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Abstract

The idea of uprooting and rerooting graphical models was introduced specifically
for binary pairwise models by Weller [19] as a way to transform a model to any
of a whole equivalence class of related models, such that inference on any one
model yields inference results for all others. This is very helpful since inference, or
relevant bounds, may be much easier to obtain or more accurate for some model
in the class. Here we introduce methods to extend the approach to models with
higher-order potentials and develop theoretical insights. In particular, we show
that the triplet-consistent polytope TRI is unique in being ‘universally rooted’.
We demonstrate empirically that rerooting can significantly improve accuracy of
methods of inference for higher-order models at negligible computational cost.

1 Introduction

Undirected graphical models with discrete variables are a central tool in machine learning. In this
paper, we focus on three canonical tasks of inference: identifying a configuration with highest
probability (termed maximum a posteriori or MAP inference), computing marginal probabilities of
subsets of variables (marginal inference) and calculating the normalizing constant (partition function).
All three tasks are typically computationally intractable, leading to much work to identify settings
where exact polynomial-time methods apply, or to develop approximate algorithms that perform well.

Weller [19] introduced an elegant method which first uproots and then reroots a given modelM to any
of a whole class of rerooted models {Mi}. The method relies on specific properties of binary pairwise
models and makes use of an earlier construction which reduced MAP inference to the MAXCUT
problem on the suspension graph∇G (1; 2; 12; 19, see §3 for details). For many important inference
tasks, the rerooted models are equivalent in the sense that results for any one model yield results for
all others with negligible computational cost. This can be very helpful since various models in the
class may present very different computational difficulties for inference.

Here we show how the idea may be generalized to apply to models with higher-order potentials over
any number of variables. Such models have many important applications, for example in computer
vision [6] or modeling protein interactions [5]. As for pairwise models, we again obtain significant
benefits for inference. We also develop a deeper theoretical understanding and derive important new
results. We highlight the following contributions:
• In §3-§4, we show how to achieve efficient uprooting and rerooting of binary graphical models

with potentials of any order, while still allowing easy recovery of inference results.
• In §5, to simplify the subsequent analysis, we introduce pure k-potentials for any order k, which

may be of independent interest. We show that there is essentially only one pure k-potential which
we call the even k-potential, and that even k-potentials form a basis for all model potentials.
• In §6, we carefully analyze the effect of uprooting and rerooting on Sherali-Adams [11] relaxations
Lr of the marginal polytope, for any order r. One surprising observation in §6.2 is that L3 (the
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triplet-consistent polytope or TRI) is unique in being universally rooted, in the sense that there is
an affine score-preserving bijection between L3 for a model and L3 for each of its rerootings.

• In §7, our empirical results demonstrate that rerooting can significantly improve accuracy of
inference in higher-order models. We introduce effective heuristics to choose a helpful rerooting.

Our observations have further implications for the many variational methods of marginal inference
which optimize the sum of score and an entropy approximation over a Sherali-Adams polytope
relaxation. These include the Bethe approximation (intimately related to belief propagation) and
cluster extensions, tree-reweighted (TRW) approaches and logdet methods [12; 14; 16; 22; 24].

1.1 Background and discussion of theoretical contributions

Based on earlier connections in [2], [19] showed the remarkable result for pairwise models that the
triplet-consistent polytope (L3 or TRI) is universally rooted (in the restricted sense defined in [19,
Theorem 3]). This observation allowed straightforward strengthening of previously known results,
for example: it was previously shown [23] that the LP relaxation on TRI (LP+TRI) is always tight
for an ‘almost-balanced’ binary pairwise model, that is a model which can be rendered balanced
by removing one variable [17]. Given [19, Theorem 3], this earlier result could immediately be
significantly strengthened to [19, Theorem 4], which showed that LP+TRI is tight for a binary
pairwise model provided only that some rerooting exists such that the rerooted model is almost
balanced.

Following [19], it was natural to suspect that the universal rootedness property might hold for all
(or at least some) Lr, r ≥ 3. This would have impact on work such as [10] which examines which
signed minors must be forbidden to guarantee tightness of LP+L4. If L4 were universally rooted,
then it would be possible to simplify significantly the analysis in [10].

Considering this issue led to our analysis of the mappings to symmetrized uprooted polytopes given
in our Theorem 17. We believe this is the natural generalization of the lower order relationships of
L2 and L3 to RMET and MET described in [2], though this direction was not clear initially.

With this formalism, together with the use of even potentials, we demonstrate our Theorems 20 and
21, showing that in fact TRI is unique in being universally rooted (and indeed in a stronger sense
than given in [19]). We suggest that this result is surprising and may have further implications.

As a consequence, it is not possible to generate some quick theoretical wins by generalizing previous
results as [19] did to derive their Theorem 4, but on the other hand we observe that rerooting may be
helpful in practice for any approach using a Sherali-Adams relaxation other than L3. We verify the
potential for significant benefits experimentally in §7.

2 Graphical models

A discrete graphical model M [G(V,E), (θE)E∈E ] consists of: a hypergraph G = (V,E), which has
n vertices V = {1, . . . , n} corresponding to the variables of the model, and hyperedges E ⊆ P(V ),
where P(V ) is the powerset of V ; together with potential functions (θE)E∈E over the hyperedges
E ∈ E. We consider binary random variables (Xv)v∈V with each Xv ∈ Xv = {0, 1}. For a subset
U ⊆ V , xU ∈ {0, 1}U is a configuration of those variables (Xv)v∈U . We write xU for the flipping
of xU , defined by xi = 1− xi ∀i ∈ U . The joint probability mass function factors as follows, where
the normalizing constant Z =

∑
xV ∈{0,1}V exp(score(xV )) is the partition function:

p(xV ) =
1

Z
exp (score(xV )) , score(xV ) =

∑
E∈E

θE(xE). (1)

3 Uprooting and rerooting

Our goal is to map a model M to any of a whole family of models {Mi} in such a way that inference
on any Mi will allow us easily to recover inference results on the original model M . In this section
we provide our mapping, then in §4 we explain how to recover inference results for M .

The uprooting mechanism used by Weller [19] first reparametrizes edge potentials to the form
θij(xi, xj) = − 1

2Wij1[xi 6= xj ], where 1[·] is the indicator function (a reparameterization modifies
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Figure 1: Left: The hypergraph G of a graphical model M over 4 variables, with potentials on the hyperedges
{1, 2}, {1, 3, 4}, and {2, 4}. Center-left: The suspension hypergraph∇G of the uprooted model M+. Center-
right: The hypergraph∇G\{4} of the rerooted modelM4 =M+|X4=0, i.e. M+ withX4 clamped to 0. Right:
The hypergraph∇G \ {2} of the rerooted model M2 =M+|X2=0, i.e. M+ with X2 clamped to 0.

potential functions such that the complete score of each configuration is unchanged, see 15 for details).
Next, singleton potentials are converted to edge potentials with this same form by connecting to an
added variable X0. This mechanism had been used previously to reduce MAP inference on M to
MAXCUT on the converted model [1; 12], and applies specifically only to binary pairwise models.

We introduce a generalized construction which applies to models with potentials of any order. We first
uproot a model M to a highly symmetric uprooted model M+ where an extra variable X0 is added,
in such a way that the original model M is exactly M+ with X0 clamped to the value 0. Since X0 is
clamped to retrieve M , we may write M = M0 := M+|X0=0. Alternatively, we can choose instead
to clamp a different variable Xi in M+ which will lead to the rerooted model Mi := M+|Xi=0.
Definition 1 (Clamping). For a graphical model M [G = (V,E), (θE)E∈E ], and i ∈ V , the model
M |Xi=a obtained by clamping the variable Xi to the value a ∈ Xi is given by: the hypergraph
(V \ {i}, Ei), where Ei = {E \ {i}|E ∈ E}; and potentials which are unchanged for hyperedges
which do not contain i, while if i ∈ E then θE\{i}(xE\{i}) = θE(xE\{i}, xi = a).

Definition 2 (Uprooting, suspension hypergraph). Given a model M [G(V,E), (θE)E∈E ], the
uprooted modelM+ adds a variableX0, which is added to every hyperedge of the original model. M+

has hypergraph∇G, with vertex set V + = V ∪{0} and hyperedge setE+ = {E+ = E∪{0}|E ∈ E}.
∇G is the suspension hypergraph of G. M+ has potential functions (θ+E∪{0})E∈E given by

θ+E∪{0}(xE∪{0}) =

{
θE(xE) if x0 = 0

θE(xE) if x0 = 1.

