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Turing.jl arguably has both the most
extensive differential equation solving

support, and no support for differential
equations at all.

Let me explain.
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2. Does Turing.jl have it? And what does that
mean about its developer community?



ODEs are Simple! Just call an ODE Solver!

Problem: Lorenz equation on t in (0,100)

using OrdinaryDiffEg

function lorenz!{(du, u, p, t)
du[l] = 18.0(u[2] - u[l])
du[2] = u[1l] * (28.@ - u[3]) - u[2]
du[3] = u[1] * u[2] - (8 / 3) * u[3]

end

ud = [1.8; 0.9; 9.9]

tspan = (9.0, 108.0)

prob = ODEProblem{lorenz!, u@®, tspan)

sol = solve(prob, Tsit5()

using Plots;

plot{sol, vars=(1, 2, 3));



But there are lots of little
optimizations that can be

done

Julia: DP5 T T
Julia: Tsit5 ~1.0
Julia: Vern7 10
JU“E!Z DP5 Static -1 K
Julia: Tsit5 Static 10
—— Julia: Vern7 Static 2.0
——<—— Hairer: dopri5 s
(} MATLAB: oded5 n _25
MATLAB: odel13 o
B> SciPy: RK45 = 3.0
4  SciPy: LSODA £ 10
SciPy: odeint - _35
deSolve: Isoda
deSolve: oded5
Sundials: Adams

using OrdinaryDiffEq, StaticArrays

function lorenz(u, p, t)
SA[10.@(u[2]-u[1])

end

ud = SA[1.0; 0.9; 0.0]

tspan = (0.0, 100.0)

prob = ODEProblem{lorenz, u@, tspan)

sol = ve{prob, Tsit5())
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Non-Stiff ODE: Rigid Body System

Cross-Language ODE Solver Benchmark

Foundation: Fast Differential \N"\‘\\\
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Speed alone does not give good robust
differential equation solving.

There's a lot more to the algorithms.




What is stiffness?

Multiscale Behavior

_ max(|Re(1)]) . . ‘ Unstable ..,
- mln(lRe(/l)l) ( final O)

y(t)
i
Stiff equations are
problems for which
explicit methods o
don't work. —

- Ernst Hairer



So you just use a stiff ODE solver? 2 Solvers and we're done?

using DifferentialEquations
function rober(du, u, p, t)

Y1, ¥2, ¥3 = U

ki, ka, ks = p

du[1] = -ka * y1 + ks * y2 * y3

du[2] = ka * y1 - k2 * y2"2 - ks ® y2 * y3
du[3] k, * yp™32

nothing
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Okay, maybe more than two just so you can
optimize the performance?
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3 Solvers?

—@)- CVODE BDF
- 653
15 w—p Tsit5
@~ ImplicitEuler h
: @ Trapezoid N
= TREDF2
\ odas

o) =P ROCK2
= ROCK 4
@ ESERK5

Time (s)

Magnetic Dipole PDE

Neither stiff nor non-stiff

Performance winner: ROCK2




Q Search on Computational Science...

There are lots of special Computational Science

[ ]
propertles Home What does "symplectic" mean in reference to numerical integrators, and does
PUBLIC SciPy's odeint use them?
® Questions | Asked 4 years, 3 months ago  Modified 5 months ago  Viewed 8k times

Some pTOblemS need SpeCIal Let me start off with corrections. No, edeint doesn't have any symplectic integrators. No,

H symplectic integration doesn't mean conservation of energy.
integrators 75
. e . . o
Symp|ect|c |nteg rators for |Ong time What does symplectic mean and when should you use it?
H am | |t0n | an System S First of all, what does symplectic mean? Symplectic means that the solution exists on a symplectic
manifold. A symplectic manifold is a solution set which is defined by a 2-form. The details of
— * symplectic manifolds probably sound like mathematical nonsense, so instead the gist of it is there is
M ag n US for u A(t) u a direct relation between two sets of variables on such a manifold. The reason why this is important

, for physics is because Hamiltonian's equations naturally have that the solutions reside on a
m — * . o . . : iy
M Unthe-KaaS ethOdS fOI’ u-= A(U) u symplectic manifold in phase space, with the natural splitting being the position and momentum

components. For the true Hamiltonian solution, that phase space path is constant energy.

Nystrom specializations for 2"d order

A symplectic integrator is an integrator whose solution resides on a symplectic manifold. Because
. . . of discretization error, when it is solving a Hamiltonian system it doesn't get exactly the correct
EXponentl al |nteg rators for Sem | I | near trajectory on the manifold. Instead, that trajectory itself is perturbed (O( At™) for the order n from

O D ES ’ _ A + f( ) the true trajectory. Then there's a linear drift due to numerical error of this trajectory over time.
u= u u Normal integrators tend to have a quadratic (or more) drift, and do not have any good global

guarantees about this phase space path (just local).

