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Mixtures of Gaussians

.
.
M .
. .
. .
: . ... N o N . o ° b
oot
. . o % o N .
. o ® e
’.."". w?
’... S . LY .o
. ., . .
. . e, o ° d
ot . '.....'-
. et .
. . A LY . ‘c
. - . °
. . . .
°® . (4

Log-likelihood:

Data: Y = {Y1 o ,yN}
Latent process:

5 1S Discrete|r]
Component distributions:

Yi | (si = m) ~ Pulbn] = N [tm; 2]

Marginal distribution:

P(Yz) — Z mem<y; 9m>
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EM for MoGs
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The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood. It starts
from arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

e Useful in models where learning would be easy if hidden variables were, in fact,
observed (e.g. MoGSs).

e Decomposes difficult problems into series of tractable steps.
e No learning rate.

e Framework lends itself to principled approximations.



Jensen’s Inequality

log(a x, + (1-a) x,)|.
a log(x,) + (1-a) log(x,) |

X ax + (1—0()x2 X,

Fora; >0, ) «; =1andany {x; > 0}

log (Z Oéiilfz') > Z a; log(z;)

Equality if and only if o; = 1 for some ¢ (and therefore all others are 0).



The Free Energy for a Latent Variable Model

Observed data ) = {y;}; Latent variables X = {x;}; Parameters 6.
Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:
L(0) =log P(Y|0) = log/P(X,yle)dX

Any distribution, ¢(X’), over the hidden variables can be used to obtain a lower bound
on the log likelihood using Jensen’s inequality:

1o P(X,)10) 5 P(Xx,V[0) def
L(0) =1 g/q(?() 2(X) dXE/q(X)l g X dX = Fl(q,0).
Now,

/q(X) log P<2{<;3§|9> dX = /q()() log P(X,Y|0) dX — / Vog q(X) dX

_ /Q(X) log P(X, V|8) dX + Hlg

where Hlq| is the entropy of ¢(X).

So:
F(q,0) = (log P(X, Y|0)),x) + Hldl



The E and M steps of EM

The lower bound on the log likelihood is given by:

F(q,0) = (log P(X,V10)) ,x) + Hlgl,

EM alternates between:

E step: optimize F(q, #) wrt distribution over hidden variables holding parameters
fixed:
g™ (X) = argmax F(q(X),0" V).
q(X)

M step: maximize F(q, #) wrt parameters holding hidden distribution fixed:

0 = argmax F(q"(X),6) = argmax (log P(X, V|6)), )
0 0

The second equality comes from the fact that the entropy of ¢(X) does not depend
directly on 6.



EM as Coordinate Ascentin F
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The E Step

The free energy can be re-written

f@ﬁwifwxmgpﬁaﬂmdx

- /Q(X) log P<XD;’<2;DO]W> dX

— [ a0y ios PYIR) a2t + [ a() 1o
— £(6) — KL[g()[| P(X]Y, 0)

P(X|Y,0)

q(X) i

The second term is the Kullback-Leibler divergence.

This means that, for fixed 6, F is bounded above by L, and achieves that bound when
KL[g()[| P(X|Y,0)] = 0.

But KL [¢||p] is zero if and only if ¢ = p.
So, the E step simply sets
¢M(X) = P(x|y,0"Y)

and, after an E step, the free energy equals the likelihood.



The KL [g(x)||p(x)] is non-negative and zero iff  Vz : p(x) = q(x)

First let’s consider discrete distributions; the Kullback-Liebler divergence is:
QHP Z q; 10g N

To find the distribution ¢ which minimizes KL [¢||p] we add a Lagrange multiplier to
enforce the normalization constraint:

EdﬁfKLqu +)\1—qu Zqzlog +)\1—Zq?

We then take partial derivatives and set to zero:

oF )
e loggi —logp; +1 —=A=0= ¢ = piexp(A — 1)
qdi

6E > = q; = Di-
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Why KL |¢q||p| is non-negative and zero iff p(x) = q(x) ...

