PAPER 8 Image Processing - 2007 Sample Exam Question

Below is a 5-part question. The actual exam question will have 8 parts.

1. Consider a set of N images S = {x1,...,xy} where each image is rep-
resented as a vector of M real-valued features, e.g. X, = (Tn1,-- -, Tnar)
and z,,, € R.

Assume you use a Gaussian model for these images:

M
p(xn|p) = H P(Trm |fim)
m=1

where p(Zm|tm) is Gaussian with mean p,, and variance 1.

(a) Write down the likelihood of the vector g = (u1,...,un) for data
set S.

(b) Derive the maximum likelihood estimate of pi,.

(c) Assume a Gaussian prior on f,, with zero mean and unit variance
denoted p(um,m) = N(0,1). Derive the posterior distribution p(g,|S).

(d) Describe some limitations of the above model for modelling features

of images.

(e) Given two data sets of images, S and &', for example representing
images of two concepts (e.g. “sheep” and “clouds”), describe an au-
tomatic method (algorithm and equations if needed) for determining
whether an image x fits better with S and S’.



SOLUTIONS

1. Answers to different parts...

(a)

(b)

N M 1
P(Slp) = HH(Qﬁ)flﬂexp{—;xnm—um)z}
n=1m=1
= (QW)J\IzMeXp{;Z(xnmum)z}

Take log likelihood as a function of p,, dropping all constants:

L(,um) = _% Z(xnm - Mm)Q

n

Maximize this as a function of p,,, by taking derivatives and setting

to zero:
OL(pm)

n

Solving for p.,, we get:

Mm = % Xn: Tnm

which is the sample mean of the mth image feature.

P(km|S) o< p(S|ptm)p(pim)
Again, dropping constants that don’t depend on u,, we get;

Pl lS) o exp{=5 S (um — 1)} exp{~ 1%}

n

Clearly this is a Gaussian in p,,. It suffices to compute the mean
and variance of this Gaussian by matching terms to the expression
for a standard Gaussian:

1 2
exp{—ﬁ(um —u)”}
The variance is s> = 325 and the mean is u = 527 -, Znm- [Note
that for no data points, this posterior is equal to the prior, which it
obviously should be].

This model has numerous limitations: (a) the features are all in-
dependent, no correlations between features are modelled! (b) the
noise variance is fixed at 1, rather than being learned; (c) feature
distributions may be poorly modelled by the Gaussian distribution.



(e) There are several correct answers to this: (a) you could find the
nearest neighbor to all elements of these two sets and judge x to fit
with the set containing the nearest neighbor; (b) you could compute
the mean of § and of &', and find which of these two means x is
closer to; (c¢) you could learn a probabilistic model from S, and from
S’ with parameters g and g respectively, and see which gives x
higher probability; i.e. select S if:

p(x|p) > p(x|p’)?
(d) you could do the same as in (c) but integrating over parameters:
p(x|8S) > p(x|S)?

(e) you could build a classifier to classify S from &’ [if you’ve somehow
learned about this].



