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Motivation: undirected graphical models

Powerful way to represent relationships across variables

Many applications including: computer vision, social network
analysis, deep belief networks, protein folding...

In this talk, focus on binary pairwise (Ising) models

Example: Grid for computer vision (attractive)
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Motivation: undirected graphical models

Example: Part of epinions social network (mixed)

Figure courtesy of N. Ruozzi
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Motivation: undirected graphical models

x4 x5 x6 x7 x8

x1 x2 x3

Example: Restricted Boltzmann machine (mixed)

A fundamental problem is marginal inference

Estimate marginal probability distribution of one variable

p(x1) =
∑

x2,...,xn

p(x1, x2, . . . , xn)

Closely related to computing the partition function

Computationally intractable, focus on approximate methods

Our theme: combining approximate inference with clamping
can be very fruitful as a proof technique, and in practice
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Background: Binary pairwise models

Binary variables X1, . . . ,Xn ∈ {0, 1}
Singleton and pairwise potentials θ

Write θ · x for the total score of a complete configuration

Probability distribution given by

p(x) =
1

Z
exp(θ · x)

To ensure probabilities sum to 1, need normalizing constant

Z =
∑

x exp (θ · x)

Z is the partition function, a fundamental quantity we’d like
to compute or approximate
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Background: A variational approximation

Recall p(x) =
1

Z
exp(θ · x)

Exact inference may be viewed as optimization,

logZ = max
µ∈M

[ θ · µ+ S(µ) ]

M is the space of marginals that are globally consistent, S is
the (Shannon) entropy

Bethe makes two pairwise approximations,

logZB = max
q∈L

[ θ · q + SB(q) ]

L is the space of marginals that are pairwise consistent, SB is
the Bethe entropy approximation

Loopy Belief Propagation finds stationary points of Bethe

For models with no cycles (acyclic), Bethe is exact ZB = Z
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Background: When is Bethe a good approximation?

We know that Bethe is exact for acyclic models, ZB = Z

When else does Bethe perform well?

‘Tree-like models’: models with long cycles or weak potentials

Also: attractive models (all edges attractive)

Sudderth, Wainwright and Willsky (NIPS 2007) used loop
series to show that for a subclass of attractive binary pairwise
models, ZB ≤ Z

Conjectured ZB ≤ Z for all attractive binary pairwise models

Proved true by Ruozzi (NIPS 2012) using graph covers

Here we provide a separate proof building from first principles,
and also derive an upper bound for Z in terms of ZB

We use the idea of clamping variables
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Background: What is clamping?

x2

x3
x4

x1

x5

x10
x6
x7

x9
x8

Example model

To compute the partition function Z , can
enumerate all states and sum

x1x2 . . . x10 score exp(score)

0 0 . . . 0 1 2.7
0 0 . . . 1 2 7.4
. . . . . . . . .
0 1 . . . 1 1.3 3.7
1 0 . . . 0 -1 0.4
1 0 . . . 1 0.2 1.2
. . . . . . . . .
1 1 . . . 1 1.8 6.0

Total Z = 47.1
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Background: What is clamping?

x2

x3
x4

x5

x10
x6
x7

x9
x8

x1

Can split Z in two: clamp variable X1 to each of
{0, 1}, then add the two sub-partition functions:

Z = Z |X1=0 + Z |X1=1

After we clamp a variable, it may be removed

x1x2 . . . x10 score exp(score)

0 0 . . . 0 1 2.7
0 0 . . . 1 2 7.4
. . . . . . . . .
0 1 . . . 1 1.3 3.7 27.5

1 0 . . . 0 -1 0.4
1 0 . . . 1 0.2 1.2
. . . . . . . . .
1 1 . . . 1 1.8 6.0 19.6

Total Z = 47.1

p(X1 = 1) =
Z |X1=1

Z
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Background: What is clamping?

x2

x3
x4

x5

x10
x6
x7

x9
x8

x1

Can split Z in two: clamp variable X1 to each of
{0, 1}, then add the two sub-partition functions:

Z = Z |X1=0 + Z |X1=1

After we clamp a variable, it may be removed

After removing the clamped variable, if the remaining
sub-models are acyclic then can find sub-partition functions
efficiently (BP, Bethe approximation is exact on trees)

If not,

Can repeat: clamp and remove variables until acyclic, or
Settle for approximate inference on sub-models

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1

Will this lead to a better estimate than approximate inference
on the original model? Always? Often but not always
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A variational perspective on clamping

Bethe approximation

logZB = max
q∈L

[ θ · q + SB(q) ]

Observe that when Xi is clamped, we optimize over a subset

logZB |Xi=0 = max
q∈L:qi=0

[ θ · q + SB(q) ]

⇒ ZB |Xi=0 ≤ ZB , similarly ZB |Xi=1 ≤ ZB

Recap of Notation

Z true partition function
ZB Bethe optimum partition function

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1

≤ 2ZB

approximation obtained when
clamp and sum approximate

sub-partition functions
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Clamping variables: an upper bound on Z

From before,

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1 ≤ 2ZB

Repeat: clamp and remove variables, until remaining model is
acyclic, where Bethe is exact