Implicit-Explicit (IMEX) methods for
partly stiff equations

What this tends to mean is that symplectic integrators tend to capture the long-time patterns
better than normal integrators because of this lack of drift and this almost guarantee of periodicity.
This notebook displays those properties well on the Kepler problem. The first image shows what I'm

Runge_Kutta_Chebyshev me‘thods for talking about with the periodic nature of the solution.
semi-stiff equatlons Kepler Problem Solution First Integrals
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Julia's DifferentialEquations.jl is at over

300 integrators, and there's still more to
do.

But that's just adding more solvers, right?




Differential Equations Go Beyond ODEs

*Discrete equations (function maps, discrete stochastic
(Gillespie/Markov) simulations)

Ordinary differential equations (ODEs)

«Split and Partitioned ODEs (Symplectic integrators, IMEX
Methods)

Stochastic ordinary differential equations (SODEs or SDEs)
Stochastic differential-algebraic equations (SDAESs)
*Random differential equations (RODEs or RDESs)
«Differential algebraic equations (DAESs)

Delay differential equations (DDEs)

*Neutral, retarded, and algebraic delay differential equations
(NDDEs, RDDEs, and DDAESs)

Stochastic delay differential equations (SDDESs)
*Experimental support for stochastic neutral, retarded, and
algebraic delay differential equations (SNDDEs, SRDDEs, and
SDDAES)

*Mixed discrete and continuous equations (Hybrid Equations,
Jump Diffusions)

*(Stochastic) partial differential equations ((S)PDEs) (with both
finite difference and finite element methods)

] (1)
= u2(t)

| — 31
udit)
= uS(t)
j o 6(1)
= u7(t)

= ud(t)

A i I
0.0 0.2 0.4 0.6 0.8 1.0

But if you keep adding
solver choices,
then you're okay?



Equations that Cannot be Solved: DAE Index Reduction

Eye-balling Index Issues: any algebraic equation should be dependent on some algebraic variable

r =wv
T Not solvable by standard ' =v,
, .
v, = T'r numerical solvers! ;
v vy, =1 Easyto solve!

V= —)
/. T L /I __ T
Uy =414Y—4g Differentiate the last equation Uy =Y4 — g
5 5 9 twice, do a few substitutions... 5 9 5
x‘+y-— L O:2(U$+Uy+y(yT—g)+T$)

-
|

States: x, vx, y, vy, and T. Algebraic equation states: x and y (no T).

If you don’t know the details about why this makes a better numerical
simulation, then you should be using ModelingToolkit.jl



DAE Index Reduction is Automatic with ModelingToolkit.jl

using DifferentialEquations, ModelingToolkit
using LinearAlgebra, Plots

function pendulum!(du, u, p, t) Let me fix that for you...

X, dx, y, dy, T = u

) @named traced sys = modelingtoolkitize(pendulum_prob)
g» =P

e pendulum_sys = structural simplify(traced_sys)
T*x prob = ODAEProblem(pendulum _sys, [], tspan)
i?y - sol = solve(prob, Tsit5(),abstol=1e-8,reltol=1e-8)
XA2 + yA2 - LA2 plot(sol, vars=states(traced_sys))

return nothing

pendulum_fun! = ODEFunction(pendulum!,
mass_matrix=Diagonal([1,1,1,1,9]))

w = [1.6, 0, 6, 0, 6] structural_simplify:
p = [9.8, 1]

e S The God of Transforms

pendulum_prob = ODEProblem(pendulum fun!, u@, tspan, p)
sol = solve(pendulum_prob)

r Warning: dt <= dtmin. Aborting. There is either an error in your model specification or the true solution is unstable.
L

Standard equation solvers (IDA, DASKR, all of the Julia DAE solvers, etc.)
cannot solve even a Cartesian pendulum without symbolic modification!




And when you finally get there, you have to keep customizing

using DifferentialEquations, LinearAlgebra, SparseArrays

const N = 32
const xyd_brusselator = range(0,stop=1,length=N)
brusselator_f(x, y, t) = (((x-0.3)22 + (y-0.6)"2) <= 0.1%2) * (t >= 1.1) = 5.
limit(a, N) =a==N+1 21 : a==072N: a
function brusselator_2d_loop(du, u, p, t)
A, B, alpha, dx = p
alpha = alpha/dx*2
@inbounds for I in CartesianIndices((N, N))
i, j = Tuple(1)
X, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
ip1, im1, jp1, jml = limit(i+1, N), limit(i-1, N), limit(j+1, N), limit(j-1, N)
du[i,j,1] = alpha*(u[im1,j,1] + u[ip1,j,1] + u[i,ip1,1] + u[i,jm1,1] - 4u[i,j,1]) +
B + u[i,j,1]*2%u[i,j,2] - (A + 1)%u[i,j,1] + brusselator_f(x, y, t)
dul[i,j,2] = alphax(u[im1,j,2] + u[ip1,j,2] + u[i,jpl,2] + u[i,jm1,2] - 4u[i,],2]) +
Axul[i,j,1] - u[i,j,1]*2%u[i,j,2]
end
end
p = (3.4, 1., 10., step(xyd_brusselator))

function init_brusselator_2d(xyd)
N = length(xyd)
u = zeros(N, N, 2)
for I in CartesianIndices((N, N)) .
x = xyd[I[1] Some giant ODE
y = xyd[I[2]]
ulI,1] = 22x(y=(1-y))"(3/2)
u[I,2] = 27%(x=(1-x))*(3/2)
end
u
end
ud = init_brusselator_2d(xyd_brusselator)
prob_ode_brusselator_2d = ODEProblem(brusselator_2d_loop,u@,(0.,11.5),p)

https://diffeq.sciml.ai/stable/tutorials/advanced _ode example/

DifferentialEquations.jl uses LinearSolve.jl internally, so all options are available!



