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Mixtures of Gaussians

Data: Y = {y1 . . . yN}

Latent process:

si
iid∼ Discrete[π]

Component distributions:

yi | (si = m) ∼ Pm[θm] = N [µm; Σm]

Marginal distribution:

P (yi) =

k∑
m=1

πmPm(y; θm)

Log-likelihood:

log p(Y | {µm}, {Σm}, π) =

n∑
i=1

log

k∑
m=1

πm |2πΣm|−1/2 exp

[
−1

2
(yi − µm)TΣ−1

m (yi − µm)

]



EM for MoGs

• Evaluate responsibilities

rim =
Pm(y)πm∑
m′ Pm′(y)πm′

• Update parameters

µm ←
∑

i rimyi∑
i rim

Σm ←
∑

i rim(yi − µm)(yi − µm)T∑
i rim

πm ←
∑

i rim

N



The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood. It starts
from arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

• Useful in models where learning would be easy if hidden variables were, in fact,
observed (e.g. MoGs).

• Decomposes difficult problems into series of tractable steps.

• No learning rate.

• Framework lends itself to principled approximations.



Jensen’s Inequality
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For αi ≥ 0,
∑

αi = 1 and any {xi > 0}

log

(∑
i

αixi

)
≥
∑

i

αi log(xi)

Equality if and only if αi = 1 for some i (and therefore all others are 0).



The Free Energy for a Latent Variable Model

Observed data Y = {yi}; Latent variables X = {xi}; Parameters θ.

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ:

L(θ) = log P (Y|θ) = log

∫
P (X ,Y|θ)dX ,

Any distribution, q(X ), over the hidden variables can be used to obtain a lower bound
on the log likelihood using Jensen’s inequality:

L(θ) = log

∫
q(X )

P (X ,Y|θ)

q(X )
dX ≥

∫
q(X ) log

P (X ,Y|θ)

q(X )
dX def

= F(q, θ).

Now,∫
q(X ) log

P (X ,Y|θ)

q(X )
dX =

∫
q(X ) log P (X ,Y|θ) dX −

∫
q(X ) log q(X ) dX

=

∫
q(X ) log P (X ,Y|θ) dX + H[q],

where H[q] is the entropy of q(X ).
So:

F(q, θ) = 〈log P (X ,Y|θ)〉q(X ) + H[q]



The E and M steps of EM

The lower bound on the log likelihood is given by:

F(q, θ) = 〈log P (X ,Y|θ)〉q(X ) + H[q],

EM alternates between:

E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters
fixed:

q(k)(X ) := argmax
q(X )

F
(
q(X ), θ(k−1)

)
.

M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(X ), θ

)
= argmax

θ
〈log P (X ,Y|θ)〉q(k)(X )

The second equality comes from the fact that the entropy of q(X ) does not depend
directly on θ.



EM as Coordinate Ascent in F



The E Step

The free energy can be re-written

F(q, θ) =

∫
q(X ) log

P (X ,Y|θ)

q(X )
dX

=

∫
q(X ) log

P (X|Y , θ)P (Y|θ)

q(X )
dX

=

∫
q(X ) log P (Y|θ) dX +

∫
q(X ) log

P (X|Y , θ)

q(X )
dX

= L(θ)− KL [q(X )‖P (X|Y , θ)]

The second term is the Kullback-Leibler divergence.

This means that, for fixed θ, F is bounded above by L, and achieves that bound when
KL [q(X )‖P (X|Y , θ)] = 0.

But KL [q‖p] is zero if and only if q = p.

So, the E step simply sets

q(k)(X ) = P (X|Y , θ(k−1))

and, after an E step, the free energy equals the likelihood.



The KL [q(x)‖p(x)] is non-negative and zero iff ∀x : p(x) = q(x)

First let’s consider discrete distributions; the Kullback-Liebler divergence is:

KL [q‖p] =
∑

i

qi log
qi

pi
.

