Unsupervised Learning

Propagation on Factor Graphs

Zoubin Ghahramani

zoubin@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College London

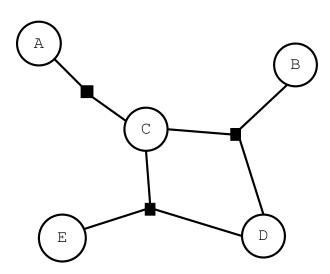
Autumn 2003

Factor Graphs

In a factor graph, the joint probability distribution is written as a product of factors. Consider a vector of variables $\mathbf{x} = (x_1, \dots, x_n)$

$$p(\mathbf{x}) = p(x_1, \dots, x_n) = \frac{1}{Z} \prod_j f_j(\mathbf{x}_{S_j})$$

where Z is the normalisation constant, S_j denotes the subset of $\{1, \ldots, n\}$ which participate in factor f_j and $\mathbf{x}_{S_j} = \{x_i : i \in S_j\}$.



variables nodes: we draw open circles for each variable x_i in the distribution. function nodes: we draw filled dots for each function f_j in the distribution.

Propagation in Factor Graphs

Let n(x) denote the set of function nodes that are neighbors of x.

Let n(f) denote the set of variable nodes that are neighbors of f.

We can compute probabilities in a factor graph by propagating messages from variable nodes to function nodes and viceversa.

message from variable x to local function f:

$$\mu_{x \to f}(x) = \prod_{h \in \mathbf{n}(x) \setminus \{f\}} \mu_{h \to x}(x)$$

message from local function f to variable x:

$$\mu_{f \to x}(x) = \sum_{\mathbf{x} \setminus x} \left(f(\mathbf{x}) \prod_{y \in \mathbf{n}(f) \setminus \{x\}} \mu_{y \to f}(y) \right)$$

Propagation in Factor Graphs

n(x) denotes the set of function nodes that are neighbors of x.

n(f) denotes the set of variable nodes that are neighbors of f.

message from variable x to local function f:

$$\mu_{x \to f}(x) = \prod_{h \in \mathbf{n}(x) \setminus \{f\}} \mu_{h \to x}(x)$$

message from local function f to variable x:

$$\mu_{f \to x}(x) = \sum_{\mathbf{x} \setminus x} \left(f(\mathbf{x}) \prod_{y \in \mathbf{n}(f) \setminus \{x\}} \mu_{y \to f}(y) \right)$$

Once a variable has received all messages from its neighboring function nodes we can compute the probability of that variable by multiplying all the messages and renormalising:

$$p(x) \propto \prod_{h \in \mathbf{n}(x)} \mu_{h \to x}(x)$$

Elimination Rules for Factor Graphs

eliminating observed variables

If a variable x_i is **observed**, i.e. its value is given, then it is a *constant* in all functions that include x_i .

We can **eliminate** x_i from the graph by removing the corresponding node and modifying all neighboring functions to treat it as a constant.

Elimination Rules for Factor Graphs

eliminating hidden variables

If a variable x_i is **hidden** and we are not interested in it we can eliminate it from the graph by summing over all its values.

$$\sum_{x_i} p(\mathbf{x}) = \frac{1}{Z} \sum_{x_i} \prod_j f_j(\mathbf{x}_{S_j})$$

$$= \frac{1}{Z} \prod_{j \notin \mathbf{n}(x_i)} f_j(\mathbf{x}_{S_j}) \left(\sum_{x_i} \prod_{k \in \mathbf{n}(x_i)} f_k(\mathbf{x}_{S_k}) \right)$$

$$= \frac{1}{Z} \prod_{j \notin \mathbf{n}(x_i)} f_j(\mathbf{x}_{S_j}) \quad f_{\text{new}}(\mathbf{x}_{S_{\text{new}}})$$

where
$$f_{\text{new}}(\mathbf{x}_{S_{\text{new}}}) = \sum_{x_i} \prod_{k \in n(x_i)} f_k(\mathbf{x}_{S_k})$$
 and $S_{\text{new}} = \bigcup_{k \in n(x_i)} S_k \setminus \{i\}.$

This causes all its neighboring function nodes to merge into one new function node.