And when you finally get there, you have to keep customizing

using BenchmarkTools
@btime solve(prob_ode_brusselator_2d_sparse, TRBDF2(), save_everystep=false)




And when you finally get there, you have to keep customizing

using BenchmarkTools
@btime solve(prob_ode_brusselator_2d_sparse, TRBDF2(), save_everystep=false)

Baseline with sparse Jacobian, pretty decent

@btime solve(prob_ode brusselator_2d_sparse, KenCarp47(linsolve=KLUFactorization()), save_everystep=false)

@btime solve(prob_ode_brusselator_2d, KenCarp47(linsolve=KrylovJL_GMRES()), save_everystep=false)

Just pass different LinearSolve.jl algorithms to try different internal solvers.
Non-trivial differences!

https://diffeq.sciml.ai/stable/tutorials/advanced _ode example/

DifferentialEquations.jl uses LinearSolve.jl internally, so all options are available!



And when you finally get there, you have to keep customizing

using BenchmarkTools
@btime solve(prob_ode_brusselator_2d_sparse, TRBDF2(), save_everystep=false)

using IncompletelU
function incompletelu(W, , U, p, t, newh, Plprev,
if newW === nothing || newW
Pl = ilu(convert(AbstractMatrix, W), t=50.0)
else
P1 = Plprev
end
Pl, nothing
end

@time solve(prob_ode_brusselator_2d_sparse, KenCarp47(linsolve=KrylovJL_GMRES(), precs=incompletelu,
concrete_jac=true), save_everystep=false);

Use the preconditioner interface for iLU with GMRES, chunked it down a few notches

https://diffeq.sciml.ai/stable/tutorials/advanced _ode example/

DifferentialEquations.jl uses LinearSolve.jl internally, so all options are available!




What About Partial Differential Equations (and Beyond?)

using ModelingToolkit
import ModelingToolkit: Interval, infimum, supremum

@parameters x y
@variables u(..)
Dxx = Differential(x)"2
Dyy = Differential(y)~2

Dxx(u(x,y)) + Dyy(u(x,y)) ~ -sin(pi*x)*sin(pi*y)

[u(0,y) ~ 0.0, u(1,y) ~ -sin(pi*1)*sin(pi‘y),
u(x,0) ~ @.fo, u(x,1) ~ -sin(pi*x)*sin(pi*1)]

domains = [x € Interval(e.0,1.9),
y € Interval(e.0,1.0)]
pde_system = PDESystem(eq,bcs,domains,[x,y],[u])

PDEs need lots of discretizers

Physics-Informed NNs: NeuralPDE.|l
Finite Difference: MethodOfLines.|l
Neural Operators: NeuralOperators.jl

Finite Volume: Trixi.jl

Finite Element: Gridap.jl
Pseudospectral: ApproxFun.jl
High Dimension: HighDimPDE jl

Etc. a bunch more issues to address...



Okay, now I'm just ranting.

But the point is, equation solving is a
huge topic. As big as probabilistic
programming.

So how do you integrate that with PPLs?
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2. Does Turing.jl have it? And what does that
mean about its developer community?



Stan(dard) PPL DSLs: The Top-Down Approach

) . 13. Ordinary Differential Equations 186
Stan User’s Guide ry q
13.1 Notation 188
Version 2.30 13.2  Example: simple harmonic oscillator 188

13.3  Coding the ODE system function 188
13.4 Measurement error models 190

13.5 Stiff ODEs 194

13.6  Control parameters for ODE solving 194
13.7  Adjoint ODE solver 197

13.8  Solving a system of linear ODEs using a matrix exponential 198

Stan Development Team

16. Differential-Algebraic Equations 210
16.1 Notation 210
16.2  Example: chemical kinetics 211
16.3 Index of DAEs 211
16.4 Coding the DAE system function 211
16.5 Solving DAEs 213
16.6  Control parameters for DAE solving 214



Stan(dard) PPL DSLs: The Top-Down Approach

rk45: a fourth and fifth order Runge-Kutta method for non-stiff systems
(Dormand and Prince 1980; Ahnert and Mulansky 2011). rk45 is the most
generic solver and should be tried first.

bdf: a variable-step, variable-order, backward-differentiation formula imple-
mentation for stiff systems (Cohen and Hindmarsh 1996; Serban and Hind-
marsh 2005). bdf is often useful for ODEs modeling chemical reactions.

adams: a variable-step, variable-order, Adams-Moulton formula implementa-
tion for non-stiff systems (Cohen and Hindmarsh 1996; Serban and Hindmarsh
2005). The method has order up to 12, hence is commonly used when high-
accuracy is desired for a very smooth solution, such as in modeling celestial
mechanics and orbital dynamics (Montenbruck and Gill 2000).

ckrk: a fourth and fifth order explicit Runge-Kutta method for non-stiff and
semi-stiff systems (Cash and Karp 1990; Mazzia, Cash, and Soetaert 2012).