With this definition, all uprooted potentials are symmetric in that θ+E+(xE+) = θ+E+(xE+) ∀E+ ∈ E+.

Definition 3 (Rerooting). From Definition 2, we see that given a model M , if we uproot to M+

then clamp X0 = 0, we recover the original model M . If instead in M+ we clamp Xi = 0 for any
i = 1, . . . , n, then we obtain the rerooted model Mi := M+|Xi=0.

See Figure 1 and Table 1 for examples of uprooting and rerooting. We explore the question of how to
choose a good variable for rerooting (i.e. how to choose a good variable to clamp in M+) in §7.

4 Recovery of inference tasks

Here we demonstrate that the partition function, MAP score and configuration, and marginal distri-
butions for a model M , can all be recovered from its uprooted model M+ or any rerooted model
Mi i ∈ V , with negligible computational cost. We write Vi = {0, 1, . . . , n} \ {i} for the variable set
of rerooted model Mi; scorei(xVi

) for the score of xVi
in Mi; and pi for the probability distribution

for Mi. We use superscript + to indicate the uprooted model. For example, the probability distri-
bution for M+ is given by p+(xV +) = 1

Z+ exp
(∑
E∈E+ θE(xE)

)
. From the definitions of §3, we

obtain the following key lemma, which is critical to enable recovery of inference results.
Lemma 4 (Score-preserving map). Each configuration xV of M maps to 2 configurations of
the uprooted M+ with the same score, i.e. from M,xV → in M+, both of (x0 = 0, xV ) and
(x0 = 1, xV ) with score(xV ) = score+(x0 = 0, xV ) = score+(x0 = 1, xV ). For any i ∈ V +,
exactly one of the two uprooted configurations has xi = 0, and just this one will be selected in Mi.
Hence, there is a score-preserving bijection between configurations of M and those of Mi:

For any i ∈ V + : in M,xV ↔ in Mi,

{
(x0 = 0, xV \{i}) if xi = 0

(x0 = 1, xV \{i}) if xi = 1.
(2)
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M config M+ configuration M4 config
x1 x3 x4 x0 x1 x3 x4 x0 x1 x3
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1
0 1 1 0 0 1 1
1 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1
1 1 0 0 1 1 0 0 1 1
1 1 1 0 1 1 1

1 0 0 0 1 0 0
1 0 0 1
1 0 1 0 1 0 1
1 0 1 1
1 1 0 0 1 1 0
1 1 0 1
1 1 1 0 1 1 1
1 1 1 1

Table 1: An illustration of how scores of potential θ134 on hyperedge {1, 3, 4} in an original model M map to
potential θ0134 in M+ and then to θ013 in M4. See Figure 1 for the hypergraphs. Each color indicates a value
of θ134(x1, x3, x4) for a different configuration (x1, x3, x4). Note that M+ has 2 rows of each color, while
after rerooting to M4, we again have exactly one row of each color. The 1-1 score preserving map between
configurations of M and any Mi is critical to enable recovery of inference results; see Lemma 4.

Table 1 illustrates this perhaps surprising result, from which the next two propositions follow.

Proposition 5 (Recovering the partition function). Given a model M [G(V,E), (θE)E∈E ] with
partition function Z as in (1), the partition function Z+ of the uprooted model M+ is twice Z, and
the partition function of each rerooted model Mi is exactly Z, for any i ∈ V .

Proposition 6 (Recovering a MAP configuration). From M+: xV is an arg max for p iff (x0 =
0, xV ) is an arg max for p+ iff (x0 = 1, xV ) is an arg max for p+. From a rerooted model Mi:
(xV \{i}, xi = 0) is an arg max for p iff (x0 = 0, xV \{i}) is an arg max for pi; (xV \{i}, xi = 1) is an
arg max for p iff (x0 = 1, xV \{i}) is an arg max for pi.

We can recover marginals as shown in the following proposition, proof in the Appendix §9.1.

Proposition 7 (Recovering marginals). For a subset ∅ 6= U ⊆ V , we can recover from M+:
p(xU ) = p+(x0 = 0, xU ) + p+(x0 = 1, xU ) = 2p+(x0 = 0, xU ) = 2p+(x0 = 1, xU ).
To recover from a rerooted Mi: (i) For any i ∈ V \ U , p(xU ) = pi(x0 = 0, xU ) + pi(x0 = 1, xU ).

(ii) For any i ∈ U , p(xU ) =

{
pi(x0 = 0, xU\{i}) xi = 0

pi(x0 = 1, xU\{i}) xi = 1.

In §6, we provide a careful analysis of the impact of uprooting and rerooting on the Sherali-Adams
hierarchy of relaxations of the marginal polytope [11]. We first introduce a way to parametrize
potentials which will be particularly useful, and which may be of independent interest.

5 Pure k-potentials

We introduce the notion of pure k-potentials. These allow the specification of interactions which act
‘purely’ over a set of variables of a given size k, without influencing the distribution of any subsets.
We show that in fact, there is essentially only one pure k-potential. Further, we show that one can
express any θE potential in terms of pure potentials over E and subsets of E , and that pure potentials
have appealing properties when uprooted and rerooted which help our subsequent analysis.

We say that a potential is a k-potential if k is the smallest number such that the score of the potential
may be determined by considering the configuration of k variables. Usually a potential θE is a
k-potential with k = |E|. For example, typically a singleton potential is a 1-potential, and an edge
potential is a 2-potential. However, note that k < |E| is possible if one or more variables in E are not
needed to establish the score (a simple example is θ12(x1, x2) = x1, which clearly is a 1-potential).
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In general, a k-potential will affect the marginal distributions of all subsets of the k variables. For
example, one popular form of 2-potential is θij(xi, xj) = Wijxixj , which tends to pull Xi and Xj

toward the same value, but also tends to increase each of p(Xi = 1) and p(Xj = 1). For pairwise
models, a different reparameterization of potentials instead writes the score as

score(xV ) =
∑
i∈V

θixi +
1

2

∑
(i,j)∈E

Wij1[xi = xj ]. (3)

Expression (3) has the desirable feature that the θij(xi, xj) = 1
2Wij1[xi = xj ] edge potentials affect

only the pairwise marginals, without disturbing singleton marginals. This motivates the following
definition.
Definition 8. Let k ≥ 2, and let U be a set of size k. We say that a k-potential θU : {0, 1}U → R
is a pure k-potential if the distribution induced by the potential, p(xU ) ∝ exp(θU (xU )), has the
property that for any ∅ 6= W ( U , the marginal distribution p(xW ) is uniform.

We shall see in Proposition 10 that a pure k-potential must essentially be an even k-potential.
Definition 9. Let k ∈ N, and |U | = k. An even k-potential is a k-potential θU : {0, 1}U → R of the
form θU (xU ) = a1[ |{i ∈ U |xi = 1}| is even], for some a ∈ R which is its coefficient. In words,
θU (xU ) takes value a if xU has an even number of 1s, else it takes value 0.

As an example, the 2-potential θij(xi, xj) = 1
2Wij1[xi = xj ] in (3) is an even 2-potential with

U = {i, j} and coefficient Wij/2. The next two propositions are proved in the Appendix §9.2.
Proposition 10 (All pure potentials are essentially even potentials). Let k ≥ 2, and |U | = k. If
θU :{0, 1}U→ R is a pure k-potential then θU must be an affine function of the even k-potential, i.e.
∃ a, b ∈ R s.t. θU (xU ) = a1[ |{i ∈ U |xi = 1}| is even] + b.
Proposition 11 (Even k-potentials form a basis). For a finite set U , the set of even k-potentials(
1[ |{i ∈ W |Xi = 1}| is even]

)
W⊆U , indexed by subsets W ⊆ U , forms a basis for the vector

space of all potential functions θ : {0, 1}U → R.

Any constant in a potential will be absorbed into the partition function Z and does not affect the
probability distribution, see (1). An even 2-potential with positive coefficient, e.g. as in (3) if
Wij > 0, is supermodular. Models with only supermodular potentials (equivalently, submodular cost
functions) typically admit easier inference [3; 7]; if such a model is binary pairwise then it is called
attractive. However, for k > 2, even k-potentials θE are neither supermodular nor submodular. Yet if
k is an even number, observe that θE(xE) = θE(xE). We discuss this further in Appendix §10.4.

When a k-potential is uprooted, in general it may become a (k + 1)-potential (recall Definition 2).
The following property of even k-potentials is helpful for our analysis in §6, and is easily checked.
Lemma 12 (Uprooting an even k-potential). When an even k-potential θE with |E| = k is uprooted:
if k is an even number, then the uprooted potential is exactly the same even k-potential; if k is odd,
then we obtain the even (k + 1)-potential over E ∪ {0} with the same coefficient as the original θE .

