-
mentation of the algorithms is also derived. The algorithms
are theoretically motivated and demonstrated on nontrivial
data sets.

1. Introduction

Clustering is a fundamental unsupervised learning prob-
lem, where one needs to find a partitioning for a given set
of items S = {sn}N

n=1 into K groups {Sk}K
k=1 such that

∪K
k=1Sk = S and Sk ∩ Sl = ∅ if k �= l. Imagine you

are given the task of designing an algorithm to cluster S,
without any additional information such as the number of
clusters K, bounds on the number of points in the k’th clus-
ter |Sk|, the location of the clusters etc. Often there is more
than one plausible way to partition the data. Thus we would
like an algorithm which suggests different ‘good’ partition-
ings and associates each of them with a numerical measure
that indicates how ‘good’ they are. This paper provides such
an algorithm, using novel ideas in spectral clustering.

Spectral clustering is a technique for data partitioning
based on similarities between pairs of data points. The
spectrum of an affinity matrix, a matrix of pairwise sim-

∗Also at the Machine Learning Department, Carnegie Mellon Univer-
sity, Pittsburgh, USA

ilarities between points, is used to cluster the data points
into groups. The ease of implementation, combined with
the ability to cluster complex data sets, makes the method
appealing to researchers in various fields, including bioin-
formatics [10], speech recognition [4] and software clus-
tering [1]. In computer vision it is used to perform image
segmentation [6, 8, 9]. As a nonparametric approach to un-
supervised clustering, it often beats parametric models for
clustering in machine learning (e.g. mixture models).

Many studies have been done on spectral clustering with
relation to random walks [8], graph cuts and normalized
cuts [6], and matrix perturbation theory [2], continuously
improving our understanding of the technique. Alongside
the development of algorithms [6, 8, 2, 5, 9] significant the-
oretical progress has also been achieved. In [7] it was shown
that if some conditions apply then spectral clustering mini-
mizes the multiway normalized cut, a generalization of the
two way normalized cut criterion [6]. Since this result is
the basis for some of the work presented here, it will be
discussed more in the sequel.

Although much has been discovered various key issues
remain open questions, e.g. (i) How can one choose a good
function to measure the pairwise similarity when all that
is available is S?, (ii) How can the number of clusters K
be learned from S?, (iii) Why do spectral methods use the
leading eigenvectors and (iv) When is spectral clustering ex-
pected to work?. These are the questions addressed in this
paper, leading to the following contributions; (1) Analyz-
ing the effect of taking multiple steps of the random walk,
a direct generalization of the multicut lemma [7], which we
briefly discuss in section 2, is derived in section 3. (2) A
new algorithm that finds different plausible values for K
is derived from theoretical considerations (section 4). (3)
This algorithm is, in turn, generalized in section 5 to learn
the parameter of the similarity function, and (4) a hierarchi-
cal implementation which is both efficient and intuitive is
described in section 6. This is all done while keeping the
additional complexity and computation burden minimal.

1

2. Overview of spectral clustering

This section gives a short review of spectral clustering
and the main results from the literature used in our work.
Consider the case where members of S are points in the
data space R

t. The indices of the points in the k’th group
are denoted by Ik and the partition by I = {Ik}K

k=1.
Given a metric d(x, y), defined over R

t, the similarity be-
tween different points in S can be measured by any mono-
tonically decreasing parameterized function wmn(σ) =
w (d(sm, sn);σ), with σ being the length scale of w. The
smaller it is, the smaller is the ‘neighborhood’ of a point.
For multidimensional data, different length scales can be
used along different dimensions. While the results in this
paper can be applied to any metric space (X , d(x, y)) with
any function w, for brevity we only discuss

(
R

t, ‖x − y‖2
)

with the popular Gaussian function

wmn(σ) = exp
(
−‖sm − sn‖2

σ2

)
. (1)

The pairwise similarities are conveniently summarized in
the Gram matrix, also known as the kernel matrix.

DEFINITION 1 (Parameterized Gram Matrix) Given
a set S = {sn}N

n=1 and a parameterized function
w(σ) : R

t × R
t �→ R+, the parameterized N × N matrix

W (σ) with elements [W (σ)]mn = wmn(σ) is referred to
as the parameterized Gram matrix of w(σ) w.r.t. S.

