Image Searching and Modelling

Part IB Paper 8 Information Engineering Elective

Lecture 2: Maximum Likelihood, Optimization, and Outlier Removal

Zoubin Ghahramani

zoubin@eng.cam.ac.uk

Department of Engineering University of Cambridge

Easter Term

Outline

- How do we find ML parameters
 - Solving for optimum (when possible)
 - Optimization and gradient ascent
 - [Newton-Raphson optimization]
- Novelty detection and outlier removal
- Bayesian learning: example binary data and the Beta distribution

How do we find maximum likelihood (ML) parameters?

$$\boldsymbol{\theta}_{\mathrm{ML}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta}) = \operatorname{argmax}_{\boldsymbol{\theta}} \ln p(\mathcal{D}|\boldsymbol{\theta})$$

Let's define

$$\mathcal{L}(\boldsymbol{\theta}) \stackrel{\text{def}}{=} \ln p(\mathcal{D}|\boldsymbol{\theta})$$

This is simply a function of θ . At a local optimum (maxiumum):

$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0$$
, and $\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2} < 0$.

In multiple dimensions:

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0, \quad \text{and} \quad H = \frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}}$$

where the $Hessian\ H$ is negative definite.

$$H_{ij} \stackrel{\text{def}}{=} \frac{\partial^2 \mathcal{L}(\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j}$$

Aside: positive definite and negative definite matrices

A symmetric matrix M is positive definite:

- iff $\forall \mathbf{x} \neq 0$, $\mathbf{x}^{\mathsf{T}} M \mathbf{x} > 0$
- ullet iff all eigenvalues of M are >0

For negative definite: replace > with <.

Solving for the optimum

Solve $\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0$ and check that it's a maximum.

Multivariate Bernoulli Case:

Let $\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$ be a data set of images and $\mathbf{x}_n = (x_{n1}, x_{n2}, \dots, x_{nD})$ denote D binary features of the image, with $x_{nd} \in \{0, 1\}$.

$$P(\mathbf{x}_n|\boldsymbol{\theta}) = \prod_{d=1}^{D} \theta_d^{x_{nd}} (1 - \theta_d)^{(1 - x_{nd})}$$

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^{N} P(\mathbf{x}_n|\boldsymbol{\theta}) = \prod_{n} \prod_{d} \theta_d^{x_{nd}} (1 - \theta_d)^{(1 - x_{nd})}$$

$$\mathcal{L}(\boldsymbol{\theta}) = \ln P(\mathcal{D}|\boldsymbol{\theta}) = \sum_{nd} x_{nd} \ln \theta_d + (1 - x_{nd}) \ln(1 - \theta_d)$$

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \theta_d} = \frac{\sum_{n} x_{nd}}{\theta_d} - \frac{\sum_{n} (1 - x_{nd})}{1 - \theta_d} = 0 \quad \Rightarrow \quad \boxed{\boldsymbol{\theta}_d = \frac{\sum_{n} x_{nd}}{N}}$$

This is very intuitive: ML parameter estimate is the frequency of 1s.

Example

$$\mathcal{D} = \begin{cases} (1 & 1 & 0) \\ (1 & 0 & 0) \\ (0 & 1 & 0) \end{cases}$$

$$\boldsymbol{\theta}_{\mathrm{ML}} = \begin{pmatrix} \frac{2}{3} & \frac{2}{3} & 0 \end{pmatrix}$$

We can similarly solve for the maximum likelihood parameters of a Gaussian.

What do we do when we can't analytically solve $\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0$

Iterative optimization algorithms

- Gradient ascent (steepest ascent)
- Newton's method

Gradient ascent (steepest ascent)

Input: initial $\theta^{(0)}$, stepsize η , convergence tolerence ϵ

Repeat:

$$oldsymbol{ heta}^{(t+1)} \leftarrow oldsymbol{ heta}^{(t)} + \eta rac{\partial \mathcal{L}(oldsymbol{ heta})}{\partial oldsymbol{ heta}}|_{oldsymbol{ heta} = oldsymbol{ heta}^{(t)}}$$

Until: $\mathcal{L}(\boldsymbol{\theta}^{(t+1)}) - \mathcal{L}(\boldsymbol{\theta}^{(t)}) < \epsilon$

Aside: Newton's Method

Use Taylor expansion to get local quadratic approximation to $\mathcal{L}(\theta)$:

$$\mathcal{L}(\theta) \approx \mathcal{L}(\theta^{(t)}) + (\theta - \theta^{(t)}) \frac{\partial \mathcal{L}(\theta)}{\partial \theta}|_{\theta^{(t)}} + \frac{1}{2} (\theta - \theta^{(t)})^2 \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2}|_{\theta^{(t)}}$$

Find maximum of this quadratic function by taking derivs wrt θ :

$$\frac{\partial \mathcal{L}}{\partial \theta} + (\theta - \theta^{(t)}) \frac{\partial^2 \mathcal{L}}{\partial \theta^2} = 0$$

$$\theta = \theta^{(t)} - \left(\frac{\partial^2 \mathcal{L}}{\partial \theta^2}\right)^{-1} \left(\frac{\partial \mathcal{L}}{\partial \theta}\right)$$

Newton's Method

Input: initial $\theta^{(0)}$, convergence tolerance ϵ

Repeat:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \left(\frac{\partial^2 \mathcal{L}}{\partial \theta^2} \bigg|_{\theta^{(t)}} \right)^{-1} \left(\frac{\partial \mathcal{L}}{\partial \theta} \bigg|_{\theta^{(t)}} \right)$$

Until:
$$|\mathcal{L}(\boldsymbol{\theta}^{(t+1)}) - \mathcal{L}(\boldsymbol{\theta}^{(t)})| < \epsilon$$

Outlier removal and novelty detection

Which is an outlier?

$$\mathbf{x}_1$$
 1
 1
 0
 1
 0
 1
 1

 \mathbf{x}_2
 1
 1
 0
 0
 1
 1
 1

 \mathbf{x}_3
 1
 0
 1
 0
 0
 1
 0
 1

 \mathbf{x}_4
 1
 1
 0
 1
 1
 0
 1

 \mathbf{x}_5
 1
 1
 0
 1
 1
 1
 1

 $\boldsymbol{\theta}_{\rm ML}$
 1
 0.8
 0.2
 0.6
 0.6
 0.8
 0.8

$$P(\mathbf{x}_3|\boldsymbol{\theta}_{\mathrm{ML}}) \approx 0.001$$

$$P(\mathbf{x}_4|\boldsymbol{\theta}_{\mathrm{ML}}) \approx 0.037$$