6 Marginal polytope and Sherali-Adams relaxations

We saw in Lemma 4 that there is a score-preserving 1-2 mapping from configurations of M to those
of M+, and a bijection between configurations of M and any Mi. Here we examine the extent to
which these score-preserving mappings extend to (pseudo-)marginal probability distributions over
variables by considering the Sherali-Adams relaxations [11] of the respective marginal polytopes.
These relaxations feature prominently in many approaches for MAP and marginal inference.

For U ⊆ V , we write µU for a probability distribution in P({0, 1}U ), the set of all probability
distributions on {0, 1}U . Bold µ will represent a collection of measures over various subsets of
variables. Given (1), to compute an expected score, we need (µE)E∈E . This motivates the following.

Definition 13. The marginal polytope M(G(V,E)) = {(µE)E∈E
∣∣∃µV s.t. µV E = µE ∀E ∈ E},

where for U1 ⊆ U2 ⊆ V , µU2↓U1
denotes the marginalization of µU2

∈P({0, 1}U2) onto {0, 1}U1 .

M(G) consists of marginal distributions for every hyperedge E ∈ E such that all the marginals are
consistent with a global distribution over all variables V . Methods of variational inference typically
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optimize either the score (for MAP inference) or the score plus an entropy term (for marginal
inference) over a relaxation of the marginal polytope [15]. This is because M(G) is computationally
intractable, with an exponential number of facets [2]. Relaxations from the Sherali-Adams hierarchy
[11] are often used, requiring consistency only over smaller clusters of variables.
Definition 14. Given an integer r ≥ 2, if a hypergraph G(V,E) satisfies maxE∈E |E| ≤ r ≤ |V |,
then we say that G is r-admissible, and define the Sherali-Adams polytope of order r on G by

Lr(G) =

{
(µE)E∈E

∣∣∣∣∃(µU )U⊆V
|U |=r

locally consistent, s.t. µU↓E = µE ∀ E ⊆ U ⊆ V, |U | = r

}
,

where a collection of measures (µA)A∈I (for some set I of subsets of V ) is locally consistent, or l.c.,
if for any A1, A2 ∈ I , we have µA1↓A1∩A2

= µA2↓A1∩A2
. Each element of Lr(G) is a set of locally

consistent probability measures over the hyperedges. Note that M(G) ⊆ Lr(G) ⊆ Lr−1(G). The
pairwise relaxation L2(G) is commonly used but higher-order relaxations achieve greater accuracy,
have received significant attention [10; 13; 18; 22; 23], and are required for higher-order potentials.

6.1 The impact of uprooting and rerooting on Sherali-Adams polytopes

We introduce two variants of the Sherali-Adams polytopes which will be helpful in analyzing
uprooted models. For a measure µU ∈P({0, 1}U ), we define the flipped measure µU as µU (xU ) =
µU (xU ) ∀xU ∈ {0, 1}U . A measure µU is flipping-invariant if µU = µU .
Definition 15. The symmetrized Sherali-Adams polytopes for an uprooted hypergraph∇G(V +, E+)
(as given in Definition 2), is:

L̃r(∇G) =

{
(µE)E∈E+ ∈ Lr(∇G)

∣∣∣∣µE = µE ∀E ∈ E+

}
.

Definition 16. For any i ∈ V +, and any integer r ≥ 2 such that maxE∈E+ |E| ≤ r ≤ |V +|, we
define the symmetrized Sherali-Adams polytope of order r uprooted at i to be

L̃ir(∇G) =

{
(µE)E∈E+

∣∣∣∣∃(µU )i∈U⊆V +

|U |=r
l.c., s.t.

µU↓E = µE ∀ E ⊆ U ⊆ V, |U | = r, i ∈ U
µU = µU ∀U ⊆ V, |U | = r, i ∈ U

}
.

Thus, for each collection of measures over hyperedges in L̃ir(∇G), there exist corresponding flipping-
invariant, locally consistent measures on sets of size r which contain i (and their subsets). Note
that for any hypergraph G(V,E) and any i ∈ V +, we have L̃r+1(∇G) ⊆ L̃ir+1(∇G) ⊆ L̃r(∇G).
We next extend the correspondence of Lemma 4 to collections of locally-consistent probability
distributions on the hyperedges of G, see the Appendix §9.3 for proof.
Theorem 17. For a hypergraph G(V,E), and integer r such that maxE∈E |E| ≤ r ≤ |V |, there is
an affine score-preserving bijection

Lr(G)
Uproot

�
RootAt0

L̃0
r+1(∇G) .

Theorem 17 establishes the following diagram of polytope inclusions and affine bijections:

For M = M0 : Lr+1(G) ⊆ Unnamed ⊆ Lr(G)

Uproot

yxRootAt0 Uproot

yxRootAt0 Uproot

yxRootAt0

For M+ : L̃0
r+2(∇G) ⊆ L̃r+1(∇G) ⊆ L̃0

r+1(∇G) .

(4)

A question of theoretical interest and practical importance is which of the inclusions in (4) are
strict. Our perspective here generalizes earlier work. Using different language, Deza and Laurent
[2] identified L2(G) with L̃0

3(∇G), which was termed RMET, the rooted semimetric polytope; and
L̃3(∇G) with MET, the semimetric polytope. Building on this, Weller [19] considered L3(G), the
triplet-consistent polytope or TRI, though only in the context of pairwise potentials, and showed that
L3(G) has the remarkable property that if it is used to optimize an LP for a model M on G, the exact
same optimum is achieved for L3(Gi) for any rerooting Mi. It was natural to conjecture that Lr(G)
might have this same property for all r > 3, yet this was left as an open question.
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6.2 L3 is unique in being universally rooted

We shall first strengthen [19] to show that L3 is universally rooted in the following stronger sense.

Definition 18. We say that the rth-order Sherali-Adams relaxation is universally rooted (and write
“Lr is universally rooted” for short) if for all admissible hypergraphs G, there is an affine score-
preserving bijection between Lr(G) and Lr(Gi), for each rerooted hypergraph (Gi)i∈V .

If Lr is universally rooted, this applies for potentials over up to r variables (the maximum which
makes sense in this context), and clearly it implies that optimizing score over any rerooting (as in
MAP inference) will attain the same objective. The following result is proved in the Appendix §9.3.

Lemma 19. If Lr is universally rooted for hypergraphs of maximum hyperedge degree p < r with p
even, then Lr is also universally rooted for r-admissible hypergraphs with maximum degree p+ 1.

The proof relies on mapping to the symmetrized uprooted polytope L̃0
r+1(∇G). Then by considering

marginals using a basis equivalent to that described in Proposition 11 for even k-potentials, we
observe that the symmetry of the polytope enforces only one possible marginal for (p+ 1)-clusters.

Combining Lemma 19 with arguments which extend those used by [19] demonstrates the following
result, proved in the Appendix.

Theorem 20. L3 is universally rooted.

We next provide a striking and rather surprising result, see the Appendix for proof and details.

Theorem 21. L3 is unique in being universally rooted. Specifically, for any integer r > 1 other than
r = 3, we constructively demonstrate a hypergraph G(V,E) with |V | = r + 1 variables for which
L̃0
r+1(∇G) 6= L̃ir+1(∇G) for any i ∈ V .

Theorem 21 examines L̃0
r+1(∇G) and L̃ir+1(∇G), which by Theorem 17 are the uprooted equivalents

of Lr(G) and Lr(Gi). It might appear more satisfying to try to demonstrate the result directly for
the rooted polytopes, i.e. to show Lr(G) 6= Lr(Gi). However, in general the rooted polytopes
are not comparable: an r-potential in M can map to an (r + 1)-potential in M+ and then to an
(r + 1)-potential in Mi which cannot be evaluated for an Lr polytope.

Theorem 21 shows that we may hope for benefits from rerooting for any inference method based on a
Sherali-Adams relaxed polytope Lr, unless r = 3.

7 Experiments

Here we show empirically the benefits of uprooting and rerooting for approximate inference methods
in models with higher-order potentials. We introduce an efficient heuristic which can be used in
practice to select a variable for rerooting, and demonstrate its effectiveness.