To find the distribution q which minimizes KL [q‖p] we add a Lagrange multiplier to
enforce the normalization constraint:

E
def
= KL [q‖p] + λ

(
1−

∑
i

qi

)
=
∑

i

qi log
qi

pi
+ λ
(
1−

∑
i

qi

)
We then take partial derivatives and set to zero:

∂E

∂qi
= log qi − log pi + 1− λ = 0⇒ qi = pi exp(λ− 1)

∂E

∂λ
= 1−

∑
i

qi = 0⇒
∑

i

qi = 1

⇒ qi = pi.



Why KL [q‖p] is non-negative and zero iff p(x) = q(x) . . .

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

∂2E

∂qi∂qi
=

1

qi
> 0,

∂2E

∂qi∂qj
= 0,

showing that qi = pi is a genuine minimum.

At the minimum is it easily verified that KL [p‖p] = 0.

A similar proof holds for KL [·‖·] between continuous densities, the derivatives being
substituted by functional derivatives.



EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

L
(
θ(k−1)

)
=

E step
F
(
q(k), θ(k−1)

)
≤

M step
F
(
q(k), θ(k)

)
≤

Jensen
L
(
θ(k)
)
,

• The E step brings the free energy to the likelihood.

• The M-step maximises the free energy wrt θ.

• F ≤ L by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) 6= θ(k−1) iff F increases, then the overall EM
iteration will step to a new value of θ iff the likelihood increases.



Fixed Points of EM are Stationary Points in L
Let a fixed point of EM occur with parameter θ∗. Then:

∂

∂θ
〈log P (X ,Y | θ)〉P (X|Y ,θ∗)

∣∣∣∣
θ∗

= 0

Now, L(θ)= log P (Y|θ)= 〈log P (Y|θ)〉P (X|Y ,θ∗)

=

〈
log

P (X ,Y|θ)

P (X|Y , θ)

〉
P (X|Y ,θ∗)

= 〈log P (X ,Y|θ)〉P (X|Y ,θ∗) − 〈log P (X|Y , θ)〉P (X|Y ,θ∗)

so, d

dθ
L(θ)=

d

dθ
〈log P (X ,Y|θ)〉P (X|Y ,θ∗) −

d

dθ
〈log P (X|Y , θ)〉P (X|Y ,θ∗)

The second term is 0 at θ∗ if the derivative exists (minimum of KL [·‖·]), and thus:

d

dθ
L(θ)

∣∣∣∣
θ∗

=
d

dθ
〈log P (X ,Y|θ)〉P (X|Y ,θ∗)

∣∣∣∣
θ∗

= 0

So, EM converges to a stationary point of L(θ).



Maxima in F correspond to maxima in L
Let θ∗ now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find

d2

dθ2
L(θ)=

d2

dθ2
〈log P (X ,Y|θ)〉P (X|Y ,θ∗) −

d2

dθ2
〈log P (X|Y , θ)〉P (X|Y ,θ∗)

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

θ∗ is a maximum of L.



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point y is:

p(y|θ) =

k∑
m=1

p(s = m|θ)p(y|s = m, θ) ∝
k∑

m=1

πm

σm
exp
{
− 1

2σ2
m

(
y − µm)2

}
,

where θ is the collection of parameters: means µm, variances σ2
m and mixing propor-

tions πm = p(s = m|θ).

The hidden variable si indicates which component observation yi belongs to.
The E-step computes the posterior for si given the current parameters:

q(si) = p(si|yi, θ) ∝ p(yi|si, θ)p(si|θ)

rim
def
= q(si = m) ∝ πm

σm
exp
{
− 1

2σ2
m

(yi − µm)2
}

(responsibilities)

with the normalization such that
∑

m rim = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

E = 〈log p(y, s|θ)〉q(s) =
∑

q(s) log[p(s|θ) p(y|s, θ)]

=
∑
i,m

rim

[
log πm − log σm −

1

2σ2
m

(yi − µm)2
]
.