For simplicity of notation we sometimes drop the explicit
dependence on σ, but the reader should keep this depen-
dence in mind.

Different algorithms use W differently to derive an
affinity matrix P . In this paper we adopt the random
walk view [8] for the definition of P (see [3] for rela-
tion to other definitions). Denote the volume of the n’th
node Dnn =

∑N
i=1 wni and the diagonal matrix D =

diag(D11, . . . , DNN), then the affinity matrix is given by

P = D−1W . (2)

Notice that each row of P sums to 1, thus Pmn can be in-
terpreted as the probability for a random walk that begins at
sm to end up at sn after a single step. More formally, if we
let xj be the location of the walk at time j, then

Pmn = P(xj+1 = sn|xj = sm) . (3)

2.1. The baseline method

Baseline algorithms assume the Gram matrix W and the
number of clusters K are given with the data. First the affin-
ity matrix P is computed, and then its eigensystem is used
to cluster the data, as described in algorithm 1.

DEFINITION 2 (Eigensystem of a matrix) Let λn and vn

be the n’th eigenvalue and eigenvector of a matrix P , i.e.
Pvn = λnvn. Without loss of generality, let λn ≥ λn+1

and ‖vn‖ = 1. Then, {λn, vn}N
n=1 is the eigensystem of P .

Input: Data set S, number of clusters K, Gram matrix W .
Output: A partitioning {Sk}K

k=1.
Algorithm:
1.Compute P according to (2).
2.Find the eigensystem of P and define V = (v2, . . . , vK).
3.Consider the rows of V to be points in R

K−1 and cluster
them using the K-means clustering algorithm.
4.Define Ik to be the index set of all the rows of V belong-
ing to the k’th cluster.
5.Define the partitioning {Sk}K

k=1, where Sk = {xn}n∈Ik
.

Algorithm 1: Baseline spectral clustering algorithm.

Some properties of P which are important for our dis-
cussion are summarized in the following Lemma.

LEMMA 1 Assume W is full rank and P is given by (2).
Then,
1. P is full rank,
2. λ1 = 1 and v1 = [1, 1, . . . , 1]�/

√
N ,

3. λn is real and |λn| ≤ 1 ∀ n = 2, 3, . . . , N .

The proof is trivial; D is diagonal thus P is defined by nor-
malizing the rows of W and (1) follows, (2) can be verified
by direct calculation, the first part of (3) is easily proved
using the symmetry of W and the second part by using the
equality λnvn(m) =

∑
i Pmivn(i) ∀n,m, and for each n

choosing m = argmaxj |vn(j)|. Property 2 explains why
only eigenvectors 2 to K are used to define V ; since the first
eigenvector is all ones, it contains no grouping information.

2.2. Why should it work?

Spectral clustering was analyzed using tools from ma-
trix perturbation theory in [2]. There, it was shown that if
the affinity matrix is close to block diagonal with K blocks,
then the K leading eigenvectors efficiently reflect this struc-
ture and the method is guaranteed to perform well. How-
ever, empirical studies show that the method is successful
even in cases where the matrix is far from block diagonal.
A different approach is pursued in [8, 7], where the notion
of piecewise constant eigenvectors was introduced.

DEFINITION 3 (Piecewise Constant Eigenvectors (PCE))
Let v be an eigenvector of P and I = {Ik}K

k=1 be a parti-
tion of 1, 2, . . . , N into K disjoint sets. Then, v is said to
be a Piecewise Constant Eigenvectors of P with respect to
I if v(i) = v(j) ∀ i, j ∈ Ik and k ∈ 1, 2, . . . ,K.

It was shown in [7] that if P ’s K leading eigenvectors are
PCE with respect to I ,then spectral clustering minimizes
the multiway normalized cut (MNCut)

MNCut (I) = K −
K∑

k=1

Cut (Ik, Ik)
Cut (Ik, I)

, (4)

where Cut (Ik, Ik′) =
∑

m∈Ik,n∈I
k
′ Wmn. An intuitive

understanding of the MNCut can be gained by expressing it
[7] as MNCut (I) =

∑K
k=1 (1 − P (Ik → Ik|Ik)), the sum

of transition probabilities between different clusters in a sin-
gle step. Thus, the MNCut is minimized by the partitioning
for which the a random walk is most probable to stay in the
cluster in which it is located.