We compared performance after different rerootings of marginal inference (to guarantee convergence
we used the double loop method of Heskes et al. [4], which relates to generalized belief propagation,
24) and MAP inference (using loopy belief propagation, LBP [9]). For true values, we used the
junction tree algorithm. All methods were implemented using libDAI [8]. We ran experiments
on complete hypergraphs (with 8 variables) and toroidal grid models (5× 5 variables). Potentials
up to order 4 were selected randomly, by drawing even k-potentials from Unif([−Wmax,Wmax])
distributions for a variety of Wmax parameters, as shown in Figure 2, which highlights results for
estimating logZ. For each regime of maximum potential values, we plot results averaged over 20
runs. For additional details and results, including marginals, other potential choices and larger models,
see Appendix §10.

We display average error of the inference method applied to: the original model M ; the uprooted
model M+; then rerootings at: the worst variable, the best variable, the K heuristic variable, and
the G heuristic variable. Best and worst always refer to the variable at which rerooting gave with
hindsight the best and worst error for the partition function (even in plots for other measures).
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7.1 Heuristics to pick a good variable for rerooting

From our Definition 3, a rerooted model Mi is obtained by clamping the uprooted model M+ at
variable Xi. Hence, selecting a good variable for rerooting is exactly the choice of a good variable
to clamp in M+. Considering pairwise models, Weller [19] refined the maxW method [20; 21] to
introduce the maxtW heuristic, and showed that it was very effective empirically. maxtW selects
the variable Xi with max

∑
j∈N (i) tanh |Wij

4 |, where N (i) is the set of neighbors of i in the model
graph, and Wij is the strength of the pairwise interaction.

The intuition for maxtW is as follows. Pairwise methods of approximate inference such as Bethe
are exact for models with no cycles. If we could, we would like to ‘break’ tight cycles with strong
edge weights, since these lead to error. When a variable is clamped, it is effectively removed from
the model. Hence, we would like to reroot at a variable that sits on many cycles with strong edge
weights. Identifying such cycles is NP-hard, but the maxtW heuristic attempts to do this by looking
only locally around each variable. Further, the effect of a strong edge weight saturates [21]: a very
strong edge weight Wij effectively ‘locks’ its end variables (either together or opposite depending on
the sign of Wij), and this effect cannot be significantly increased even by an extremely strong edge.
Hence the tanh function was introduced to the earlier maxW method, leading to the maxtW heuristic.

As observed in §5, if we express our model potentials in terms of pure k-potentials, then the uprooted
model will only have pure k-potentials for various values of k which are even numbers. Intuitively,
the higher the coefficients on these potentials, the more tightly connected is the model leading to more
challenging inference. Hence, a natural way to generalize the maxtW approach to handle higher-order
potentials is to pick a variable Xi in M+ which maximizes the following measure:

clamp-heuristic-measure(i) =
∑

i∈E:|E|=2

c2 tanh |t2aE |+
∑

i∈E:|E|=4

c4 tanh |t4aE |, (5)

where aE is the coefficient (weight) of the relevant pure k-potential, see Definition 9, and the
{c2, t2}, {c4, t4} terms are constants for pure 2-potentials and for pure 4-potentials respectively. This
approach extends to potentials of higher orders by adding similar further terms. Since our goal is to
rank the measures for each i ∈ V +, without loss of generality we take c2 = 1. We fit the t2, c4 and t4
constants to the data from our experimental runs, see the Appendix for details. Our K heuristic was fit
only to runs for complete hypergraphs while the G heuristic was fit only to runs for models on grids.

7.2 Observations on results

Considering all results across models and approximate methods for estimating logZ, marginals and
MAP inference (see Figure 2 and Appendix §10.3), we make the following observations. Both K and
G heuristics perform well (in and out of sample): they never hurt materially and often significantly
improve accuracy, attaining results close to the best possible rerooting. Since our two heuristics
achieve similar performance, sensitivity to the exact constants in (5) appears low. We verified this by
comparing to maxtW for pairwise models as in [19]: both K and G heuristics performed just slightly
better than maxtW. For all our runs, inference on rerooted models took similar time as on the original
model (time required to reroot and later to map back inference results is negligible), see §10.3.1.

Observe that stronger 1-potentials tend to make inference easier, pulling each variable toward a
specific setting, and reducing the benefits from rerooting (left column of Figure 2). Stronger pure
k-potentials for k > 1 intertwine variables more tightly: this typically makes inference harder and
increases the gains in accuracy from rerooting. The pure k-potential perspective facilitates this
analysis.

When we examine larger models, or models with still higher order potentials, we observe qualitatively
similar results, see Appendix §10.3.4 and 10.3.6.

8 Conclusion

We introduced methods which broaden the application of the uprooting and rerooting approach
to binary models with higher-order potentials of any order. We demonstrated several important
theoretical insights, including Theorems 20 and 21 which show that L3 is unique in being universally
rooted. We developed the helpful tool of even k-potentials in §5, which may be of independent
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Average abs(error) in logZ for K8 complete hypergraphs (fully connected) on 8 variables.

Average abs(error) in logZ for Grids on 5× 5 variables (toroidal). Legends are consistent across all plots.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 2: Error in estimating logZ for random models with various pure k-potentials over 20 runs. If not
shown, Wmax max coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4.
Where the red K heuristic curve is not visible, it coincides with the green G heuristic. Both K and G heuristics
for selecting a rerooting work well: they never hurt and often yield large benefits. See §7 for details.

interest. We empirically demonstrated significant benefits for rerooting in higher-order models –
particularly for the hard case of strong cluster potentials and weak 1-potentials – and provided an
efficient heuristic to select a variable for rerooting. This heuristic is also useful to indicate when
rerooting is unlikely to be helpful for a given model (if (5) is maximized by taking i = 0).

It is natural to compare the effect of rerooting M to Mi, against simply clamping Xi in the original
model M . A key difference is that rerooting achieves the clamping at Xi for negligible computational
cost. In contrast, if Xi is clamped in the original model then the inference method will have to
be run twice: once clamping Xi = 0, and once clamping Xi = 1, then results must be combined.
This is avoided with rerooting given the symmetry of M+. Rerooting effectively replaces what may
be a poor initial implicit choice of clamping at X0 with a carefully selected choice of clamping
variable almost for free. This is true even for large models where it may be advantageous to clamp a
series of variables: by rerooting, one of the series is obtained for free, potentially gaining significant
benefit with little work required. Note that each separate connected component may be handled
independently, with its own added variable. This could be useful for (repeatedly) composing clamping
and then rerooting each separated component to obtain an almost free clamping in each.
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APPENDIX: Uprooting and Rerooting Higher-Order Graphical Models

In this Appendix, we provide:

• In §9, proofs of results appearing in the main paper, split into:
– §9.1 Proofs of results from §4: Recovery of inference tasks
– §9.2 Proofs of results from §5: Even k-potentials
– §9.3 Proofs of results from §6: Sherali-Adams relaxations.

• In §10, additional experimental details and results.

Notation. A model M [G(V,E), (θE)E∈E ] uproots to M+[G+(V +, E+, (θE+)E+∈E+ ], where
G+ = ∇G. Given a model M with hyperedges E ∈ E and potentials (θE)E∈E , we adopt the
convention that in the uprooted model M+, each E+ = E ∪ {0} and each θE+ is the uprooted version
of the respective θE , as given in Definition 2.

For a set S, we write #S = |S| for its cardinality. For example, #{1, 2, 3} = 3.

9 Proofs of results from the main paper

9.1 Proofs of results from §4: Recovery of inference tasks

Proposition 5 (Recovering the partition function) Given a model M [G(V,E), (θE)E∈E ] with
partition function Z as in (1), the partition function Z+ of the uprooted model M+ is twice Z, and
the partition function of each rerooted model Mi is exactly Z, for any i ∈ V .

Proof. Recall that for the model M , we have

Z =
∑

xV ∈{0,1}V
exp

(∑
E∈E

θE(xE)

)
.

Writing Z+ for the partition function of M+, by definition we have

Z+ =
∑

xV ∪{0}∈{0,1}V ∪{0}

exp

( ∑
E+∈E+

θE+(xE∪{0})

)

=
∑

xV ∈{0,1}V
exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)
+

∑
xV ∈{0,1}V

exp

( ∑
E+∈E+

θE+(x0 = 1, xE)

)

=
∑

xV ∈{0,1}V
exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)
+

∑
xV ∈{0,1}V

exp

( ∑
E+∈E+

θE+(x0 = 1, xE)

)

=
∑

xV ∈{0,1}V
exp

(∑
E∈E

θE(xE)

)
+

∑
xV ∈{0,1}V

exp

(∑
E∈E

θE(xE)

)
= 2Z ,

as required. Now, given i ∈ V , and noting that M+ is also the uprooting of the model Mi,
it immediately follows from the above that the partition function associated with Mi is Z, as
required.