Optimization is done by setting the partial derivatives of E to zero:

∂E

∂µm
=
∑

i

rim
(yi − µm)

2σ2
m

= 0⇒ µm =

∑
i rimyi∑
i rim

,

∂E

∂σm
=
∑

i

rim

[
− 1

σm
+

(yi − µm)2

σ3
m

]
= 0⇒ σ2

m =

∑
i rim(yi − µm)2∑

i rim
,

∂E

∂πm
=
∑

i

rim
1

πm
,

∂E

∂πm
+ λ = 0⇒ πm =

1

n

∑
i

rim,

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



Factor Analysis

YDY1 Y2
�

X1 KX

Λ
Linear generative model: yd =

K∑
k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0, Ψdd) Gaussian noise
• K <D

So, y is Gaussian with: p(y) =

∫
p(x)p(y|x)dx = N (0, ΛΛ> + Ψ)

where Λ is a D ×K matrix, and Ψ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional
data that captures the correlation structure of the data.



EM for Factor Analysis

YDY1 Y2
�

X1 KX

Λ
The model for y:
p(y|θ) =

∫
p(x|θ)p(y|x, θ)dx = N (0, ΛΛ> + Ψ)

Model parameters: θ = {Λ, Ψ}.

E step: For each data point yn, compute the posterior distribution of hidden factors
given the observed data: qn(x) = p(x|yn, θt).

M step: Find the θt+1 that maximises F(q, θ):

F(q, θ) =
∑

n

∫
qn(x) [log p(x|θ) + log p(yn|x, θ)− log qn(x)] dx

=
∑

n

∫
qn(x) [log p(x|θ) + log p(yn|x, θ)] dx + c.



The E step for Factor Analysis

E step: For each data point yn, compute the posterior distribution of hidden factors
given the observed data: qn(x) = p(x|yn, θ) = p(x, yn|θ)/p(yn|θ)

Tactic: write p(x, yn|θ), consider yn to be fixed. What is this as a function of x?

p(x, yn) = p(x)p(yn|x)

= (2π)−
K
2 exp{−1

2
x>x} |2πΨ|−

1
2 exp{−1

2
(yn − Λx)>Ψ−1(yn − Λx)}

= c× exp{−1

2
[x>x + (yn − Λx)>Ψ−1(yn − Λx)]}

= c’× exp{−1

2
[x>(I + Λ>Ψ−1Λ)x− 2x>Λ>Ψ−1yn]}

= c”× exp{−1

2
[x>Σ−1x− 2x>Σ−1µ + µ>Σ−1µ]}

So Σ = (I + Λ>Ψ−1Λ)−1 = I − βΛ and µ = ΣΛ>Ψ−1yn = βyn. Where β = ΣΛ>Ψ−1.
Note that µ is a linear function of yn and Σ does not depend on yn.



The M step for Factor Analysis

M step: Find θt+1 maximising F =
∑

n

∫
qn(x) [log p(x|θ) + log p(yn|x, θ)] dx + c

log p(x|θ)+ log p(yn|x, θ) = c− 1

2
x>x− 1

2
log |Ψ| − 1

2
(yn − Λx)>Ψ−1(yn − Λx)

= c’− 1

2
log |Ψ| − 1

2
[yn
>Ψ−1yn − 2yn

>Ψ−1Λx + x>Λ>Ψ−1Λx]

= c’− 1

2
log |Ψ| − 1

2
[yn
>Ψ−1yn − 2yn

>Ψ−1Λx + Tr
[
Λ>Ψ−1Λxx>

]
]

Taking expectations over qn(x). . .

= c’− 1

2
log |Ψ| − 1

2
[yn
>Ψ−1yn − 2yn

>Ψ−1Λµn + Tr
[
Λ>Ψ−1Λ(µnµn

> + Σ)
]
]

Note that we don’t need to know everything about q, just the expectations of x and xx>

under q (i.e. the expected sufficient statistics).



The M step for Factor Analysis (cont.)