LEMMA 2 (The Multicut Lemma [7]) Assume WN×N is
symmetric with nonnegative elements, and define P accord-
ing to (2). Assume further that P ’s K leading eigenvectors
are PCE with respect to a partition I∗ and their eigenvalues
are not zero. Then, I∗ minimizes the MNCut.

Notice that for PCE, K-means clustering in the feature
space (Alg1, step 3) is ideal since it is asked to find clus-
ters whose members are all identical.

3. Structure exploration with random walks

We now examine what happens to the results of section
2 if we let the random walk take many steps instead of only
one. The results turns out to be very informative, and they
lead to the derivation of a new clustering algorithm that
given S and W , automatically learns different plausible val-
ues for the number of clusters K, and scores the resulting
partitionings.

Consider using the M ’th order transition matrix PM ,
whose elements are

PM
mn = P(xM = sn|x0 = sm) , (5)

as the affinity matrix. PM
mn gives the total probability that

a random walk xj , beginning at sm, will end up in sn after
M steps, considering all possible paths between the nodes.
PM

mn is expected to be high if there is a good path between
sm, sn and low otherwise, hopefully leading to a block di-
agonal matrix which is ideal for clustering data [2]. How-
ever, often in practice we observe a different behavior of
PM . If points i, j are in the same cluster, then often there
are values of M for which PM

i and PM
j , the i’th and j’th

rows of PM , becomes very similar. The intuition here is
that if points i, j are similar then after sufficient number of
steps we can expect that a particle that begins a random walk
in each of them will have the same distribution for its loca-
tion after M steps. Another observation is that by varying
the number of steps M we explicitly explore similarities at

different scales in the data, and as M increases we expect
to find coarser structure.

The following lemma shows how the results of spectral
clustering with P are related to those with PM as the affin-
ity matrix.

LEMMA 3 Assume W,K are given and let the partitioning
I be the result of algorithm 1. Then, substituting P in step 1
of the algorithm with PM , for any odd positive integer M ,
yields the same partitioning I.

It is well known, from the theory of markov chains, that
PM is given by multiplying P with itself M times, so that
if P = V ΛV −1 then PM = V ΛMV −1, where V is the
matrix whose n’th column is vn. Thus, if {λn, vn} is the
eigensystem of P , then {λM

n , vn} is the eigensystem of
PM . Next, if M is odd then the ordering of the eigenvalues
is left unchanged and the same eigenvectors are picked to
cluster the data, hence the lemma is proved. This equiva-
lence between P and PM reveals two important key ideas
(1) spectral clustering implicitly searches for good paths be-
tween points, and (2) the eigenvalues can be used to indicate
the scale and quality of partitioning, by separating between
the eigenvalues that survive M steps and those that don’t.

PM can be analyzed into a sum of N matrices

PM =
N∑

n=1

λM
n

vnv�
n D

v�
n Dvn

, (6)

each of which depends only on P ’s eigensystem. This is
accomplished by exploiting the fact that v�

n Dvm = δnm,
which is due to P being defined by a normalized symmetric
matrix (2). To appericiate the implications of this analysis,
we first introduce the following two definitions.

DEFINITION 4 (Principal Matrix Component) We refer

to the matrix Tn = vnv�
n D

v�
n Dvn

as the n’th principal matrix

component of PM , and λM
n as its weight.

DEFINITION 5 (Idempotent-Orthogonal Basis of a Matrix)
Assume A is a square full rank matrix of size N , and let
δnm = 1 if n = m and 0 otherwise. The set of square
matrices of size N , {Un}N

n=1, is said to be an idempotent-
orthogonal matrix basis of A if UnUm = δnmUn and there
is a set of N numbers {µn}N

n=1 such that A =
∑N

n=1 µnUn.

