
Integrating equation
solvers with probabilistic
programming through
differentiable
programming

Chris Rackauckas
Director of Modeling and Simulation,
Julia Computing

Research Affiliate, Co-PI of Julia Lab,
Massachusetts Institute of Technology,
CSAIL

Director of Scientific Research,
Pumas-AI

Turing.jl arguably has both the most
extensive differential equation solving
support, and no support for differential
equations at all.

Let me explain.

Outline

Mixing equation discovery into epidemic modeling workflows will revolutionize the field

1. What could “extensive” differential equation
support even mean?

2. Does Turing.jl have it? And what does that
mean about its developer community?

ODEs are Simple! Just call an ODE Solver!

Problem: Lorenz equation on t in (0,100)

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

But there are lots of little
optimizations that can be
done

DifferentialEquations.jl is generally:

• 50x faster than SciPy

• 50x faster than MATLAB

• 100x faster than R’s deSolve

When optimally JIT compiling Py/Mat/R

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast Differential
Equation Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl–a performant and
feature-rich ecosystem for solving differential equations in julia." Journal of Open
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation
APIs for accelerated algorithm development and benchmarking." Advances in
Engineering Software 132 (2019): 1-6.

1. Speed
2. Stability
3. Stochasticity
4. Adjoints and Inference
5. Parallelism

Non-Stiff ODE: Rigid Body System

8 Stiff ODEs: HIRES Chemical Reaction Network

DifferentialEquations.jl is:

• Faster than C codes like CVODE and
Fortran codes like LSODE/LSODA on
stiff equations

• Has symbolic compilers to
automatically improve numerical
stability and performance of user
code

This excludes the extra 2x from
symbolics and 2x from sparse parallel
compilation!

Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and feature-rich ecosystem
for solving differential equations in julia." Journal of Open Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

Foundation: Fast Differential
Equation Solvers

https://github.com/SciML/SciMLBenchmarks.jl

Gowda, Shashi, Yingbo Ma, Alessandro Cheli, Maja Gwozdz, Viral B. Shah, Alan
Edelman, and Christopher Rackauckas. "High-performance symbolic-numerics via
multiple dispatch." To appear in ACM Communications in Computer Algebra (2021).

Ma, Yingbo, Shashi Gowda, Ranjan Anantharaman, Chris Laughman, Viral Shah, and
Chris Rackauckas. "ModelingToolkit: A Composable Graph Transformation System
For Equation-Based Modeling." Submitted (2021).

1122 Stiff ODEs: BCR Chemical Reaction Network

Speed alone does not give good robust
differential equation solving.

There’s a lot more to the algorithms.

Multiscale Behavior

What is stiffness?

Stiff equations are
problems for which
explicit methods
don't work.

“
- Ernst Hairer

So you just use a stiff ODE solver? 2 Solvers and we’re done?

Okay, maybe more than two just so you can
optimize the performance?

3 Solvers?

Magnetic Dipole PDE

Neither stiff nor non-stiff

Performance winner: ROCK2

Some problems need special
integrators

• Symplectic integrators for long time
Hamiltonian systems

• Magnus for u’ = A(t)*u

• Munthe-Kaas methods for u’ = A(u)*u

• Nystrom specializations for 2nd order

• Exponential integrators for semilinear
ODEs u’ = Au + f(u)

• Implicit-Explicit (IMEX) methods for
partly stiff equations

• Runge-Kutta-Chebyshev methods for
semi-stiff equations

…

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

There are lots of special
properties

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

There are lots of special
properties Symplectic

Standard
Integrator (Tsit5)

Some problems need special
integrators

• Symplectic integrators for long time
Hamiltonian systems

• Magnus for u’ = A(t)*u

• Munthe-Kaas methods for u’ = A(u)*u

• Nystrom specializations for 2nd order

• Exponential integrators for semilinear
ODEs u’ = Au + f(u)

• Implicit-Explicit (IMEX) methods for
partly stiff equations

• Runge-Kutta-Chebyshev methods for
semi-stiff equations

…

Julia’s DifferentialEquations.jl is at over
300 integrators, and there’s still more to
do.

But that’s just adding more solvers, right?