F = c’− N

2
log |Ψ| − 1

2

∑
n

[
yn
>Ψ−1yn − 2yn

>Ψ−1Λµn + Tr
[
Λ>Ψ−1Λ(µnµn

> + Σ)
]]

Taking derivatives w.r.t. Λ and Ψ−1, using ∂Tr[AB]
∂B = A> and ∂ log |A|

∂A = A−>:

∂F
∂Λ

= Ψ−1
∑

n

ynµn
> − Ψ−1Λ

(
NΣ +

∑
n

µnµn
>

)
= 0

Λ̂= (
∑

n

ynµn
>)

(
NΣ+

∑
n

µnµn
>

)−1

∂F
∂Ψ−1

=
N

2
Ψ− 1

2

∑
n

[
ynyn

> − Λµnyn
> − ynµn

>Λ> + Λ(µnµn
> + Σ)Λ>

]
Ψ̂ =

1

N

∑
n

[
ynyn

> − Λµnyn
> − ynµn

>Λ> + Λ(µnµn
> + Σ)Λ>

]
Ψ̂= ΛΣΛ>+

1

N

∑
n

(yn − Λµn)(yn − Λµn)
> (squared residuals)

Note: we should actually only take derivarives w.r.t. Ψdd since Ψ is diagonal.
When Σ→ 0 these become the equations for linear regression!



Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increaseF wrt θ rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase F wrt to some of the qs.

For example, sparse or online versions of the EM algorithm would compute the pos-
terior for a subset of the data points or as the data arrives, respectively. You can also
update the posterior over a subset of the hidden variables, while holding others fixed...



EM for exponential families

Defn: p is in the exponential family for z = (x, y) if it can be written:

p(z|θ) = b(z) exp{θ>s(z)}/α(θ)

where α(θ) =
∫

b(z) exp{θ>s(z)}dz

E step: q(x) = p(x|y, θ)

M step: θ(k) := argmax
θ

F(q, θ)

F(q, θ) =

∫
q(x) log p(x, y|θ)dx−H(q)

=

∫
q(x)[θ>s(z)− log α(θ)]dx + const

It is easy to verify that:
∂ log α(θ)

∂θ
= E[s(z)|θ]

Therefore, M step solves:
∂F
∂θ

= Eq(x)[s(z)]− E[s(z)|θ] = 0



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(y|θ) =
∑

k

πk N (µk, ΛkΛ
>

k + Ψ)

where πk is the mixing proportion for FA k, µk is its centre, Λk is its “factor loading
matrix”, and Ψ is a common sensor noise model. θ = {{πk, µk, Λk}k=1...K, Ψ}
We can think of this model as having two sets of hidden latent variables:

• A discrete indicator variable sn ∈ {1, . . . K}
• For each factor analyzer, a continous factor vector xn,k ∈ RDk

p(y|θ) =

K∑
sn=1

p(sn|θ)

∫
p(x|sn, θ)p(yn|x, sn, θ) dx

As before, an EM algorithm can be derived for this model:

E step : Infer joint distribution of latent variables, p(xn, sn|yn, θ)

M step : Maximize F with respect to θ.



Proof of the Matrix Inversion Lemma

(A + XBX>)−1 = A−1 − A−1X(B−1 + X>A−1X)−1X>A−1

Need to prove: (
A−1 − A−1X(B−1 + X>A−1X)−1X>A−1

)
(A + XBX>) = I

Expand:

I + A−1XBX> − A−1X(B−1 + X>A−1X)−1X> − A−1X(B−1 + X>A−1X)−1X>A−1XBX>

Regroup:

= I + A−1X
(
BX> − (B−1 + X>A−1X)−1X> − (B−1 + X>A−1X)−1X>A−1XBX>

)
= I + A−1X

(
BX> − (B−1 + X>A−1X)−1B−1BX> − (B−1 + X>A−1X)−1X>A−1XBX>

)
= I + A−1X

(
BX> − (B−1 + X>A−1X)−1(B−1 + X>A−1X)BX>

)
= I + A−1X(BX> −BX>) = I
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