An idempotent matrix satisfy UnUn = Un, and the orthog-
onality is due to the condition UnUm = 0 for n �= m. Al-
though it seems redundant, it is worth mentioning here that
the sum of all ranks of Un with nonzero weights µn must
equal the rank of A, and if all µn are nonzero, then the rank
of any matrix Un is one.

We can now give an intuitive interpretation for P ’s PMC
and eigenvalues, analogous to PCA. In PCA the eigenvec-
tors are pointing in an orthogonal set of directions with

maximum variance, and the eigenvalues indicate the vari-
ance in these directions. Here, the PMCs are an analysis
of P into an idempotent-orthogonal basis {Tn}N

n=1, with
weights λM

n . Notice that any Tn is independent of M , but
the absolute value of its weight is monotonically decreasing
with respect to M (recall that |λn| ≤ 1). This motivates
interpreting the eigenvalues as indicators to the structure in
data revealed by Tn. If λn is very close to 1, such that λM

n

is also close to 1, then Tn ‘survives’ the random walk and
is related to stable groups in the data whereas the λM

n that
tends towards zero are related to unstable groups. So, PMC
can be interpreted as the projection of P (or PM , since they
have the same eigenvectors) into its principal matrix com-
ponents that reveals structure in multi scales, with λM

n as
an indication to how stable this component is with respect
to M . Instead of variance, we talk here about robustness
to the number of steps M in the random walk. The big-
ger |λM

n | is, the more robust is Tn to a random walk of M
steps, and the better is the structure revealed by it. Next,

recall that Tn = vnv�
n D

v�
n Dvn

, so that given D, vn is unique and
there is a one to one correspondence between Tn and vn.
Thus, the higher is the value of λM

n , the larger is the scale
of the structure revealed by vn.

To help gain some more intuition, one can examine the

case M → ∞. Using lemma 1 we get P∞ = 1v1v�
1 D

v�
1 Dv1

=
1∑ N

n=1 Dnn
[1D11, 1D22, . . . , 1DNN], which is the matrix

whose rows are all equal to the stationary distribution of
the markov chain with transition matrix P (first left eigen-
vector). This result recovers a well known property, that for
infinite number of steps P(x∞ = sn|x0 = sm) = Dn∑ N

j=1 Dj
,

meaning that for infinite number of steps the random walk
forgets where it began. If the data has well separated clus-
ters, we can expect similar behavior for finite M too. In this
case, a particle that begins its walk in one of the clusters is
expected to stay there for a long time, until the distribution
in the cluster will resemble the stationary distribution over
it, as if other clusters did not exist. This can be formalized
by the following Theorem.

THEOREM 1 Let {Sk}K
k=1 be a partition of S, and sm ∈

Sk for some k = 1, 2, . . . ,K. Then, if there is an odd num-
ber of steps M such that P(xM ∈ Sl|x0 = sm) is equal for
all sm ∈ Sk and l �= k, then spectral clustering with P as
the affinity matrix minimizes the MNCut.

Using lemma 4 from [7], it can be shown that if the condi-
tion of Theorem 1 holds, then PM has PCE. In this case, us-
ing the argument in the proof of lemma 3 shows that P also
has PCE, and then lemma 2 completes the proof. This re-
sult gives an intuitive explanation to lemma 2 and is closely
related to the idea of PCE. Instead of considering a random
walk of a single step, it allows us to consider a random walk
of any number of steps, while still maintaining the powerful

Figure 1. Example of Principal Matrix Components. The data
set, its transition matrix P , and its leading PMC’s (6) and eigen-
values are shown. Notice how T1 is the matrix whose rows are
all equal to the stationary distribution of P . The PMC’s form
an idempotent-orthogonal basis for P (definition 5). The lead-
ing eigenvalues of P (bottom row, middle) and their M ’th power
(bottom row, right) are shown (notice the different scale in the y-
axis) for M = 8076, as automatically selected by algorithm 2.
Notice how only two eigenvalues ‘survive’ the random walk such
that P 8076 � 1 ·T1 +1 ·T2 (bottom, left), and how the PMC’s are
related to hierarchical partitioning of the data.

guarantees of lemma 2. It also suggests a clear and intu-
itive explanation to why spectral clustering is so successful
even if the data sets are extremely complex. Since we con-
sider a random walk with any number of steps, we implic-
itly explore structure in data at multiple scales, and if there
is a good path between points then spectral clustering will
group them together.