Proposition 6 (Recovering MAP configurations) From M+: xV is an arg max for p iff (x0 =
0, xV ) is an arg max for p+ iff (x0 = 1, xV ) is an arg max for p+. From a rerooted model Mi:
(xV \{i}, xi = 0) is an arg max for p iff (x0 = 0, xV \{i}) is an arg max for pi; (xV \{i}, xi = 1) is an
arg max for p iff (x0 = 1, xV \{i}) is an arg max for pi.

Proof. From M+: we simply note that by construction of the uprooted potentials, for any xV ∈
{0, 1}V we have ∑

E∈E
θE(xE) =

∑
E∈E

θ+E+(xE , x0 = 0) =
∑
E∈E

θ+E+(xE , x0 = 1),

11



from which the claim immediately follows.

From Mi: we have

pi(xV \{i}, x0) ∝ p+(xV \{i}, x0, xi = 0) ,

which implies that

(xV ∪{0}\{i}) ∈ arg max pi ⇐⇒ (xV ∪{0}\{i}, xi = 0) ∈ arg max p+

⇐⇒ (xV ∪{0}\{i}, xi = 1) ∈ arg max p+

⇐⇒
{

(xV \{i}, xi = 0) ∈ arg max p if x0 = 0

(xV \{i}, xi = 1) ∈ arg max p if x0 = 1.

Proposition 7 (Recovering marginals) For a subset ∅ 6= U ⊆ V , we can recover from M+:

p(xU ) = p+(x0 = 0, xU ) + p+(x0 = 1, xU ) = 2p+(x0 = 0, xU ) = 2p+(x0 = 1, xU ).

To recover from a rerooted Mi: (i) For any i ∈ V \ U , p(xU ) = pi(x0 = 0, xU ) + pi(x0 = 1, xU ).

(ii) For any i ∈ U , p(xU ) =

{
pi(x0 = 0, xU\{i}) xi = 0

pi(x0 = 1, xU\{i}) xi = 1.

Proof. Let xU ∈ {0, 1}U . Observe that

p(xU ) =
1

Z

∑
xV \U

exp

(∑
E∈E

θE(xE)

)

=
1

Z

∑
xV \U

exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)

=
1

2Z

∑
xV \U

exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)
+
∑
xV \U

exp

( ∑
E+∈E+

θE+(x0 = 1, xE)

)
= p+(x0 = 0, xU ) + p+(x0 = 1, xU ) = 2p+(x0 = 0, xU ) = 2p+(x0 = 1, xU ) .

We next demonstrate recovery from a rerooted model Mi. Let Vi = V ∪ {0} \ {i}. By the definition
of rerooting and symmetry of M+, pi(xVi

) = p+(xVi
|xi = 0) = p+(xVi

|xi = 1). Further,
p+(xi = 0) = p+(xi = 1) = 1

2 for any i = 0, 1, . . . , n.

Case (i) i ∈ V \ U . Following the argument above, we obtain

p(xU ) = p+(x0 = 0, xU ) + p+(x0 = 1, xU )

= p+(x0 = 0, xU , xi = 0) + p+(x0 = 0, xU , xi = 1)

+ p+(x0 = 1, xU , xi = 0) + p+(x0 = 1, xU , xi = 1)

=
1

2

[
p+(x0 = 0, xU |xi = 0) + p+(x0 = 0, xU |xi = 1)

]
+

1

2

[
p+(x0 = 1, xU |xi = 0) + p+(x0 = 1, xU |xi = 1)

]
=

1

2

[
p+(x0 = 0, xU |xi = 0) + p+(x0 = 1, xU |xi = 1)

]
+

1

2

[
p+(x0 = 0, xU |xi = 1) + p+(x0 = 1, xU |xi = 0)

]
= pi(x0 = 0, xU ) + pi(x0 = 1, xU ).

Case (ii) i ∈ U . Now we have

p(xU ) = p+(x0 = 0, xU ) + p+(x0 = 1, xU )

=
1

2

[
p+(x0 = 0, xU |xi = 0) + p+(x0 = 0, xU |xi = 1)

]
12



+
1

2

[
p+(x0 = 1, xU |xi = 0) + p+(x0 = 1, xU |xi = 1)

]
=

{
pi(x0 = 0, xU\{i}) if xi = 0

pi(x0 = 1, xU\{i}) if xi = 1.

9.2 Proofs of results from §5: Even k-potentials

Proposition 10 (All pure potentials are essentially even potentials) Let k ≥ 2, and |U | = k. If
θU :{0, 1}U→ R is a pure k-potential then θU must be an affine function of the even k-potential, i.e.
∃ a, b ∈ R s.t. θU (xU ) = a1[ |{i ∈ U |xi = 1}| is even] + b.

Proof. It is sufficient to demonstrate that if, for two configurations xU , yU ∈ {0, 1}U , we have∑
i∈U xi =

∑
i∈U yi mod 2, then θU (xU ) = θU (yU ), since this demonstrates that θU depends on

its input argument only through the quantity 1#{i∈U |xi=1} is even , and since this only takes on two
possible values, θU may be expressed as an affine function of this indicator.

To demonstrate the claim above, it is sufficient to show that if xU ∈ {0, 1}U , and i, j ∈ V are two
distinct indices, and Fij(xU ) ∈ {0, 1}U denotes the configuration obtained from xU by flipping
coordinates i and j, then θU (xU ) = θU (Fij(xU )). This is sufficient since given xU , yU ∈ {0, 1}U
with

∑
i∈U xi =

∑
i∈U yi mod 2, it is possible to obtain yU from xU by iteratively flipping pairs of

distinct variables.

Let Fi(xU ) denote the configuration obtained from xU by flipping xi. By the uniform marginalization
property, we have

p(xU ) + p(Fi(xU )) = p(Fj(xU )) + p(Fij(xU ))

and

p(Fi(xU )) + p(Fij(xU )) = p(xU ) + p(Fj(xU )) .

Subtracting these equations from one another yields

p(xU ) = p(Fij(xU )) .

Taking logarithms of this equations yields θU (xU ) = θU (Fij(xU )), as required.

Proposition 11 (Even k-potentials form a basis) For a finite set U , the set of even k-potentials(
1[ |{i ∈ W |Xi = 1}| is even]

)
W⊆U , indexed by subsets W ⊆ U , forms a basis for the vector

space of all potential functions θ : {0, 1}U → R.

Proof. We show that the indicators (1[#{i ∈W |xi = 1} is even])W⊆U form a basis for the vector
space of functions R{0,1}U ; we interpret the indicator corresponding to the empty set as being the
constant function equal to 1. Given this, we then note that P({0, 1}U ) is a convex subset of an
affine subspace of R{0,1}U of co-dimension 1, and that the indicator corresponding to the empty set is
orthogonal to this affine subspace. This is then sufficient to show that for any probability distribution
µ ∈P({0, 1}U ), there is a unique set of parameters (ηW )∅6=W⊆U such that

µ(xU ) =
∑

∅6=W⊆U

ηW1[#{i ∈W |xi = 1} is even] ,

as required.

To demonstrate that (1[#{i ∈ W |xi = 1} is even])W⊆U form a basis for the vector space of
functions R{0,1}U , we first note that it has the correct number of elements to form a basis, and it is
therefore sufficient to either demonstrate that it is a spanning set, or that it is a linearly independent
set; we take the latter approach.

Suppose we have a collection of coefficients (αW )W⊆U such that∑
W⊆U

αW1[#{i ∈W |xi = 1} is even] = 0 .
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Given a subset X ⊆ U , note that we have(
1[#{i ∈ X|xi = 1} is even]−1[#{i ∈ X|xi = 1} is odd]

)
·( ∑

W⊆U

αW1[#{i ∈W |xi = 1} is even]
)

= 0

=⇒
∑
W⊆U

αW
∑

x∈{0,1}U

(
1[#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is even]

− 1[#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is odd]

)
= 0.

(6)

Considering the summand above for a fixed subset W ⊆ U , note that if W = X , then the result
of summing over all configurations xU ∈ {0, 1}U is 2|U |−1. However, if W 6= X , the result of the
sum is 0. From this it immediately follows that αX = 0, and the proof of linear independence is
complete. An elegant perspective which demonstrates that the sum concerned above evaluates to 0
is to view {0, 1}U as a vector space over the finite field with 2 elements F2, with addition defined
componentwise. In this case, the set {x ∈ {0, 1}U |#{i ∈ W |xi = 1}} is exactly the kernel of
the linear form {0, 1}U 3 x 7→

∑
i∈W xi ∈ F2 (where the addition is to be interpreted modulo 2).