Differential Equations Go Beyond ODEs

•Discrete equations (function maps, discrete stochastic
(Gillespie/Markov) simulations)
•Ordinary differential equations (ODEs)
•Split and Partitioned ODEs (Symplectic integrators, IMEX
Methods)
•Stochastic ordinary differential equations (SODEs or SDEs)
•Stochastic differential-algebraic equations (SDAEs)
•Random differential equations (RODEs or RDEs)
•Differential algebraic equations (DAEs)
•Delay differential equations (DDEs)
•Neutral, retarded, and algebraic delay differential equations
(NDDEs, RDDEs, and DDAEs)
•Stochastic delay differential equations (SDDEs)
•Experimental support for stochastic neutral, retarded, and
algebraic delay differential equations (SNDDEs, SRDDEs, and
SDDAEs)
•Mixed discrete and continuous equations (Hybrid Equations,
Jump Diffusions)
•(Stochastic) partial differential equations ((S)PDEs) (with both
finite difference and finite element methods)
…

But if you keep adding
solver choices,

then you’re okay?

Equations that Cannot be Solved: DAE Index Reduction

Not solvable by standard
numerical solvers!

Differentiate the last equation
twice, do a few substitutions…

Easy to solve!

If you don’t know the details about why this makes a better numerical
simulation, then you should be using ModelingToolkit.jl

Eye-balling Index Issues: any algebraic equation should be dependent on some algebraic variable

States: x, vx, y, vy, and T. Algebraic equation states: x and y (no T).

DAE Index Reduction is Automatic with ModelingToolkit.jl

Let me fix that for you…

structural_simplify:
The God of Transforms

Standard equation solvers (IDA, DASKR, all of the Julia DAE solvers, etc.)
cannot solve even a Cartesian pendulum without symbolic modification!

And when you finally get there, you have to keep customizing

DifferentialEquations.jl uses LinearSolve.jl internally, so all options are available!
https://diffeq.sciml.ai/stable/tutorials/advanced_ode_example/

Some giant ODE

And when you finally get there, you have to keep customizing

And when you finally get there, you have to keep customizing

Baseline with sparse Jacobian, pretty decent

Just pass different LinearSolve.jl algorithms to try different internal solvers.
Non-trivial differences!

DifferentialEquations.jl uses LinearSolve.jl internally, so all options are available!
https://diffeq.sciml.ai/stable/tutorials/advanced_ode_example/

And when you finally get there, you have to keep customizing

Use the preconditioner interface for iLU with GMRES, chunked it down a few notches

DifferentialEquations.jl uses LinearSolve.jl internally, so all options are available!
https://diffeq.sciml.ai/stable/tutorials/advanced_ode_example/

What About Partial Differential Equations (and Beyond?)

PDEs need lots of discretizers

• Physics-Informed NNs: NeuralPDE.jl
• Finite Difference: MethodOfLines.jl
• Neural Operators: NeuralOperators.jl
• Finite Volume: Trixi.jl
• Finite Element: Gridap.jl
• Pseudospectral: ApproxFun.jl
• High Dimension: HighDimPDE.jl

Etc. a bunch more issues to address…

Okay, now I’m just ranting.

But the point is, equation solving is a
huge topic. As big as probabilistic
programming.

So how do you integrate that with PPLs?

Outline

Mixing equation discovery into epidemic modeling workflows will revolutionize the field

1. What could “extensive” differential equation
support even mean?

2. Does Turing.jl have it? And what does that
mean about its developer community?

Stan(dard) PPL DSLs: The Top-Down Approach

Stan(dard) PPL DSLs: The Top-Down Approach

Top-Down => Limited Developer Support => Our Issues Are Here

No DAE automation

No SDEs, DDEs, PDEs, …
Symplectic, Munthe-Kaas, …

No KLU, iLU preconditioning, algebraic multigrid…

Okay, I can poke fun at Stan.

But the “why” is more important.

PPLs Need Derivatives

Good PPL methods (Hamiltonian
Monte Carlo, ADVI, etc.) Requires

Good Derivatives of Every Operation

PPLs Need Derivatives

Good PPL methods (Hamiltonian
Monte Carlo, ADVI, etc.) Requires

Good Derivatives of Every Operation

You cannot just stick an
ODE solver into a PPL
and expect it to work!