To see the relation with PCE, assume that P has K PCE
with respect to the partition and that there exist a value of M
for which {λM

n
∼= 1}K

n=2 and {λM
n

∼= 0}N
n=K+1. Then, we

can approximate PM by its projection onto the K leading

PMCs as PM ∼= ∑K
n=1 λM

n Tn
∼= ∑K

n=1 1 · vnv�
n D

v�
n Dvn

. If vn is
PCE, it is easy to verify that the condition of theorem 1 is
satisfied, and spectral clustering minimizes the MNCut.

4. Algorithm

We saw that by replacing λ with λM and interpreting it
as an indication for the convergence of the random walk, the
eigenvectors contain cluster information on multiple scales.
So, given the transition matrix P and the number of clus-

Input: Data S, Gram matrix W
Output: L partitionings of S with associated stability and

plausibility measures
{{

Sl
k

}Kl

k=1
, αl, βl

}L

l=1
Algorithm:
1. Compute, in the following order

-P according to (2)
-{λn, vn}N

n=1, the eigen system of P
-∆(M) and K(M) according to (7) for increasing val-

ues of M , beginning at M0 = 1, until K(M) = 1 (set
this number of steps to Mmax)
2.Find all the local maxima of ∆(M), and order them
{∆(Ml)}L

l=1.
3.For every l = 1, 2, . . . , L

-Call Algorithm 1 with K(Ml) as the number of clusters

to obtain
{
Sl

k

}Kl

k=1
.

-Set αl = Ml−Ml−1
Mmax

, βl = ∆(Ml).

Algorithm 2: An algorithm to automatically learn different
partitionings of S.

ters K, one can measure the quality of the partitioning by
searching for the number of steps M such that the eigengap
λM

K − λM
K+1 is maximized. However, a closer look sug-

gest a more powerful usage of this approach. Since differ-
ent M are associated with different scales of data scattering,
we can combine searching for good partitionings with infer-
ring the number of clusters K - all from the eigenvalues of
P . This is done by searching over M and looking for local
maxima of the maximal eigengap. The number of clusters
is inferred from the location of the maximal eigengap, and
this maximal value can be used as a quality measure for the
partitioning, as formally defined by

∆(M) = max
k

(
λM

k − λM
k+1

)
,

K(M) = argmax
k

(
λM

k − λM
k+1

)
.

(7)

So, for every M we have an estimate K(M) for the num-
ber of clusters, and ∆(M) is interpreted as an indication for
the plausibility of the partitioning. Algorithm 2 combines
(7) with the following two key ideas. First, good partition-
ings should have a high value of ∆(M), ideally 1. Second,
∆(M) is not monotonic, and by increasing values of M , it
is expected to have local maxima that are associated with
partitionings in increasing scales.

The algorithm is demonstrated in Figure 2 with a data
set consists of three interlocked rings, two of which have a
bridge between them. By scanning over M we find that
∆(M) is locally maximized (bottom graph) at 3 points
M1,2,3 = 40, 312, 6309 respectively. Each of these lo-
cations is associated with a different number of clusters
K(M1,2,3) = 9, 3, 2 respectively. Each of the resulting

Figure 2. A demonstration of Random walks. S consists of three
interlocked rings, two of which share a bridge. M is plotted on a
base 10 logarithmic scale

partitionings is shown in the top plots. Notice how small
values of M (few steps of the random walk) are associated
with high number of clusters (each with a small number of
points). We also define stability and plausibility measures
(algorithm 2, step 3) which can be used to select between
partitionings. The stability measure for the partitionings in
Figure 2 is α1,2,3

∼= 101.7

104.5 , 103.2

104.5 , 104.3

104.5 respectively and the
plausibility measure associated with each of them is given
by β1,2,3 = 0.43, 0.8, 0.85. We deliberately chose an ex-
ample which returns three different partitionings, to demon-
strate how α and β can be used to help us decide between
them.