Top-Down => Limited Developer Support => Our Issues Are Here

16.3. Index of DAEs

The index along a DAE solution y(¢) is the minimum number of differentiations of
some of the components of the system required to solve for ¥’ uniquely in terms
of y and ¢, so that the DAE is converted into an ODE for y. Thus an ODE system
is of index 0. The above chemical kinetics DAE is of index 1, as we can perform

differentiation of the third equation followed by introducing the first two equations NO DAE aUtomatlon

in order to obtain the ODE for ys3.

Most DAE solvers, including the one in Stan, support only index-1 DAEs. For a high
index DAE problem the user must first convert it to a lower index system. This often

can be done by carrying out differentiations analytically (Ascher and Petzold 1998).

No SDEs, DDEs, PDEs, ...
Symplectic, Munthe-Kaas, ...
No KLU, iLU preconditioning, algebraic multigrid...



Okay, | can poke fun at Stan.

But the “why” is more important.




PPLs Need Derivatives

Good PPL methods (Hamiltonian
Monte Carlo, ADVI, etc.) Requires
Good Derivatives of Every Operation




PPLs Need Derivatives

You cannot just stick an
ODE solver into a PPL
and expect it to work!

Good PPL methods (Hamiltonian
Monte Carlo, ADVI, etc.) Requires
Good Derivatives of Every Operation




Julia's Pervasive Differentiable Programming

Julia has a pervasive language-wide
system for differentiable
programming

No DSL required: directly support
Julia code in any code that requires
differentiation!

ChainRules.jl



Just do it!

1 function fitlv(data, prob)

e oo dietribntion Turing.jl + DifferentialEquations.jl:
o ~ InverseGamma(2, 3) Just use the ODE solver inside of
a ~ truncated(Normal(1.5, ©.5), 6.5, 2.5) T o
B ~ truncated(Normal(1.2, ©.5), @, 2) llrlr]£J°
y ~ truncated(Normal(3.e, ©.5), 1, 4)
6 ~ truncated(Normal(l.8, ©.5), @, 2)
8 -]
# Simulate Lotka-Volterra model. "L o?
p=[a, B, v, 8] 7\ .5.'0.
predicted = solve(prob, Tsit5(); p=p, saveat=6.1) or f E ?r % .fL \
o | ®° / \
# Observations. al ?’ h o .; {; * :, %”
for 1 in 1:length(predicted) _; @ . .!ﬁ . ; . .!L % °
data[:, i] ~ MvNormal(predicted[i], o*2 * I) ® ?’ *\*% f o=, ° f 00;0
end 2 1..‘-;"'00 a® ' ¢ ) — fs" co b 8 c,.
t// ® -2- .F'/o.‘ °e age ""-\\ .03 {60/ o e e 'i:;-o "
return nothing . ;fé? oi;: -O:% &: s '.00 Q: e ':
end o S, R s ® g 0000 L o
-]
model = fitlv(odedata, prob) 0 é ; > é - Qé 16
t

# Sample 3 independent chains with forward-mode automatic differentiation (the default)
chain = sample(model, NUTS(©.65), MCMCSerial(), 166©, 3; progress=false)



Improving Coverage of Automatic Differentiation over Solvers

LinearSolve.jl: Unified Linear Solver Interface Optimization.jl: Unified Optimization Interface
A(p)x =b minimize f(u,p)
NonlinearSolve.jl: Unified Nonlinear Solver Interface Sub]eCt to g(u: p) < O: h(u: p) =0
f(u, p) =0 Integrals.jl: Unified Quadrature Interface
ub
DifferentialEquations.jl: Unified Interface for all
Differential Equations r f(t: p)dt
u = f(upt) Ib
du = f(u,p,t)dt + g(u,p, t)dW; unified Partial Differential Equation Interface
[
. U = Uyy + f(1)

Ute = uxx:'l' f(u)

The SciML Common Interface for Julia Equation Solvers
https://scimlbase.sciml.ai/dev/



Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Lotka Volterra Neural ODE Lotka Volterra Neural ODE
100
[} KJ [ ) ® Data: Varl ® Data
P b @ Data: Var2 6 —— Training: Best fit prediction
ro a I I s I c o e Training: Best fit prediction Forecastng: Best fit prediction
75 F Forecasting: Best fit prediction

Training Data End
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50 I’E
[uring.jl &
[ ]
25
0+
A Number of Dominant terms  Error Mean % | i
Active terms AIC score sampled 1 2 3 a i X Varl : "

0.01 9 u?, u3, uus 0.765 404 100

udu2, udug, udu,

1 Uso, const function lotka_volterra!(du, u, p, t)
0.1 9 u%, u%,uluQ 0.764 35 100 X, ¥y = U

uu3, udug, udu, a, B, 5, v

U1 Ug, CcONst

du[l dx

1 5 u?, u3, up 0.764 21.6 100 [1]

wlu du[2] dy

1U2, U1U2
2 2 U3 g, U U 0.634 7.2 100
3 1 U U 0.7 4.1 100
1 5 Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural Ordinary
Uju2 2.49 -1 100 Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021




Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Probabilistic PDE

Discovery with
Turing.jl
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Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural Ordinary
Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021



Downside: Documentation

USING TURING ~
Getting Started
Quick Start
Guide
Advanced Usage
Automatic Differentiation
Performance Tips
Using DynamicHMC
Sampler Visualization
FOR DEVELOPERS ~

The Only mention of TUTORIALS v

Home

differential equations is in a Introduction to Turing
tutorial! No API dOCS! Gaussian Mixture Models

Bayesian Logistic Regression
Bayesian Neural Networks
Hidden Markov Models
Linear Regression

Infinite Mixture Models
Bayesian Poisson Regression

Multinomial Logistic
Regression

Variational Inference

Bayesian Differential Equations
Probabilistic PCA
Gaussian Processes

API~

Turing Documentation

Welcome to the documentation for Turing.

Introduction

Turing is a general-purpose probabilistic programming language for robust, efficient Bayesian
inference and decision making. Current features include:
» General-purpose probabilistic programming with an intuitive modelling interface;

» Robust, efficient Hamiltonian Monte Carlo (HMC) sampling for differentiable posterior
distributions;

» Particle MCMC sampling for complex posterior distributions involving discrete variables and
stochastic control flow; and

« Compositional inference via Gibbs sampling that combines particle MCMC, HMC and
random-walk MH (RWMH).



Upside: Lots of Features!

@model function fitlv_dde(data, prob)

# Prior distributions.

o ~ InverseGamna(2, 3) Also includes stochastic differential
e e e equations, delay differential equations,
y ~ Truncated(Normal(3.0, 0.5), 1, 4) etc. all just from slapping

8 ~ Truncated(Normal(l.8, ©.5), @, 2)

DifferentialEquations.jl inside!

# Simulate Lotka-Volterra model.

p = [a, B, ¥, 6]
predicted = solve(prob, MethodOfSteps(Tsit5()); p=p, saveat=6.1)

# Observations.
for i in 1:length(predicted)
data[:, i] ~ MvNormal(predicted[i], ©"2 * I)
end
end

model_dde = fitlv_dde(ddedata, prob_dde)

# Sample 3 independent chains.
chain_dde = sample(model_dde, NUTS(©.65), MCMCSerial(), 30©, 3; progress=false)



How the adjoint is calculated also matters!

Sensitivity Scaling on Brusselator

10"

—@— Forward-Mode DSAAD
- — - Reverse-Mode DSAAD
-+ Interpolating CASA user-Jacobian

Interpolating CASA AD-Jacobian

=) - — Interpolating CASA AD-$v~{T}J$ seeding
Quadrature CASA user-Jacobian

— —¢ — - Quadrature CASA AD-Jacobian

------ _’ Quadrature CASA AD-$v™~{T}J$ seeding

. ) — 1
— - Numerical Differentiation 0

Gradient
calculations on
a stiff PDE,
varying dt

10

Runtime (s)

For more details on the
performance of the adjoint
methods, see Accurate and

Efficient Physics-Informed
Learning Through
Differentiable Simulation

Rackauckas, Christopher, et al. "A comparison of 0
automatic differentiation and continuous sensitivity

analysis for derivatives of differential equation

solutions." 2021 IEEE High Performance Extreme

; 10%5 1020
Computing Conference (HPEC), 1-8.

Number of Parameters

2.5

10 3.0

10




Enzyme is fast!!!

0

- Static analysis & optimization => very, very fast scalar AD

Enzyme.jl

function taylor‘( ) ) @time Enzyme.autodiff( , taylor, Duplicated(0.5, 1.0), 10%6)
-9 % # 30 ms (@ bytes)
for = 1: @btime Enzyme.autodiff( , taylor, Active(@.5), 10%6).
= A / # 30 ms (@ bytes)
end @btime ForwardDiff.derivative(x -> taylor(x, 10%6), 0.5)
t # 60 ms (@ bytes)
recurn
end @btime Zygote.gradient(taylor, 0.5, 10"6)

# 993 ms (663.56 MiB)

@btime Diffractor.gradient(taylor, 0.5, 10%6) Is Jax close enough?
# 96665 ms (96.37 GiB)

def taylor_jax(x, N): def taylor_lax(x, N):
sum = @ * return jax.lax.fori_loop( @ytime jax.grad(taylor_jax)(@.5, 10*5)
for i in range(1,N): i # >183993 ms
+= xxki / ,
eturn lambda
f— o + xkxi / @pytime jax.grad(taylor_lax)(0.5, 1076)

0) ’ # 95 ms




Enzyme is fast!!!