Considering the linear form {x ∈ {0, 1}U |#{i ∈W |xi = 1}} 3 x 7→
∑
i∈X xi ∈ F2, we observe

that the two sets

{x ∈ {0, 1}U |#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is even} and

{x ∈ {0, 1}U |#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is odd},
are the preimage of 0 ∈ F2 and 1 ∈ F2 under this linear form, respectively. Therefore, if the linear
form is surjective, the two sets have the same size, and since they are clearly disjoint, the relevant
term of (6) evaluates to 0. To see that the form is surjective, recall that by assumption X 6= W . If
X \W is non-empty, then surjectivity is demonstrated by changing a single coordinate corresponding
to an index in X \W . If X \W is empty, then W \X is non-empty, and by simultaneously chaning
a coordinate in W \X and X , surjectivity is demonstrated.

9.3 Proofs of results from §6: Sherali-Adams relaxations

Theorem 17. For a hypergraph G = (V,E), and integer r such that maxE∈E |E| ≤ r ≤ |V |, there
is an affine score-preserving bijection

Lr(G)
Uproot

�
RootAt0

L̃0
r+1(∇G) .

Proof. The structure of the proof is as follows. We first construct the uprooting map Uproot, which
we will denote by Ψ : Lk(G)→ L̃0

k+1(∇G) for notational convenience, and show that it is bijective
by exhibiting its double-sided inverse, RootAt0, which we will denote by Φ : L̃0

k+1(∇G)→ Lk(G).
We then directly show that this bijection is affine and score-preserving.

To construct Ψ, let µ ∈ Lk(G), and define

Ψ(µ) = µ+ = (µ+
U ) U⊆V
|U\{0}|≤k

∈ L̃0
k+1(∇G)

as follows. We begin defining the measures µ+
U for subsets U not including the additional element

0 ∈ V + in the suspension graph; let U ⊆ V with |U | ≤ k. We define the ‘symmetrized’ measures

µ+
U (xU ) =

1

2

[
µU (xU ) + µU (xU )

]
∀xU ∈ {0, 1}U . (7)

Now turning our attention to subsets that do contain the new element 0 ∈ V +, we writeU+ = U∪{0},
and define:

µ+
U+(xU+) =

{
1
2µU (xU ) if x0 = 0
1
2µU (xU ) if x0 = 1

∀xU+ ∈ {0, 1}U
+

. (8)
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We define µ{0}(x0) to take value 1/2 for x0 = 0 and x0 = 1. We have now defined the entire
collection of probability measures µ+. Note that by construction, each individual measure in the
collection is flipping-invariant, and by observing the form of Equations (7) and (8), we observe that
the map is affine. We now demonstrate consistency of these measures. Let W ⊂ U ⊆ V ∪ {0}. We
aim to demonstrate

µ+
W (xW ) =

∑
yU∈{0,1}U
yW=xW

µ+
U (yU ) (9)

There are three cases to consider: (i) W 6⊆ V (i.e. both subsets contain 0), (ii) U ⊆ V (i.e. neither
subset contains 0), (iii) 0 ∈ U, 0 6∈ W . In the first two cases, the marginalization consistency
condition of Equation (9) follows immediately from the definitions in Equations (7) and (8), and
recalling the consistency of the collection of measures µ. For case (iii), we write U = A ∪ {0} for
A ⊂ V and directly calculate:∑

yU∈{0,1}U
yW=xW

µ+
U (yU ) =

∑
yU∈{0,1}U
yW=xW
y0=0

1

2
µA(yA) +

∑
yU∈{0,1}U
yW=xW
y0=1

1

2
µA(FA(yA))

=
∑

yA∈{0,1}A
yW=xW

1

2
µA(yA) +

∑
yA∈{0,1}A
yW=xW

1

2
µA(FA(yA))

=
∑

yA∈{0,1}A
yW=xW

µ+
A(yA) ,

so µ+
U and µ+

A are consistent. The consistency of µ+
U and µ+

W then follows from case (ii). Having
checked consistency, we have verified that the map Ψ : Lk(G)→ L̃0

k+1(∇G) is well-defined. We
now exhibit its inverse. Given η ∈ L̃0

k+1(∇G), we define Φ(η) = µ = (µU )|U |≤k ∈ Lk(G) as
follows. Given U ⊆ V , |U | ≤ k, write U+ = U ∪ {0}, and define

µU (xU ) = ηU+(x0 = 0, xU ) + ηU+(x0 = 1, xU )

We now directly show that for µ ∈ Lk(G), we have Φ(Ψ(µ)) = µ. We take |U | ≤ k, and note that
from our definitions of Ψ and Φ, we have for all xU ∈ {0, 1}U that

Φ(Ψ(µ))U (xU ) = µ+
U (xU , x0 = 0) + µ+

U (xU , x0 = 1) =
1

2
µU (xU ) +

1

2
µU (xU ) = µU (xU ) .

Now let µ ∈ L̃0
k+1(G). We demonstrate that µ′′ = Ψ(Φ(µ)) = µ. First, for U ⊆ V , |U | ≤ k, we

have

Ψ(Φ(µ))U (xU ) =
1

2

(
µ+
U (xU ) + µ+

U (xU )
)

=
1

2

(
µU∪{0}(xU , x0 = 0) + µU∪{0}(xU , x0 = 1)

+ µU∪{0}(xU , x0 = 0) + µU∪{0}(xU , x0 = 1)
)

=
1

2
(µU (xU ) + µU (xU ))

= µU (xU ) ,

where in the final equality we have used the flipping-invariance of µU . Secondly, for U ⊆ V , write
U+ = U ∪ {0}, and note

Ψ(Φ(µ))U+(xU+) =
1

2
µ+
U (xU )1[x0 = 0] +

1

2
µ+
U (xU )1[x0 = 1]

=
1

2
(µU+(xU , x0 = 0) + µU+(xU , x0 = 1))1[x0 = 0]

+
1

2

(
µU+(xU , x0 = 0) + µU+(xU ), x0 = 1)

)
1[x0 = 1]
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=
1

2

(
µU+(x+U ) + µU+(xU+)

)
1[x0 = 0]

+
1

2
(µU+(xU+) + µU+(xU+)))1[x0 = 1]

= µU+(xU+) ,

where again in the final equality we have used the flipping-invariance of µU+ .

Finally, to see that the map is score-preserving, let (θE)E∈E be a collection of potentials defining a
model on G = (V,E). Then for any µ+ ∈ L0

k+1(G), note that we have∑
E∈E

EXE∪{0}∼µ+
E∪{0}

[
θE∪{0}(XE∪{0})

]
=
∑
E∈E

∑
xE+∈{0,1}E+

θC+(xC+)µ+
E+(xE+)

=
∑
E∈E

 ∑
xE+∈{0,1}E

+

x0=0

θE+(xE+)µ+
E+(xE+) +

∑
xE+∈{0,1}E

+

x0=1

θE+(xE+)µ+
E+(xE+)



=
∑
E∈E

 ∑
xE+∈{0,1}E

+

x0=0

θE(xE)
1

2
µE(xE) +

∑
xE+∈{0,1}E

+

x0=1

θE(xE)
1

2
µE(xE)


=
∑
E∈E

∑
xC∈{0,1}C

θE(xE)µE(xE)

=
∑
E∈E

EXE∼µE [θE(XE)] ,

as required.

Lemma 19. If Lr is universally rooted for hypergraphs of maximum hyperedge degree p < r with
p even, then Lr is also universally rooted for r-admissible hypergraphs with maximum degree p+ 1.

Proof. The key observation is that given some set of variables xU of size p + 1, if we have a set
of flipping-invariant probability measures on {0, 1}W for each subset W ⊆ U of size p which are
consistent, then by Proposition 11, then a flipping-invariant probability measure over {0, 1}U is
specified by one additional parameter. The parameter corresponds to the even potential U , and is
given by

P(|{i ∈ U |xi = 1}| is even)

But since p+ 1 is odd, and we require the measure to be flipping-invariant, the only possible value for
this parameter must be 1/2. Moreover, taking the parameter to be 1/2 must yield a valid distribution
over {0, 1}U , as we assumed that the measures on each of {0, 1}W (W ⊆ U , |W | = p) were
consistent.