Figure 3 shows the performance of the algorithm applied
to a data set which consists of 300 noisy and randomly ro-

28 29 30 31 32 33 34 35

1

1.5

2

2.5

3

3.5

4

K(
M

)

28 29 30 31 32 33 34 35

0.2

0.4

0.6

0.8

1

∆(
M

)

log(M)

K(1.9e13)=3

∆(1.9e13)=0.9

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

λ n

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

n

λ n1.
9e

13

∆(1.9e13) = 0.9

Figure 3. Digits data set. Algorithm 2 applied to a data set consists
of 300 noisy and randomly rotated digits with 3 labels. This data
set is similar in nature to the one in Figure 2 (see text for details).
The algorithm automatically finds the number of clusters and a
perfect partitioning of the data.

tated digits with 3 labels (100 images per label). Each image
is given by a 26 × 26 matrix and is represented as a point
in R

676. Notice how P ’s spectrum is practically flat and
noninformative, while its power series indicate that there
are 3 eigenvalues that survive the random walk exploration.
Due to the random rotation of the digits, where the rota-
tion is uniformly distributed over [0o, 360o), this data set
is formed of rings in R

676. Applying K-means to this data
set severely mixes the labels, indicating that the rings are
interlocked. In addition, applying Algorithm 2 to this set
results in a perfect separation of the digits. Thus, this data
set is similar in nature to the one in Figure 2, and the fact
that only one peak of ∆(M) emerges teaches us that there
are no good bridges between clusters.

5. Learning the affinity matrix

Recall (definition 1) that the Gram matrix is parameter-
ized by σ, the length scale of the affinity function. Choosing
a good value for this parameter is crucial for the algorithm
to be successful. How to choose the parameters of the affin-

Input: Data set S
Output: L partitionings of S with associated stability and

plausibility measures
{{

Sl
k

}Kl

k=1
, αl, βl

}L

l=1
Algorithm:
0. Initialize Σ according to (8).
1. For i = 1 : |S|, set σi = Σ(i) and compute ∆(σi,M)
and K(σi,M) according to (9)
2. Choose σ� = argmaxσi,M ∆(σi,M) to be the parameter
that best reveals structure in S.
3. Call Algorithm 2 with W (σ�) as the Gram matrix.

Algorithm 3: An algorithm to find different pairs of (σ,K).

ity matrix is still an open question and an active research
area, having a few possible solution strategies in the litera-
ture. For example, in [2] it was assumed that K is given and
σ was chosen by minimizing the distortion of the K-means
algorithm in the feature space (Algorithm 1, step 3). In [5]
the affinity matrix was learned by forcing it to perform well
on clustering a given labeled sequence. A training sequence
is also used in [9], where the affinity matrix is learned by
optimizing a regularized objective function.

A major drawback of the above methods is that they re-
quire K to be given with the data and they [5, 9] involve
solving complex optimization problems to learn the affin-
ity matrix. In section 4 we saw how, given W , different
values for K can be easily inferred with almost no addi-
tional complexity, beside computing the powers of the lead-
ing eigenvalues of P for a range of possible values of M .
However this procedure assumes the affinity matrix, param-
eterized by σ, is known. To learn this parameter, notice that
its value eventually determines the transition probabilities
between pairs of points, and by increasing it we implicitly
increase the probability of a random walk to move between
points that are further apart. It is worth stressing here the
fundamental difference between scanning over the number
of steps M and over the length scale parameter σ. Increas-
ing the value of σ results in a transition matrix P (σ) that
spreads the probability of a single step to move between
points that are further and further apart. By scanning over
M , we simply discover plausible number of clusters in the
data set, based on the single step transition probabilities
given by P (σ). It can be summarized as follows; by set-
ting the value of σ we explicitly define the structure in the
data, and by scanning over M we reveal this structure.

