Unsupervised Learning

The EM Algorithm

Zoubin Ghahramani
zoubin@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science
University College London

Term 1, Autumn 2004



The Expectation Maximization (EM) algorithm

Assume a model with observed (visible) variables y, unobserved (hidden / latent / missing)
variables x, and model parameters 6

Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:

L(0) = logp(yl|0) = 10g/p(x,3’|9)dx,

Any distribution, g(x), over the hidden variables can be used to obtain a lower bound on
the log likelihood:

1o XP(XaYW) < o p(x,yl0) o def
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This lower bound is called Jensen’s inequality and comes from the fact that the log function
is concave ( “log of average is greater than average of logs”).

In the EM algorithm, we alternately optimize F(q, ) wrt q(x) and 6, and we can prove
that this will never decrease L(6).



The E and M steps of EM

The lower bound on the log likelihood:

F0.) = [ a0 108”3 dx = [ ) logpix.yioyax -+ 7400

where H(q) = —/q(x) log g(x)dx is the entropy of ¢(x). EM alternates between:

E step: optimize F(q, ) wrt distribution over hidden variables holding parameters fixed:

¢ (x) := argmax F(q(x), Q(k_l)).
q(x)

M step: maximize F(q, ) wrt parameters holding hidden distribution fixed:

9*) .= argmax }"(q(k)(x),ﬁ) = argmax /q(k)(x) log p(x,y|0)dx.
7 z

The second equality comes from the fact that the entropy of ¢(x) does not depend
directly on 6.



EM as Coordinate Ascent in F
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The Intuition Behind EM

E step: fill in values for the hidden variables according to their posterior probabilities

M step: learn model as if hidden variables were not hidden

e EM is useful because in many models, if the hidden variables were no longer hidden,
learning would be easy (e.g. consider a mixture of Gaussians).

e EM breaks up a hard learning problem into a sequence of easy learning problems.



The EM algorithm never decreases the log likelihood

The difference between the log likelihood and the lower bound:

L o 10e POYIO)
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This is the Kullback-Liebler divergence; it is zero if and only if ¢(x) = p(x|y, 8).
Therefore, the E step simply sets g(x) <« p(x]|y,6).
The E and M steps together increase the log likelihood:

ﬁ(@(k—l)) — ]:(q(k)jg(k—l)) < ]:(q(k)yg(k)) < L(g(’f))j
E step M step Jensen

where the first equality holds because of the E step, and the first inequality comes from
the M step and the final inequality from Jensen.

EM converges to a local optimum of L(6).



The KL(q(x),p(x)) is non-negative and zero iff Vz : p(z) = ¢(z)

First let’'s consider discrete distributions; the Kullback-Liebler divergence is:
q;
= Z q; log —.
; Di

To find the distribution ¢ which minimizes K L(q, p) we add a Lagrange multiplier to enforce
the normalization constraint:

E < KL(q,p) + 1—2% ZQilog%‘F)\(l_ZQi)

We then take partial derivatives and set to zero:
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Why KCL(q,p) is non-negative and zero iff p(z) = q(z) . . .

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

0*E 1 0*E
= — >0, = 0,
0¢:0q;  qi 36]7;(9%'

showing that ¢; = p; is a genuine minimum.
At the minimum is it easily verified that KXL(p,p) = 0.

A similar proof holds for ICL between continuous densities, the derivatives being substituted
by functional derivatives.



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point y is:

p(yl0) = ZPS—W) (yls = k,0) O<§:—exp{—i(y )’}

k=1 —

where 6 is the collection of parameters: means py, variances o2 and mixing proportions

T = p(s = kl|6).

The hidden variable s(°) indicates which component observation y(¢) belongs to.
The E-step computes the posterior for s(¢) given the current parameters:

q(s9) = p(s"INy',0) O<p( 15, 0)p(s'6)
(s = k)

7T—eXp{ — —( () _ ug)?}  (responsibilities)

Ok

with the normalization such that 37, 7\ = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

1
E q(s) log[p( p(yls, 0)] E logﬂk—logak—rﬂ(y(c)—,uk)2].
k

Optimization is done by setting the partial derivatives of E to zero:

oL _ Z () (' — ) 0= - Sy
O 207 SECH
OF _ Z (c){ 1 (y(c) — Mk) } 0= ai _ Z (c )(y(C) ) |
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where A is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



Factor Analysis

K
Linear generative model: y4 = Z ANgr v + €4

N\ k=1

e 1} are independent A/(0,1) Gaussian factors
e ¢, are independent N(0, V44) Gaussian noise

(W T

So, y is Gaussian with: p(y) = /p(x)p(y\x)dx = N(0,AA" + W)

where A is a D x K matrix, and ¥ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data
that captures the correlation structure of the data.



EM for Factor Analysis

The model for y:
A p(y|0) = [ p(x|0)p(y|x,0)dx = N(0,AA" + D)

Model parameters: 6 = {A, U}.

E step: For each data point y,,, compute the posterior distribution of hidden factors given
the observed data: ¢,(x) = p(X|yn, 0:)-

M step: Find the 0,1 that maximises F(q,0):
Fa.6) = 3 [ o) Borp(xl6) + logp(yalx.6) ~ logan (x)) dx

= Z/fh(x) log p(x]0) + log p(yn|x, 0)] dx + c.