Julia’s Pervasive Differentiable Programming

ChainRules.jl

Julia has a pervasive language-wide
system for differentiable

programming

No DSL required: directly support
Julia code in any code that requires

differentiation!

Just do it!

Turing.jl + DifferentialEquations.jl:
Just use the ODE solver inside of

Turing.

Improving Coverage of Automatic Differentiation over Solvers

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

LinearSolve.jl: Unified Linear Solver Interface

𝐴𝐴(𝑝𝑝)𝑥𝑥 = 𝑏𝑏
NonlinearSolve.jl: Unified Nonlinear Solver Interface

𝑓𝑓 𝑢𝑢, 𝑝𝑝 = 0
DifferentialEquations.jl: Unified Interface for all
Differential Equations 𝑢𝑢′ = 𝑓𝑓(𝑢𝑢, 𝑝𝑝, 𝑡𝑡)

𝑑𝑑𝑢𝑢 = 𝑓𝑓 𝑢𝑢, 𝑝𝑝, 𝑡𝑡 𝑑𝑑𝑡𝑡 + 𝑔𝑔 𝑢𝑢, 𝑝𝑝, 𝑡𝑡 𝑑𝑑𝑊𝑊𝑡𝑡

Optimization.jl: Unified Optimization Interface

minimize 𝑓𝑓 𝑢𝑢, 𝑝𝑝
subject to 𝑔𝑔 𝑢𝑢, 𝑝𝑝 ≤ 0, ℎ 𝑢𝑢, 𝑝𝑝 = 0

Integrals.jl: Unified Quadrature Interface

�
𝑙𝑙𝑙𝑙

𝑢𝑢𝑙𝑙
𝑓𝑓 𝑡𝑡, 𝑝𝑝 𝑑𝑑𝑡𝑡

Unified Partial Differential Equation Interface

𝑢𝑢𝑡𝑡 = 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑓𝑓 𝑢𝑢
𝑢𝑢𝑡𝑡𝑡𝑡 = 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑓𝑓(𝑢𝑢)

Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural Ordinary
Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021

Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Probabilistic Model
Discovery with

Turing.jl

Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural Ordinary
Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021

Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Probabilistic PDE
Discovery with

Turing.jl

Downside: Documentation

The only mention of
differential equations is in a

tutorial! No API docs!

Upside: Lots of Features!

Also includes stochastic differential
equations, delay differential equations,

etc. all just from slapping
DifferentialEquations.jl inside!

How the adjoint is calculated also matters!

Gradient
calculations on
a stiff PDE,
varying dt

For more details on the
performance of the adjoint
methods, see Accurate and
Efficient Physics-Informed

Learning Through
Differentiable Simulation

Rackauckas, Christopher, et al. "A comparison of
automatic differentiation and continuous sensitivity
analysis for derivatives of differential equation
solutions." 2021 IEEE High Performance Extreme
Computing Conference (HPEC), 1-8.

Enzyme is fast!!!

Is Jax close enough?

Enzyme is fast!!!

If forward mode only.

Enzyme is fast!!!

Downside: Documentation

If the composition of two
packages automatically

constructs the functionality,
who documents it?

Pervasive Differentiable Programming greatly enlarges the
developer pool and accelerates development.

But relying on package composability creates a
documentation and “ownership” problem.

We are looking for nice solutions to the latter issues with
our automatically constructed feature sets.

SciML Open Source Software
Organization
sciml.ai

● DifferentialEquations.jl: 2x-10x Sundials, Hairer, …
● DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
● ModelingToolkit.jl: 15,000x Simulink
● Catalyst.jl: >100x SimBiology, gillespy, Copasi
● DataDrivenDiffEq.jl: >10x pySindy
● NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
● NeuralOperators.jl: ~3x original papers (more optimizations required)
● ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
● SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
● DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention…

If you work in SciML and think optimized and maintained implementations
of your method would be valuable, please let us know and we can add it to
the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter

There are many different ways, all with engineering trade-offs

Method Stability Stiff Performance Scaling Memory Usage

BacksolveAdjoint Poor 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) Low. O(1)