The interesting interval for σ roughly stretches from the
smallest to the largest distance between pairs of data points.
Σ is defined to satisfy this condition

Σ =
[
σmin :

σmax − σmin

|S| − 1
: σmax

]
,

σmin = min
m,n

‖xm − xn‖, σmax = max
m,n

‖xm − xn‖ .
(8)

where [a : b : c] denotes the sequence a, a+b, a+2b, . . . , c.
The boundaries of Σ are defined such that for σmin most of
the mass of the transition probability, for each point in S,
is distributed over the very nearest few data points, whereas
for σmax it is distributed more evenly over a large number
of points. Using |S| and not N simplifies the notation in
section 6. Notice that there are now |S| candidate transition
matrices which can be used for the actual partitioning of
the data. To take this into consideration we can generalize
functions (7) to be a function of both M and σ

∆(M,σ) = max
k

(
λM

k (σ) − λM
k+1(σ)

)
,

K(M,σ) = argmax
k

(
λM

k (σ) − λM
k+1(σ)

)
.

(9)

The two dimensional functions (9) allow the derivation of
a family of algorithms that learn σ and K simultaneously.
The general idea is that different values of σ define rela-
tions between points in different scales and result in discov-
ering different number of clusters in the data. The parameter
σ defines the local neighborhood structure, while scanning
over M reveals the global structure. We therefore optimize
over both σ and M and look for the combination that yields
the maximal value of ∆(M,σ). Algorithm 3 gives a formal
description of how this can be implement.

6. Hierarchical clustering

Algorithm 3 is inherently inefficient, as it uses in step 1
the entire data set S for every length scale σ, completely ig-
noring the fact that different length scales result in different
types of partitioning. In general, the larger σ is, the larger
each cluster is expected to be. Algorithm 4 is essentially a
hierarchical implementation of Algorithm 3, beginning by
separation in a large scale, and then recursively partitioning
each of the resulting clusters. Specifically, it first searches
for a good initial partitioning of S, beginning with Σ(|S|)
and going backwards. Once a local maxima of ∆(σ,M) is
found, S is partitioned and each cluster in the partitioning
is then treated as a new data set and Algorithm 4 is applied
to it recursively (step 4). The recursive nature of Algorithm
4 is implemented by growing a tree, adding more and more
levels until the clusters reach a desired size or crossing a
threshold in performance improvement. Notice that algo-
rithm 4 is different from algorithms 2,3 by only producing
one partitioning of the data. Nevertheless, the tree struc-
ture provides additional information about the scale of the
relation between different clusters.

In addition to the many conceptual advantages of hier-
archical data clustering such as simplicity of representation
or the efficiency of the ‘divide and conquer’ principle, the
computational burden is also eased significantly. Notice that
in each recursion the data is clustered, so that the size of S
that is used to call the algorithm recursively decreases ex-
ponentially. This is translated to easier computational tasks

Input: Data set S.
Output: A directed tree T, each leaf contains all the points
in the associated cluster.
Algorithm:
0. initialize according to (8), and set T to be an empty tree.
1. starting with the largest value Σ(|S|) and going back-
wards, compute ∆(σi,M) until a local maxima emerges at
some pair (σ�,M).
2. compute K(σ�,M) according to (9)
3. call Algorithm 1 with W = W (σ�) and K = K(σ�) to
obtain {Sk}K

k=1.
4. for every k = 1 : K call Algorithm 4 (recursive) with Sk

and define the output as the k’th child of T.

Algorithm 4: Hierarchical implementation of Algorithm 3.

by both using smaller matrices P and smaller number of el-
ements in Σ. Another implementation issue is the spectral
decomposition of P required for step 2. Since the maximal
eigengap is all that we are looking for, it is only necessary
to compute a small number of the largest eigenvalues, much
smaller than N , the total number of eigenvalues. Recall that
P is a usually sparse matrix, thus Lanczos algorithm can be
used to achieve an efficient implementation and reduce exe-
cution time (for implementation in MATLAB� see also the
command eigs).

Figure 4. Numerical demonstration of Algorithm 4. The data S
was generated from a mixture of 7 nonuniformly scattered Gaus-
sians. Every new partitioning in the tree is achieved using the value
of σ which maximizes ∆(σ, M) for the associated data set. Clus-
tering in higher levels of the tree are obtained using larger values
of σ and each split is associated with a different value of σ.