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

O°E 1 0°E
= — > 07 — O,
0q;0q;  qi a%@%
showing that ¢; = p; is a genuine minimum.
At the minimum is it easily verified that KL [p||p] = 0.
A similar proof holds for KL|-||-] between continuous densities, the derivatives being

substituted by functional derivatives.



EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

e The E step brings the free energy to the likelihood.
e The M-step maximises the free energy wrt 6.

e F < L by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that %) # @~V iff F increases, then the overall EM
iteration will step to a new value of ¢ iff the likelihood increases.



Fixed Points of EM are Stationary Pointsin L

Let a fixed point of EM occur with parameter 6*. Then:

0

a0 =0

9*

(log P(X, Y [ 0)) prayy o)

Now, L(0)=log P(Y|0)= (log P(Y|0)) p x|y

[, DY)
‘<1g P(X]Y, 9>> .

= (log P(&X, y\9>> P(X|Y,0%) — — (log P(X]Y, ‘9>> P(X|Y,6%)

so, d d
dﬁﬁ(e) a0 (log P(X, y|9)> P(X[Y.6*) ~ 1p (log P(X|Y, @>> P(X|Y,0%)
The second term is 0 at #* if the derivative exists (minimum of KL -||-]), and thus:
d —L(0 d log P(X,)|0 =
70| = 75008 P VIO iy | =0

So, EM converges to a stationary point of L£(6).



Maxima in JF correspond to maximain L
Let 8* now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt € again we find

. d2 a

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

0* is a maximum of L.



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point v is:

k k
p(yl6) =Y pls =m|0)p(yls = m,0) o< > Z—:exp{ ~ %(y — )},

m=1

where @ is the collection of parameters: means p,,, variances o> and mixing propor-
tions 7, = p(s = m|0).

The hidden variable s; indicates which component observation y; belongs to.
The E-step computes the posterior for s; given the current parameters:

q(si) = p(silyi,0) o< p(yi|si, 0)p(si|0)

m 1 i
T'im © q(si =m) Tm exXp { — —(y; — um)Q} (responsibilities)

T 202

with the normalization such that > r;,, = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

E = (logply, s|0)) ) = > _ a(s)log[p(s]6) p(yls, o)

— Z Tim log T, — log o — ﬁ(yz’ — Mmﬂ'

1,m
Optimization is done by setting the partial derivatives of £ to zero:
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where A\ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



Factor Analysis

K
Linear generative model: y; = Z ANgr xp + €4

k=1
e 1, are independent A/(0, 1) Gaussian factors

e ¢, are independent (0, V,4;) Gaussian noise
o K <D

So, y is Gaussian with: p(y) = /p(x)p(y]x)dx = N(0,AN" + )

where Aisa D x K matrix, and V¥ is diagonal.

Dimensionality Reduction:  Finds a low-dimensional projection of high dimensional
data that captures the correlation structure of the data.



EM for Factor Analysis

The model for y:
p(yl0) = [ p(x|0)p(y|x,0)dx = N(0,AA" + D)
Model parameters: 6 = {A, W},

E step: For each data point y,, compute the posterior distribution of hidden factors
given the observed data: ¢,,(x) = p(X|yx, 6;).

M step: Find the 6, that maximises F(q, 0):

Flg.0) = 3 / 4u(x) [log p(x16) + 1og p(yax, 6) — log g (x)] dx

=2 / Gn(x) [log p(x|0) + log p(yn|x, 0)] dx + c.



The E step for Factor Analysis
E step: For each data point y,,, compute the posterior distribution of hidden factors

given the observed data: g,(x) = p(X|yn, #) = p(X, yn|0)/P(yn|0)

Tactic: write p(x, y,|@), consider y,, to be fixed. What is this as a function of x?

p(X,¥n) = p(x)p ( n|X)
= (27)” 5 exp{——x x } \QW\IJ\_? exp{——( — Ax) Uy, — Ax)}

1

= C X exp{—§[x X+ (Yn — /\X)T\P ( yn — Ax)]}

— ¢ X exp{_%[xTU + AT A — 2x ATy, ]}
1

= C" X exp{—§[xTZ_1x —2x' S 4 ]}

SoY =T +AN VIt =T—pANand p= XA Uy, = By,. Where 3 = AT ¥L,
Note that 1 is a linear function of y,, and >. does not depend on vy,,.