InterpolatingAdjoint Good 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) High. Requires full continuous solution of forward

QuadratureAdjoint Good 𝑂𝑂(𝑠𝑠3 + 𝑝𝑝) Higher. Requires full continuous solution of forward and
Lagrange multiplier

BacksolveAdjoint
(Checkpointed) Okay 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

InterpolatingAdjoint
(Checkpointed) Good 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

ReverseDiffAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

TrackerAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

ForwardLSS/AdjointLSS/N
ILSS Chaos Not even comparable: expensive. Super duper high OMG.

Differentiating Ordinary Differential Equations: The Trick

Differentiating Ordinary Differential Equations: Integration By Parts

Differentiating Ordinary Differential Equations: The Final Form

Differentiating Ordinary Differential Equations: Summary

Summary: 1. Solve

2. Solve

3. Solve

Differentiating Ordinary Differential Equations: Step 2 Details

2. Solve

How do you get u(t) while solving backwards?
3 options!

1.

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

(𝑡𝑡)

(𝑡𝑡)(𝑡𝑡)
(𝑡𝑡)

Adjoint Differential Equation

This term is traditionally computed via differentiation and then multiplied to lambda
Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized
backpropagation!

Six choices for this computation:
• Numerical
• Forward-mode
• Reverse-mode traced compiled graph

(ReverseDiffVJP(true))
• Fast method for scalarized

nonlinear equations
• Requires CPU and no branching

(generally used in SciML)
• Reverse-mode static

• Fastest method when applicable
• Reverse-mode traced

• Fast but not GPU compatible
• Reverse-mode vector source-to-source

• Best for embedded neural
networks

How the gradient (adjoint) is calculated also matters!

Differentiating Ordinary Differential Equations: Step 3 Details

3. Solve

How do you calculate the integral?

1. Store 𝜆𝜆(𝑡𝑡) while solving backwards (dense output)

2. 𝜇𝜇′ = −𝜆𝜆∗𝑓𝑓𝑝𝑝 + 𝑔𝑔𝑝𝑝 where 𝜇𝜇 𝑇𝑇 = 0

What’s the trade-off between these ideas?

(𝑡𝑡)

Some methods are “mathematically
correct”, but “numerically incorrect”

SciML is a software problem.

The adjoint equation is an ODE!

How do you get z(t)? One suggestion:
Reverse the ODE

Timeseries is not
stored, therefore
O(1) in memory!

Machine Learning Neural Ordinary Differential Equations

Chen, Ricky TQ, et al. "Neural ordinary differential equations." Advances in neural information
processing systems. 2018.

Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and
feature-rich ecosystem for solving differential equations in julia." Journal of Open
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs
for accelerated algorithm development and benchmarking." Advances in Engineering
Software 132 (2019): 1-6.

“Adjoints by reversing” also is
unconditionally unstable on some
problems!

Advection Equation:

Approximating the derivative in x has two choices: forwards or
backwards

If you discretize in the wrong direction you get unconditional
instability

You need to understand the engineering principles and the numerical
simulation properties of domain to make ML stable on it.

Differentiation of Chaotic Systems: Shadow Adjoints

chaotic systems: trajectories diverge to o(1) error … but
shadowing lemma guarantees that the solution lies on
the attractor

• Shadowing methods in DiffEqSensitivity.jl• AD and finite differencing fails!

https://frankschae.github.io/post/shadowing/

Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

𝑢𝑢′ 𝑡𝑡 = 𝜆𝜆𝑢𝑢(𝑡𝑡), plot the error in the reverse solve:

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

How do you get u(t) while solving backwards?
3 options!

1.

2. Store u(t) while solving forwards (dense output)

3. Checkpointing

Unstable

High memory

More Compute

Each choices has an engineering trade-off!

Problems With Naïve Adjoint Approaches On Stiff Equations

Error grows exponentially…

𝑢𝑢′ 𝑡𝑡 = 𝜆𝜆𝑢𝑢(𝑡𝑡), plot the error in the reverse solve: Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:

2𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠

Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

𝑂𝑂 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠 3

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

Problems With Naïve Adjoint Approaches On Stiff Equations

Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:

2𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠

Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

𝑂𝑂 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠 + 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠 3

Thus, adjoint cost without extra memory:

𝑂𝑂(𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠3 + parameters)

Kim, Suyong, Weiqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

How do you calculate the integral?