0

- Static analysis & optimization => very, very fast scalar AD

Enzyme.jl

function taylor‘( ) ) @btime Enzyme.autodiff( , taylor, Duplicated(9.5, 1.9), 1076)
- 0 % # 30 ms (@ bytes)
for = 1: @btime Enzyme.autodiff( , taylor, Active(@.5), 10%6).
A # 30 ms (@ bytes) "
4= / construct | jit grad
end @btime ForwardDiff.derivative(x -> taylor(x, 10%6), 0.5) if Y,
# 60 ms (@ bytes) x
return for | v v
end @time Zygote.gradient(taylor, 0.5, 106) while | v J
# 993 ms (663.56 MiB) 1 1 y y
ax.conc
@time Diffractor.gradient(taylor, 0.5, 106) lax.while loop | v fwd
# 96665 ms (96.37 GiB) : )
def taylor_jax(x, N): def taylor_lax(x, N): lax.fc:nrl_ln:-op v fwd
_r return jax.lax.fori_loop( @ytime jax.grad(taylor_jax)(@.5, 10*5) lax.scan v v
for ir_ rizgegh ): 1, # >183993 ms
eturn lambda i, cur:
returr e / @pytime jax.grad(taylor_lax)(@.5, 10%6) If forward mode Only.

0) ’ # 95 ms




Enzyme is fast!!!

Differentiating after optimization can create asymptotically faster gradients!

0 (n2) 0 (n) 0 (n)
for i = 1: o = mag(in) _ ®:®
[i]1 /= mag(in) Optimize for -3 }i AD LI S o (i1
end end - .
vmag ( )
O (”2) O (nz) O (HQ)
for 1~ s ::1 [i] fog re; | [1]
L1] /= (in) .. _ =
end e AD engmag( ) Optimize Vmag ( d_res)




Downside: Documentation

\ Y

SciML

Parameterizedtunctions
nverse Problems

Parameter Estimation, Bayesian

Analucic and Inuarca Prahlamce

Inverse Problems SciMLSensitivity Tutorials Bayesian Estimation Tutorials . .
. . . . . . e _ ) Edit on GitHub ¢
Bayesian Estimation of Differential Equations with Probabilistic Programming

Bayesian Estimation of Differential Equations with
Probabilistic Programming

For a good overview of how to use the tools of SciML in conjunction with the Turing.jl probabilistic programming
language, see the Bayesian Differential Equation Tutorial.

« Bouncing Ball Hybrid ODE Optimization Solving Optimal Control Problems with Universal Differential Equations »

Powered by Documenter.jl and the Julia Programming Language.

If the composition of two
packages automatically
constructs the functionality,
who documents it?



Pervasive Differentiable Programming greatly enlarges the
developer pool and accelerates development.

But relying on package composability creates a
documentation and “ownership” problem.

We are looking for nice solutions to the latter issues with
our automatically constructed feature sets.




SciML Open Source Software
Organization
sciml.ai

DifferentialEquations.jl: 2x-10x Sundials, Hairer, ...

DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
ModelingToolkit.jl: 15,000x Simulink

Catalyst.jl: >100x SimBiology, gillespy, Copasi

DataDrivenDiffEq.jl: >10x pySindy

NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
NeuralOperators.jl: ~3x original papers (more optimizations required)
ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only?!)
DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention...

If you work in SciML and think optimized and maintained implementations
of your method would be valuable, please let us know and we can add it to
the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter




There are many different ways, all with engineering trade-offs

Method Stability Stiff Performance Scaling Memory Usage
BacksolveAdjoint Poor 0((5 + p)3) Low. O(1)
InterpolatingAdjoint Good 0 ((s + p)3) High. Requires full continuous solution of forward
. . Higher. Requires full continuous solution of forward and
QuadratureAdjoint Good 0 (53 + p) Laggrange r(r]wltiplier

BacksolveAdjoint 3 . . .
(Checkpointed) Okay 0((5 +p) ) +C Medium. O(c) where c is the number of checkpoints

. . . 3
Interpolat]ngAd10|nt Good 0 ((S + p) ) +C Medium. O(c) where c is the number of checkpoints
(Checkpointed)
ReverseDiffAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
TrackerAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
ForwardLSS/AdjointLSS/N Chaos Not even comparable: expensive. Super duper high OMG.

ILSS



Differentiating Ordinary Differential Equations: The Trick

We with to solve for some cost function G(u, p) evaluated throughout the differential equation, i.e.:

T

Glup) = Glulp)) = [ glult.p))dt
Lo
To derive this adjoint, introduce the Lagrange multiplier A to form:
T
I6) =G~ [ X - flu,p, 1)t
to

Since ' = f(u,p, t), this is the mathematician's trick of adding zero, so then we have that

o G dI " L
S = o i /to (gp + gus)dt /tg N (8" — fus — fp)dt



Differentiating Ordinary Differential Equations: Integration By Parts

for s being the sensitivity, s = j_; . After applying integration by parts to A*s’, we get that:

/tT)\* (s’fusfp)dt/tT)\*s’dt/tT)\* (fus — fp) dt

T T
— \)\*(t)s(t)\z; /t A sdt /t N (fus — fp)dt

To see where we ended up, let's re-arrange the full expression now:

G [T . r [T, t
d—p — (gp + gus)dt T |)\ (t)s(t)|t0 - A" sdt — A (qu o fp) at
to to to