The M step for Factor Analysis

M step: Find 61 maximising F = > [ ¢.(x) [log p(x|0) + log p(y.|x, 0)] dx + ¢

1 1 | _
log p(x|0)+log p(yn|x, 8) = ¢ — éxTx = 5 log[¥] = 5(yn — Ax) "y, — Ax)
1 1
=c — 5 log W] — §[ynT\If_1yn — 2y, U Ax 4+ x' AT U AX]

1 1
=C — 5 log U] — i[ynT\If_lyn — 2y, U A 4+ Tr [A U Axx ']

Taking expectations over ¢, (x). ..

1 1
=C — 5 log || — i[ynT\P_lyn — 2y, U A, + T [AT\IJ_lA(,un,unT + Z)]]
Note that we don’t need to know everything about ¢, just the expectations of x and xx '

under ¢ (i.e. the expected sufficient statistics).



The M step for Factor Analysis (cont.)

F=c— glog V| — % D Iy Ty = 2y T A+ T AT A (" + 5)]]

n

Taking derivatives w.r.t. A and !, using aTO%B] A" and 81%%4‘4’ AT

oOF N
o1 — - 3 Z yn)’n — A/LnYnT — yn,unTAT -+ A(:un/LnT -+ Z)AT]
- 1
V= N Z [ann o A:unYnT o Yn,unTAT + A(:“n,un—r + Z)AT}

A 1
_ T T -
U= AYA + Z(yn — Npn)(Yn — Apty) (squared residuals)

Note: we should actually only take derivarives w.r.t. ¥, since V is diagonal.
When >, — 0 these become the equations for linear regression!



Partial M steps and Partial E steps

Partial M steps: The proof holds even if we justincrease F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase JF wrt to some of the gs.
For example, sparse or online versions of the EM algorithm would compute the pos-

terior for a subset of the data points or as the data arrives, respectively. You can also
update the posterior over a subset of the hidden variables, while holding others fixed...



EM for exponential families
Defn: pis in the exponential family for z = (x, y) if it can be written:
p(z]0) = b(z) exp{0 " s(z)}/a(0)
where «(0) = [ b(z) exp{0's(z)}dz

E step: ¢(x) = p(x|y, 0)

M step: 6%) := argmax F(q,0)
0

Flq.0) = / 4(x) log p(x, y|9)dx — H(q)
= /q(x)[@Ts(z) — log a(#)]dx + const

0log a(6)
06
oF
i

It is easy to verify that: = F|s(z)|0]

Therefore, M step solves: Eyxls(z)] — Els(z)]0] =0



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

ply|d) = Z 7 N (e, AN 4 0)

where ;. is the mixing proportion for FA k, uy is its centre, A, is its “factor loading
matrix”, and ¥ is a common sensor noise model. 6 = {{7y, p, Ap =11, V}
We can think of this model as having two sets of hidden latent variables:

e A discrete indicator variable s, € {1,... K}

e For each factor analyzer, a continous factor vector x,, ;. € Rk

plyl6) = Zpsnw/ (X[ S, 0)p(Yn|X, Sn, 0) dx

Sn—

As before, an EM algorithm can be derived for this model:
E step: Infer joint distribution of latent variables, p(x,,, s, |y, &)

M step : Maximize F with respect to 6.



Proof of the Matrix Inversion Lemma

(A+XBX)'=AT1-A'XB 1T+ XTA'X)IxTA™!

Need to prove:
(A7 A XB '+ XA X) ' XTAT) (A+XBX ) =1

Expand:

I+ A'XBX' —A ' XB '+ X"A'X)!' X' A X(B '+ XA X)) XA XBX!
Regroup:

= I+A'X(BX' =B+ XA X)X - B+ XA X) ' XA XBX )

= [+ A7'X (BXT - (B'+ X"A'X) ' B 'BXT — (B '+ XTA'X) I XTA ' XBXT)

= I+ A'X (BXT = (B'+XTA'X)Y(B '+ X A X)BX)
— I+ A'X(BX' —-BX") =1

—(
= (
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