1. Store 𝜆𝜆(𝑡𝑡) while solving backwards (dense output)

2. 𝜇𝜇′ = −𝜆𝜆∗𝑓𝑓𝑝𝑝 + 𝑔𝑔𝑝𝑝 where 𝜇𝜇 𝑇𝑇 = 0

3. Use an IMEX integrator and solve 𝜇𝜇′ = −𝜆𝜆∗𝑓𝑓𝑝𝑝 + 𝑔𝑔𝑝𝑝 explicitly

4. Our paper describes a 4th way!

Size = Number of
Parameters

High memory

The math has >20 ways to implement.

Every choice makes engineering trade-
offs.

SciML is a software problem.

DiffEqSensitivity.jl: Every adjoint is optimized for a different case

Method Stability Stiff Performance Scaling Memory Usage

BacksolveAdjoint Poor 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) Low. O(1)

InterpolatingAdjoint Good 𝑂𝑂(𝑠𝑠 + 𝑝𝑝 3) High. Requires full continuous solution of forward

QuadratureAdjoint Good 𝑂𝑂(𝑠𝑠3 + 𝑝𝑝) Higher. Requires full continuous solution of forward and
Lagrange multiplier

BacksolveAdjoint
(Checkpointed) Okay 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

InterpolatingAdjoint
(Checkpointed) Good 𝑂𝑂 𝑠𝑠 + 𝑝𝑝 3 + 𝐶𝐶 Medium. O(c) where c is the number of checkpoints

ReverseDiffAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

TrackerAdjoint Best 𝑂𝑂 𝑠𝑠3 + 𝑝𝑝 + 𝐶𝐶 Highest. Requires full forward and reverse AD of solve

ForwardLSS/AdjointLSS/N
ILSS Chaos Not even comparable: expensive. Super duper high OMG.

How the adjoint is calculated also matters!

Gradient
calculations on
a stiff PDE,
varying dt Methods with Reverse-

mode vjp seeding + new
adjoints give 3 orders of

magntitude improvement!

Rackauckas, Christopher, et al. "A comparison of
automatic differentiation and continuous sensitivity
analysis for derivatives of differential equation
solutions." 2021 IEEE High Performance Extreme
Computing Conference (HPEC), 1-8.

The SciML ecosystem is the only one with fully-featured
Universal Differential Equations

Feature SciML (Julia) Sundials (C++) PETSc TS (C++) torchdiffeq Jax

Stiff ODEs and DAEs Hundreds of methods tested and
tuned on hundreds of problems Yes (CVODE_BDF and IDA) Yes (Rosenbrock-W

methods, BDFs, etc.) None
None (one in progress, ~200
times slower than SciPy
according to the author!)

Adjoint Methods

11 choices tuned for different
scenarios, including stabilized
checkpointing, differentiate the
solver, reversing adjoint

Stabilized checkpointing,
no AD integration, no chaos
compatibility

Discrete sensitivity analysis,
no AD integration, no chaos
compatibility

Requires reversing the
ODE or differentiate the
solver (tracing)

Requires reversing the ODE

Parallelism GPU, MPI, multithreading GPU, MPI, multithreading GPU, MPI, and
multithreading GPU GPU

Event handling Yes Yes Yes None None

SDEs

Lots of methods, including
stabilized, methods for stiff
equations, high strong order, high
weak order

None None

torchsde, only diagonal
noise (or order 0.5),
requires reversing the
SDE

None

Delays All ODE methods None None None None

Relative time to solve
These ODEs are non-stiff ODEs from astrodynamics, chemical kinetics,
numerical weather prediction, etc. and include scalarized operations

Spiral Neural ODE (from original Neural ODE paper)
Geometric Brownian Motion of size 4

Note: performance is not necessarily indicative of
large “pure” neural equations

The performance difference in UDEs is not small
when the right solvers and adjoints are chosen

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64