The E step for Factor Analysis

E step: For each data point y,,, compute the posterior distribution of hidden factors given
the observed data: g, (x) = p(x|yn, 0) = p(x. y2l0)/p(ynl6)

Tactic: write p(x,y,|0), consider y,, to be fixed. What is this as a function of x?

p(X, Yn) — p(X)p(Yn‘X)
= (2m)7% exp{—%XTX} 27| ~2 eXp{—%(yn — Ax) ' Uy, — Ax)}
— CcX exp{—%[XTX + (yn — AX)T\P_l(Yn — Ax)]}
1

= ¢ x eXP{_§[XT(I HATTTA)x - 2x TAT Ty}

1
c’ X exp{—i[xTE_lx — 'S+ "))

SoX =T +A" U A"t =T - pBAand p=3A" Uy, = By,. Where 3 =XA"T1
Note that w is a linear function of y,, and X does not depend on y,,.



The M step for Factor Analysis

M step: Find 60;11 maximising F =Y [ qn(x) [log p(x]6) + log p(yn|x,0)] dx + c

1 1 1 _
log p(x[0)+ log p(ys|x,0) = c = ox'x = Slog [W] = (yn — Ax) "W (yn — Ax)
1 1,
=c — §log Ul — i_ynT\I!_lyn — 2y, UTIAx + x AT U AX]
1 1,
=c — §log U| — §_ynT\I!_1yn — 2y, UTIAx 4+ tr(A T U Axx )]

Taking expectations over ¢, (x). . .

1 1
=C — 9 log ‘\Ij‘ o 5[}’71—'_\1}_1}’71 — QYnT\IJ_lA,un + tr(AT\Ij_lA(,un,unT T Z))]

Note that we don't need to know everything about g, just the expectations of x and xx'

under ¢ (i.e. the expected sufficient statistics).



The M step for Factor Analysis (cont.)

N 1
F=cd—— log ‘\Ij‘ 9 Z [yﬂT\Ij_1Yn — 2YnT\IJ_1A,un + tr(AT\Ij_lA(,unlunT + Z))]

n
Taking derivatives w.r.t. A and U1, using atr(AB) = A" and M%LA'A' = A"

OF —1 T —1 T
=V zn:ynun — P A<N2+zn:unun = (

A= (Z Ynbin ) (N S /M/LJ)

OF
or—-1_ 9 9 Z Y'nYn - A,uny_n—r - Yn,unTAT + A(:un,un—r + Z)AT}
-1 T T TAT T T
v = N; [YnYn — Apnyn = Ynbin A+ A(pnpin +2)A }
U= AEAT+i Z(yn — Apin) (yn — Apin) ' (squared residuals)
N

Note: we should actually only take derivarives w.r.t. ¥4, since ¥ is diagonal.
When > — 0 these become the equations for linear regression!



Partial M steps and Partial E steps
Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).
Partial E steps: We can also just increase F wrt to some of the gs.
For example, sparse or online versions of the EM algorithm would compute the posterior

for a subset of the data points or as the data arrives, respectively. You can also update the
posterior over a subset of the hidden variables, while holding others fixed...



EM for exponential families

Defn: p is in the exponential family for z = (x,y) if it can be written:

p(z]0) = b(z) exp{0 ' s(z)}/a(0)

where a(0) = [ b(z) exp{0 ' s(z)}dz

E step: ¢(x) = p(x|y, 0)

M step: 0(%) := argmax F(q,0)
7

F(q,0) = /C](X) log p(x,y|0)dx — H(q)

— /q(x) 0" s(z) — log a(#)]dx + const

1 0
It is easy to verify that: 0 og;u( ) = F[s(z)|0]
oOF
Therefore, M step solves:  —— = F )[s(z)] — E|s(z)[0] =0

00



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(yl0) = Zﬂ'k (1g, AgA ' g + )

where 7 is the mixing proportion for FA k, puj is its centre, Ay is its “factor loading
matrix”, and W is a common sensor noise model. 0 = {{my, px, Ax}r=1.. x, ¥V}
We can think of this model as having two sets of hidden latent variables:

e A discrete indicator variable s,, € {1,... K}
e For each factor analyzer, a continous factor vector x,, , € R Lk

b518) = 3" plsul6) [ plxlsnOp(yalx.5,.0) dx

Sn_].

As before, an EM algorithm can be derived for this model:
E step: Infer joint distribution of latent variables, p(x;,, $,|yn, 0)

M step: Maximize F with respect to 6.



Proof of the Matrix Inversion Lemma

A+ XBX)'=A""—A'xB'+x'a'x)'x"4a™!

Need to prove:
(A_l _AT'X(BT' + XTA_lX)_lXTA_l) (A+ XBXT) =1
Expand:
I+ A 'XBX' —A ' XB '+ x'A7' X)X AT Xx(BT+x"AT' X)) I XA xBXx
Regroup:
— T+ AT'X (BXT (Bl xTA'x)'xT - (B '+ XTA_lX)_lXTA_lXBXT>
— I+ AT'X (BXT B+ XxTaA'x)'B'BXT — (B 4+ XTA_lX)_lXTA_lXBXT)
— I+ AT'X (BXT (B xTA'x) B+ XTA_lX)BXT)

= I+A'XBX'—-BX')=1I
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