T T
_/ (gp+/\*fp)dt+|)\*(t)s(t)|f;f (O + X £ — gu) sdt



Differentiating Ordinary Differential Equations: The Final Form

T - T
— /t (gp + X fp)dt + [A*(t)s(t)];, —ft (A + X fy, — gu) sdt

That was just a re-arrangement. Now, let's require that

df” dg\~
’—__ — [
A= du A (du)

A(T) =0

This means that the boundary term of the integration by parts is zero, and also one of those integral terms are
perfectly zero. Thus, if A satisfies that equation, then we get:

dG ., . . dG ! .
b A (tU)E(tO)+/t; (gp + A" fp) dt



Differentiating Ordinary Differential Equations: Summary

1. Solve o = f(u,p,1)

2. Solve N = —ﬁ*). — (@)



Differentiating Ordinary Differential Equations: Step 2 Details

af*y, (dg\’

duw® du)

2. Solve Moo= —

A(CZ:)O\ How do you get u(t) while solving backwards?

3 options!

1.

u' = f(z,t) forwards, then
u' = —f(z,—t) backwards!

2. Store u(t) while solving forwards (dense output)

3. Check_
Forward pass

k()

k, k, k,
R TR e . e g
\/\/\ Backward pass



How the gradient (adjoint) is calculated also matters!

This term is traditionally computed via differentiation and then multiplied to lambda
Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized
backpropagation!
Six choices for this computation:
\ Numerical
* - Forward-mode
d - Reverse-mode traced compiled graph
g (ReverseDiffVJP(true))

%
WSV df
A A Fast method for scalarized
nonlinear equations
du du - Requires CPU and no branching
(generally used in SciML)
0 - Reverse-mode static
?

Fastest method when applicable
Reverse-mode traced

Fast but not GPU compatible
Reverse-mode vector source-to-source

Adjoint Differential Equation © . Best for embedded neural

networks

A(T)



Differentiating Ordinary Differential Equations: Step 3 Details

How do you calculate the integral?
1. Store A(t) while solving backwards (dense output)

2.u' = —-Xf, + g, where u(T) =0

What's the trade-off between these ideas?




Some methods are “mathematically
correct”, but “numerically incorrect”

SciML is a software problem.




Machine Learning Neural Ordinary Differential Equations

W' = f(z,t) forwards, then Timeseries is not The adjoint equation is an ODE!
u' = —f(z,—t) backwards! _ L= _ stored, therefore
,/"4‘ s~ 0(1) in memory! da(t) —a)T df(z(t),t,0)
' dt 0z
\ ; How do you get z(t)? One suggestion:
' Reverse the ODE
z(to) 2(ti+1)

State

g Adjoint State dagug(t) B O faug
- ();]1}1+\/X/\ dt — [a(t) ag(t) af(t)] 6[z, 9’ t] (t)
OL ‘ oL




“Adjoints by reversing” also is
unconditionally unstable on some
problems!

Advection Equation:

ou aldu)
— + =0
d i dx

Approximating the derivative in x has two choices: forwards or
backwards

If you discretize in the wrong direction you get unconditional

instability Piecewise constant
I_[l'l'_ W g
You need to understand the engineering principles and the numerical l initial data
simulation properties of domain to make ML stable on it.
U;

n
L




Differentiation of Chaotic Systems: Shadow Adjoints

a0 “ chaotic systems: trajectories diverge to o(1) error but
a0 shadowing lemma guarantees that the solution lies on
the attractor

u "v — 20
Float64
“ Float32

E Il W

30 35 A-ltO 45 50 0 10 20 p 30 40 50 .
d a 20
el lim —
dp <Z>OO 7é TE)IlOO ap <Z>T 10 —% 20
-10 ;} 0 o 50 y
* AD and finite differencing fails! * Shadowing methods in DiffEqSensitivity.jl
d(2) oo . .
dp P |
p=28 p=28
d(2) o
d<§>°° ~ 472 (Calculus) <d/>) ~ 0.997 (NILSS) . . .
P —as =28 https://frankschae.github.io/post/shadowing/




Problems With Naive Adjoint Approaches On Stiff Equations

How do you get u(t) while solving backwards?
Error grows exponentially... 3 options!

u' = f(z,t) forwards, then

u'(t) = Au(t), plot the error in the reverse solve: _
(£).p 1 u' = —f(z,—t) backwards!

Unstable
2. Store u(t) while solving forwards (dense output)  High memory

3. Checkpointing - More Compute
20 Forward pass

il G ko ky ks ks

107

Error

10 + o N e

v\/\ Backward pass
0 i

107 [

Each choices has an engineering trade-off!

10710 ’

—1I00 —l50 (3 5I0 1(130
A
Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural

ordinary differential equations." Chaos (2021).



Problems With Naive Adjoint Approaches On Stiff Equations

Error grows exponentially...

u'(t) = Au(t), plot the error in the reverse solve: Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:
2states + parameters
1620 F Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

Error

0 ((states + parameters)3)

107 [

10710 ’

—1I00 —l50 (3 5I0 1(130
A
Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural

ordinary differential equations." Chaos (2021).