This demonstrates that given a hypergraphGwith maximum hyperedge degree p+1, we can construct
a new hypergraph G′ = (V,E′), with the same vertex set as G, and hyperedge set defined by

E′ = {E ∈ E||E| ≤ p} ∪ {U ⊂ V |U ⊆ E ∈ E, |E| = p+ 1 , |U | = p}

From our argument above, we have Lr(G) is in affine bijection with Lr(G′), and since G′ has
maximum hyperedge degree p, the statement of the lemma follows.

Theorem 20. L3 is universally rooted.
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Proof. We observe that it is straightforward to extend the analysis in the Appendix of [19] to
demonstrate that for any hypergraph of maximum hyperedge degree 2, there exists a score-preserving
affine bijection between L3(G) and each of its rerootings. We now combine this with the observation
of Lemma 19, taking p = 2, from which the statement of the theorem immediately follows.

Theorem 21. L3 is unique in being universally rooted. Specifically, for any integer r > 1 other
than r = 3, we constructively demonstrate a hypergraph G = (V,E) with |V | = r + 1 variables for
which L̃0

r+1(∇G) 6= L̃ir+1(∇G) for any i ∈ V .

Proof. For each k 6= 3, we shall constructively demonstrate a model M on hypergraph G as stated
such that the LP relaxation over Lk(G) is not tight for M but the LP relaxation over Lk(∇G \ {i})
is tight for every rerooted model Mi, i ∈ V .

Case 1: k is even. Let G = (V,E), with V = {1, . . . , k + 1}, and E the set of all subsets of V of
size k. Consider a model with the following set of potentials on this hypergraph:

θE(xE) = −1[#{i ∈ E|xi = 1} is even] ∀E ∈ E . (10)

The optimum score for a configuration xV ∈ {0, 1}V is −1. We show this by demonstrating (i) that
the optimum is at most -1 (which is all we need here), then (ii) that the optimum is at least -1. For (i):
Toward contradiction, assume that there exists a configuration that does not activate any of the θE
potentials, i.e. all k-clusters have an odd number of 1s. Pick one of the k-clusters and call it S. Since
k ≥ 2 is even, S contains at least one variable set to 0, call it x, and at least one set to 1, call it y.
Now V has k + 1 variables consisting of S together with one more variable z. If z = 0 then consider
the k-cluster T = S \ {y} ∪ {z}. If z = 1 then let T = S \ {x} ∪ {z}. In either case, T has an even
number of 1s, contradiction. For (ii): Consider the setting x1 = 1 with all other variables set to 0. All
k-clusters including x1 are inactive. There is just one k-cluster not including x1, and this k-cluster
has no 1s thus its potential is active. Hence, this configuration achieves a score of −1.

However, the set of pseudomarginal distributions in Lk(G) below attains a score of 0:

µE(xE) =
1

k

∑
i∈E

δxi=1,xE\{i}=0 ∀E ∈ E .

Now observe that when this model is uprooted, we have the hypergraph ∇G = (V +, E), where
V + = {0} ∪ V , and the hyperedge set E+ = E as before with the same set of potentials as in (10),
by Lemma 12. Therefore, rerooting at a variable i ∈ {1, . . . , k + 1} will result in a graphical model
on the graph∇G \ {i} with vertices {0, 1, . . . , k+ 1} \ {i}, and hyperedges given by one hyperedge
of size k (the original hyperedge which did not include i), which is {1, . . . , k + 1} \ {i}, along with
all subsets of {1, . . . , k + 1} \ {i} of size k − 1. In particular, the model consists of potentials over
the set of k variables {1, . . . , k + 1} \ {i}, and the variable X0 is independent from the rest of the
variables, with symmetric distribution on its state space {0, 1}. Therefore, the polytope Lk(∇G\{i})
is tight for this potential since it is effectively a model over k variables, proving the claim.

Case 2: k ≥ 5 is odd. Let k ≥ 5 be odd, and again let G = (V,E), with V = {1, . . . , k + 1}, this
time letting E be the set of all subsets of V of size k − 1 (an even number). Consider the following
set of potentials on this hypergraph

θE(xE) = −1[#{i ∈ E|xi = 1} is even] ∀E ∈ E .

We note that the polytope Lk(G) is not tight for this polytope, by considering the following set of
pseudomarginals over hyperedges of G:

µE(xE) =
1

k
δxi=0∀i∈E +

1

k

∑
i∈E

δxi=1,xE\{i}=0 ∀E ∈ E .

These are valid pseudomarginals in Lk(G), as the following distributions over k-clusters are consistent
and marginalize down to the distributions over hyperedges:

µU (xU ) =
1

k

∑
i∈U

δxi=1,xU\{i}=0 ∀U ⊆ V , |U | = k .
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Note that the score of this set of pseudomarginals is∑
E∈E
−µE(#{i ∈ E|xi = 1} is even) = −

(
k + 1

k − 1

)
1

k
= −k + 1

2

We now argue that this exceeds the maximum score obtainable by a configuration xV ∈ {0, 1}V ,
demonstrating non-tightness of Lk(G) for this model. To see this, let ` ∈ {0, . . . , k + 1} be the
number of non-zero coordinates of xV . We count the number of subsets U of {1, . . . , k + 1} of size
k − 1 for which xU has an even number of non-zero coordinates, and show that this is greater than
(k + 1)/2, leading to a score less than −(k + 1)/2. The number of such subsets is given by:

b`/2c∑
p=0

(
`

2p

)(
k + 1− l
k − 1− 2p

)
=


(k + 1)(k − 1)/2 ` = 0(
`
`−2
)(
k+1−l
k+1−l

)
+
(
`
`

)(
k+1−l
k−1−`

)
= `(`−1)

2 + (k+1−`)(k−`)
2 ` 6= 0 even(

`
`−1
)

+
(
k+1−`
k−`

)
= k + 1 ` odd.

For ` odd and ` = 0 the conclusion is clear, and for ` even and non-zero, we observe that the quadratic
expression in ` above is minimized at ` = (k + 1)/2 (which is an integer, as k is odd), and takes the
value (k2 − 1)/4, which is greater than (k + 1)/2 for all odd k ≥ 5 (though the two values are equal
for k = 3).

Now observe that when this model is uprooted and subsequently rerooted at a new variable i ∈ V , we
obtain a model on k + 1 variables, but with the variable X0, introduced by uprooting, independent
from the rest. Therefore, the model is effectively over only k variables, and hence it follows that
Lk(∇G \ {i}) is tight for this rerooting, proving the claim.

10 Additional Experimental Details and Results

In this section, we expand on the Experiments Section 7 of the main paper to provide:

• §10.1: Model structures and parameters used for libDAI
• §10.2: How we fit constants of the clamp selection heuristics
• §10.3: Additional experimental results

– §10.3.1: Timings
– §10.3.2: MAP inference
– §10.3.3: Marginals
– §10.3.4: Higher-order potentials over clusters of 5 and 6 variables
– §10.3.5: Comparison of our heuristics to the maxtW heuristic used in [19]
– §10.3.6: Larger models

• §10.4: Additional discussion

10.1 Model structures and parameters used for libDAI

In this section we give further information about the model structures used in our experiments, as
well as the methods of approximate inference used. All potentials are pure k-potentials, as in §5,
which for brevity we may write simply as a k-potential.

Complete graphs For complete graph experiments, there is a pure k-potential for each subset of k
variables, for k = 1, 2, 3, 4.

Grids All grids are square and toroidal. There is a 1-potential for each variable, and a 2-potential for
each edge of the graph. There is a 3-potential for each possible “L-shaped” connected subgraph of
size 3 (any of the four possible orientations), and a 4-potential for each cycle of size 4.

Potentials In our experiments, unless otherwise specified, the default is that all pure 2- and 4-
potential coefficients are drawn independently from Unif([−8, 8]) distributions, while all pure 1-
and 3-potential coefficients are set to 0. Using the notation of Section 7, in each experiment a
parameter Wmax is varied, and the default distribution of one class of pure potentials (either 1-, 2-,
3-, or 4-potentials) is overrided from the default specification to be replaced by coefficients from a
Unif([−Wmax,Wmax]) distribution.

LibDAI settings In all cases, we use the junction tree algorithm with Hugin updates for exact
inference. For approximate marginal inference, we use the LibDAI HAK implementation of [4], with
precise parameters passed to MATLAB given by:
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'[doubleloop=1,clusters=BETHE,init=UNIFORM,tol=1e-9,maxiter=10000]'.