S
1

S
2

S
3

S
11

 S
12

 S
13

S
21

 S
22

 S
23

 S
24

S
31

 S
32

Figure 5. Numerical demonstration of Algorithm 4. Data S consists of 9 words arranged on 3 lines. {Si}3
i=1 are the initial clusters

found by algorithm 4, using the top values of Σ. For each i = 1, 2, 3, algorithm 4 was called recursively with Si, and the sets Si,j were
clustered as the children of Si. The input to the algorithm is the set of all points, and the output is a tree with 2 levels and 9 leafs.

7. Discussion

This paper sheds new light on spectral clustering. Specif-
ically, lemma 3 and Theorem 1 generalize the results of [7]
by considering PM instead of P , leading to a new theo-
retical framework for understanding spectral clustering. It
was shown how P ’s eigenvalues can be interpreted as an in-
dication for the cluster structure of the data clarifying two
aspects of spectral methods; first, it explains why we choose
the eigenvectors associated with the largest eigenvalues and
second, it gives a direct relation between the eigenvalues
and the number of clusters in the data. These observations
first motivated algorithm 2, where given the data set S and
the Gram matrix W , several plausible values for the num-
ber of clusters K are inferred. In algorithm 3 only the data
S is given, and the search for the affinity matrix is com-
bined with the search for the number of clusters K. Finally,
to have an efficient implementation of this algorithm, we
defined a hierarchical algorithm that iteratively partitions
the data so that the computational burden in each stage de-
creases exponentially. The algorithm for determining σ can
be extended to finding any other single parameter of a pa-
rameterized Gram matrix.

Our results also give a general framework for matrix
decomposition which may be useful for other data anal-
ysis and machine learning algorithms (e.g. PCA, markov
chains). In relation to image segmentation algorithms, we
already discussed how our results helps understanding when
(there are no good bridges between segments) and why (the
random walk doesn’t easily move between segments) the
method is expected to be successful. In addition, Theorem
1 can also be used to improve other existing algorithms for
image segmentation. For example, Theorem 1 in [9] shows
how the eigengap λK − λK+1 can be used to define a qual-
ity measure, but because this number often tends to be very
small, using it directly leads to numerical instability of their
algorithm and the authors say a less efficient objective func-

tion is optimized. Using our method, this eigengap can be
easily replaced by λM

K − λM
K+1 with any M for which the

numerical problems are minimized. On the other hand, and
unlike [9], our method assigns all dimensions with the same
length scale parameter. Thus, although it allows a very sim-
ple implementation, it has the weakness of not being able to
perform feature selection. One of the directions for future
work is extending our algorithms to allow using different σ
along different dimensions.

References

[1] A. Shokoufandeh, and S. Mancoridis , and M. Maycock. Ap-
plying Spectral Methods to Software Clustering. Proceed-
ings of the Ninth Working Conference on Reverse Engineer-
ing (WCRE02).

[2] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. Advances in Neural Information
Processing Systems (NIPS),14, 2001.

[3] D. Verma, and M. Meila. Comparison of spectral clustering
methods. UW CSE Technical report, 2001.

[4] F.R. Bach, and M.I. Jordan. Blind one-microphone speech
separation: A spectral learning approach. Advances in Neu-
ral Information Processing Systems (NIPS),16, 2004.

[5] F.R. Bach, and M.I. Jordan. Learning Spectral Cluster-
ing. Advances in Neural Information Processing Systems
(NIPS),16, 2004.

[6] J. Shi, and J. Malik. Normalized Cuts and Image Segmen-
tation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22.

[7] M. Meila. The multicut lemma. UW Statistics Technical
Report 417, 2001.

[8] M. Meila, and J. Shi. A Random Walks View of Spectral
Segmentation. Tenth International Workshop on Artificial
Intelligence and Statistics (AISTATS), 2001.

[9] M. Meila, and S. Shortreed, and L.Xu. Regularized spectral
learning. UW Statistics Technical Report 465, 2005.

[10] W. Pentney, and M. Meila. Spectral Clustering of Biological
Sequence Data. To appear in AAAI 2005.