Problems With Naive Adjoint Approaches On Stiff Equations

dG dG g
e A (to)—du (to) + (gp + A" f,) dt
t . . . .
° Compute cost is cubic with parameter size when stiff
Size of reverse ODE system is:
How do you calculate the integral? 2states + parameters
High memory
1. Store A(t) while solving backwards (dense output) Linear solves inside of stiff ODE solvers, ~cubic
2.4’ = —2'f, + g, where u(T) = 0 Size = Number of Thus, adjoint cost:
Parameters
0((states + parameters)3)

3. Use an IMEX integrator and solve u' = —1*f,, + g, explicitly Thus, adjoint cost without extra memory:

4. Our paper describes a 4t way! N O(states® + parameters)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).



The math has >20 ways to implement.

Every choice makes engineering trade-
offs.

SciML is a software problem.




DiffEqSensitivity.jl: Every adjoint is optimized for a different case

Method Stability Stiff Performance Scaling Memory Usage
BacksolveAdjoint Poor 0((5 + p)3) Low. O(1)
InterpolatingAdjoint Good 0 ((s + p)3) High. Requires full continuous solution of forward
. . 3 Higher. Requires full continuous solution of forward and
QuadratureAdjoint Good 0 (5 + p) Lagrange multiplier

BacksolveAdjoint 3 . . .
(Checkpointed) Okay 0((5 +p) ) +C Medium. O(c) where c is the number of checkpoints

. . . 3
Interpolat]ngAd10|nt Good 0 ((S + p) ) +C Medium. O(c) where c is the number of checkpoints
(Checkpointed)
ReverseDiffAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
TrackerAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
ForwardLSS/AdjointLSS/N Chaos Not even comparable: expensive. Super duper high OMG.

ILSS



How the adjoint is calculated also matters!

—@— Forward-Mode DSAAD
Reverse-Mode DSAAD
------------- Interpolating CASA user-Jacobian
Interpolating CASA AD-Jacobian
=) - — Interpolating CASA AD-$v~{T}J$ seeding
Quadrature CASA user-Jacobian
Quadrature CASA AD-Jacobian
-------------- Quadrature CASA AD-$v™~{T}J$ seeding
— - Numerical Differentiation

Gradient
calculations on
a stiff PDE,

varying dt

Rackauckas, Christopher, et al. "A comparison of
automatic differentiation and continuous sensitivity
analysis for derivatives of differential equation
solutions." 2021 IEEE High Performance Extreme
Computing Conference (HPEC), 1-8.

Runtime (s)

10

10

10

100

Sensitivity Scaling on Brusselator

101.5 102.0 102.5 103.0

Number of Parameters

Methods with Reverse-
mode vjp seeding + new

adjoints give 3 orders of
magntitude improvement!




The SciML ecosystem is the only one with fully-featured

Universal Differential Equations

Feature SciML (Julia) Sundials (C++) PETSc TS (C++) torchdiffeq Jax
i None (one in progress, ~200
Stiff ODEs and DAEs Hundreds of methods tested and Yes (CVODE_BDF and IDA) Yes (Rosenbrock-W None times slower than SciPy

Adjoint Methods

Parallelism

Event handling

SDEs

Delays

tuned on hundreds of problems

11 choices tuned for different
scenarios, including stabilized
checkpointing, differentiate the
solver, reversing adjoint

GPU, MPI, multithreading

Yes

Lots of methods, including
stabilized, methods for stiff
equations, high strong order, high
weak order

All ODE methods

Stabilized checkpointing,
no AD integration, no chaos
compatibility

GPU, MPI, multithreading

Yes

None

None

methods, BDFs, etc.)

Discrete sensitivity analysis,
no AD integration, no chaos
compatibility

GPU, MPI, and
multithreading

Yes

None

None

Requires reversing the
ODE or differentiate the
solver (tracing)

GPU

None

torchsde, only diagonal
noise (or order 0.5),
requires reversing the
SDE

None

according to the author!)

Requires reversing the ODE

GPU

None

None

None



The performance difference in UDEs is not small

when the right solvers and adjoints are chosen

These ODEs are non-stiff ODEs from astrodynamics, chemical kinetics,

numerical weather prediction, etc. and include scalarized operations Relative time to solve

Number of ODEs 3 28 768 3,072 12,288 49,152 196,608 786,432
DifferentialEquations.jl 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x
DifferentialEquations.jl dopri5  1.0x 1.6x 2.8x 2.7x 3.0x 3.0x 3.9x 2.8x
torchdiffeq dopri5 4,900x  190x  840x  220x 82x 31x 24x 17x

Geometric Brownian Motion of size 4
Spiral Neural ODE (from original Neural ODE paper) The SDE is solved 100 times. The summary of the results is as follows:

e DiffEqFlux defaults: 7.4 seconds e torchsde: 1.87 seconds

e DiffEqFlux optimized: 2.7 seconds e DifferentialEquations.jl: 0.00115 seconds

e torchdiffeq: 288.965871299999 seconds

Note: performance is not necessarily indicative of
large “pure” neural equations
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