For approximate marginal inference, we use the LibDAI BP loopy belief propagation implementation,
with precise parameters passed to MATLAB given by:

'[inference=MAXPROD,updates=SEQFIX,logdomain=1,tol=1e-9,maxiter=10000,damping=0.0]'

10.2 How we fit constants of the clamp selection heuristics

In this section we give further details of how the K and G heuristics used in our experiments were
fitted, expanding on the explanation given in Section 7. Using the notation developed in Section 7,
the family of heuristics we consider maximize the following measure

clamp-heuristic-measure(i) =
∑

i∈E:|E|=2

c2 tanh |t2aE |+
∑

i∈E:|E|=4

c4 tanh |t4aE | , (11)

over i ∈ V +, and are parametrized by the four scalars t2, c2, t4, c4. We first note that 11 is over-
parametrized (since we are interested only in ranking the scores for each variable in M+), so we take
c2 = 1. To fit the heuristic, we used gradient-free optimisation. For the K heuristic, we generated
a collection of graphical models on K8, and constructed a fitness function over the remaining
parameters t2, c4, t4, given by the average ranking of the rerooting selected by the heuristic for logZ
estimation across our collection of complete graphs.

We then initialized the parameters t2 = 0, c4 = 1, t4 = 0, and performed a local exploration of the
parameter space dictated by a Gaussian random walk, updating our parameter settings when they led
to an improvement in the value of the fitness function.

The G heuristic was constructed similarly, instead using a collection of grids to define the fitness
function.

The precise values of the fitted heuristics are given below:

K-heuristic-measure(i) =
∑

i∈E:|E|=2

c2 tanh |0.051aE |+
∑

i∈E:|E|=4

0.091 tanh |1.482aE |,

G-heuristic-measure(i) =
∑

i∈E:|E|=2

c2 tanh |0.019539aE |+
∑

i∈E:|E|=4

0.3788 tanh |0.033997aE |.

The heuristic of [19], maxtW , applied only to pairwise models, and in the notation of our paper, was
given by the following clamping score measure:

clamp-heuristic-measure(i) =
∑

i∈E:|E|=2

tanh |1
2
aE |. (12)

Recognizing that the benefits of our heuristics appeared somewhat robust to exact parameter choice,
when we extended analysis to 6-potentials in §10.3.4, we extended our K heuristic by eye (without
fitting to any data, and before examining the results for higher order models), and explore a variant
on the G heuristic. We used the following measures:

K-heuristic-measure(i) =
∑

i∈E:|E|=2

tanh |0.2aE |+
∑

i∈E:|E|=4

1

3
tanh |1.2aE |+

∑
i∈E:|E|=6

1

5
tanh |3aE |,

G-heuristic-measure(i) =
∑

i∈E:|E|=4

|aE |.

10.3 Additional experimental results

We provide the following:

• §10.3.1: Timings
• §10.3.2: MAP inference
• §10.3.3: Marginals
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• §10.3.4: Higher-order potentials over clusters of 5 and 6 variables
• §10.3.5: Comparison of our heuristics to the maxtW heuristic used in [19]
• §10.3.6: Larger models

In all plots, if the red curve for the K heuristic is not visible, it coincides with the green curve for the
G heuristic. We use consistent legends across all plots.

10.3.1 Timings

Times in seconds to run marginal inference (i.e. estimating logZ and marginals) using libDAI are
shown in Figure 3. Inference for rerooted models took a similar amount of time as for the original
model. We caution against relying heavily on the accuracy of these timings since we made no attempt
to optimize our code for speed, and we ran our inference algorithms in a cluster environment beyond
our control.

Time/sec to run marginal inference for K8 complete hypergraphs (fully connected) on 8 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 3: Average time to perform marginal inference using libDAI over 20 runs. If not shown, Wmax max
coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. Best and worst refer to
the rerootings which ex post gave the lowest error in estimating logZ. See §10.3.1.

10.3.2 MAP inference

Results are shown in Figure 4. We observe here that rerooting does not help much when 1-pots are
varied, but can provide great benefit for the other cases shown. The K heuristic (which was trained
on complete graphs like the one we analyze here) performs well in all settings. Curiously, the G
heuristic (which was trained only on grids) performs well when 2-pots or 4-pots are varied, but not
when 3-pots are varied (though even here it does no worse than the original rooting). We aim to
explore this further in future work.

Error in estimating MAP score for K8 complete hypergraphs (fully connected) on 8 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 4: Average error in estimating MAP score using libDAI over 20 runs. If not shown, Wmax max
coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. Best and worst refer to
the rerootings which ex post gave the lowest error in estimating logZ. See §10.3.2.

10.3.3 Marginals

Results are shown in Figure 5. Our models were selected to present an interesting range of problems
for partition function estimation, which led to marginals often being challenging to estimate. Still,
results for marginal inference were often improved by rerooting.

We note that another natural way to estimate marginals is as the ratio of a clamped partition function to
the original partition function. Since we have seen good evidence that rerooting can help significantly
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with partition function estimation, it is reasonable to hope that in future work, we may observe
significant benefits to marginal inference via this approach by using rerooting.

Error in estimating 1-marginals for K8 complete hypergraphs (fully connected) on 8 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 5: Average `1 error in estimating marginals (minimal representation corresponding to pure k-potentials,
see §5) using libDAI over 20 runs. If not shown, Wmax max coefficients for pure k-potentials are 0 for k = 1, 8
for k = 2, 0 for k = 3, 8 for k = 4. Best and worst refer to the rerootings which ex post gave the lowest error in
estimating logZ. See §10.3.3.

10.3.4 Higher-order potentials over clusters of 5 and 6 variables

Results for a complete hypergraph K8 on 8 variables, this time with potentials up to order 6, are
shown in Figure 6. In all cases, rerooting using our heuristics is very helpful.

Error in estimating logZ (left) and MAP score (right) for K8 hypergraphs on 8 variables with potentials up to order 6.

vary Wmax for 5-pots vary Wmax for 6-pots vary Wmax for 5-pots vary Wmax for 6-pots

Figure 6: Average error in estimating logZ (left) and MAP score (right) using libDAI over 20 runs. If not
shown, Wmax max coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. Best
and worst refer to the rerootings which ex post gave the lowest error in estimating logZ. See §10.3.4.

10.3.5 Comparison of our heuristics to the maxtW heuristic used in [19]

Results for a complete graph K8 on 8 variables, this time with potentials only up to order 2, are
shown in Figure 7. We have added the earlier maxtW heuristic used in [19], which using our notation
corresponds to setting t2 = 1

2 in (5). Note that for the pairwise models considered here, the clamp
heuristic constants for potentials of order higher than 2 are irrelevant.

We observe that our K and G heuristics (which were fit on different models with potentials up to
order 4, so here are out of sample) achieve similar performance to the earlier maxtW heuristic, in fact
yielding slightly better results. This is encouraging evidence for robustness of the simple form of
heuristic score (5).

10.3.6 Larger models

Results for a complete hypergraph K10 on 10 variables (potentials up to order 4) are shown in Figure
8. Results are qualitatively similar to those for smaller models in §7 of the main paper.

10.4 Additional discussion

When discussing pure k-potentials in §5, we observed that for a pure k-potential (which we showed
must essentially be an even k-potential) with k an even number, θE(xE) = θE(xE). This means that
the coefficient of any such k-potential is invariant with respect to a flipping of all variables of the
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Average abs(error) in logZ for K8 complete pairwise graphs (fully connected) on 8 variables:
adding earlier maxtW heuristic for comparison (our K and G heuristics coincide on these runs).

vary Wmax for 1-pots vary Wmax for 2-pots

Figure 7: Error in estimating logZ for random pairwise models with various pure k-potentials over 20 runs. If
not shown, Wmax max coefficients for pure k-potentials are 8 for k = 1, and 8 for k = 2. K and G heuristics
coincide. See §10.3.5.

Average abs(error) in logZ for K10 complete hypergraphs (fully connected) on 10 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 8: Error in estimating logZ for random models with various pure k-potentials over 20 runs. If not
shown, Wmax max coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. See
§10.3.6.

model (whereas the if k is an odd number, the coefficient will flip sign). Hence for k even, the sign of
the coefficient may be regarded as a fundamental property of the potential.

When k = 2 this sign dicatates the submodularity or supermodularity of the 2-potential. If all
potentials are pure 2-potentials with positive coefficients, then the model is regular or ferromagnetic
and typically admits easier inference.

For higher k, this is no longer true. However, note that still if we represent a model’s potentials in
terms of pure k-potentials, and all have k even with a positive coefficient, then the model is special in
the sense that:

• The configurations of all 0s and all 1s must be mode configurations, typically with signifi-
cantly higher probabilities than others.

• Inference will typically be relatively straightforward.
• If the model is rerooted, then this will effectively clamp all variables close to 0 or 1 and the

error of approximate inference should be low.
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