For example, if must delete 2 variables Xi ,Xj , obtain

Z
(ij)
B :=

∑
a,b∈{0,1}

ZB |Xi=a,Xj=b ≤ 22ZB

But sub-partition functions are exact, hence LHS = Z

x2

x3
x4

x1

x5

x10
x6
x7

x9
x8

x2

x3
x4

x5

x10
x6
x7

x9
x8

x1

x3
x4

x5

x10
x6
x7

x9
x8

x1

x2
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Clamping variables: an upper bound on Z

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1 ≤ 2ZB

Repeat: clamp and remove variables, until remaining model is
acyclic, where Bethe is exact

Let k(G ) be the minimum size of a feedback vertex set

Theorem (result is tight in a sense)

Z ≤ 2kZB
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Attractive models: a lower bound on Z

An attractive model is one with all edges attractive

Recall definition,

Z
(i)
B := ZB |Xi=0 + ZB |Xi=1

Theorem (actually show a stronger result, ask if interested)

For an attractive binary pairwise model and any Xi , ZB ≤ Z
(i)
B

Repeat as before: ZB ≤ Z
(i)
B ≤ Z

(ij)
B ≤ · · · ≤ Z

Corollary (similar proof to earlier result; first proved Ruozzi, 2012)

For an attractive binary pairwise model, ZB ≤ Z

⇒ each clamp and sum can only improve ZB
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Recap of results so far

We have used clamping as a proof technique

Derived lower and upper bounds on Z for attractive models

ZB ≤︸ ︷︷ ︸
attractive only

Z ≤ 2kZB︸ ︷︷ ︸
attractive and mixed

⇔ Z

2k
≤ ZB ≤ Z︸︷︷︸

attractive only

We also proved that for attractive models, clamping and
summing (optimum) Bethe sub-partition functions can only
improve the estimate

How about for mixed models?
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Example: here clamping any variable worsens ZB estimate

x1 x2

x3x4

Blue edges are attractive with edge weight +2
Red edges are repulsive with edge weight −2
No singleton potentials

(performance is only slightly worse with clamping)

In practice, if we pick a good variable to clamp, then clamping
is usually helpful
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New work: what does clamping do for MF and TRW?

Mean field (MF) approximation assumes independent
variables, yields a lower bound, ZM ≤ Z

Tree-reweighted (TRW) is a pairwise approximation similar to
Bethe but allows a convex optimization and yields an upper
bound, Z ≤ ZT ZM ≤ Z ≤ ZT

Earlier, we showed that for Bethe, clamping always improves
the approximation for attractive models; often but not always
improves for mixed models

How about for MF and TRW? ZM ≤ ZB ≤ ZT

Theorem

For both MF and TRW, for attractive and mixed models, clamping
and summing approximate sub-partition functions can only improve
the respective approximation and bound (any number of labels).
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Error in log Z vs number of clamps: grids
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Conclusions for practitioners

Typically Bethe performs very well

Clamping can be very helpful, more so for denser models with
stronger edge weights, a setting where inference is often hard

We provide fast methods to select a good variable to clamp

MF and TRW provide useful bounds on Z and ZB

Thank you

For more information, see
http://mlg.eng.cam.ac.uk/adrian/
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Supplementary material

Extra slides for questions or further
explanation
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Error in log Z vs number of clamps: complete graphs
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For dense mixed models (many edges),

MF can be better than Bethe

What happens if we increase edge strength?
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Error in log Z vs number of clamps: complete graphs
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With stronger edges, MF is much better than Bethe!

But MF assumes variables are independent, what’s going on?

Frustrated cycles cause Bethe to overestimate by a lot
TRW is even worse
MF behaves much better (in marginal polytope)
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Time (secs) vs error in log Z for various methods

Mixed models, Wij ∼ U[−6, 6]
Time shown on a log scale
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Clamping can make the subsequent optimization problems
easier, hence sometimes total time with clamping is lower
while also being more accurate
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Clamping variables: strongest result for attractive models

logZB = maxq∈L [ θ · q + SB(q) ]

For any variable Xi and x ∈ [0, 1], let qi = q(Xi = 1) and

logZBi (x) = maxq∈L:qi=x [ θ · q + SB(q) ]

ZBi (x) is ‘Bethe partition function constrained to qi = x ’

Note: ZBi (0) = ZB |Xi=0, ZBi (x
∗) = ZB , ZBi (1) = ZB |Xi=1

Define new function,

Ai (x) := logZBi (x)− Si (x)

Theorem (implies all other results for attractive models)

For an attractive binary pairwise model, Ai (x) is convex

Builds on derivatives of Bethe free energy from [WJ13]
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Experiments: Which variable to clamp?

Compare error | logZ − logZ
(i)
B | to original error | logZ − logZB |

for various ways to choose which variable Xi to clamp:

best Clamp best improvement in error of Z in hindsight

worst Clamp worst improvement in error of Z in hindsight

avg Clamp average performance

maxW max sum of incident edge weights
∑

j∈N(i) |Wij |
Mpower more sophisticated, based on powers of related matrix

x2

x3
x4

x1

x5

x10
x6
x7

x9
x8

x10

x1
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Experiments: attractive random graph n = 10, p = 0.5

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

Observe

Clamping any variable helps
significantly

Our selection methods
perform well
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Experiments: mixed random graph n = 10, p = 0.5

unary θi ∼ U[−2, 2],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Results remain promising
for higher n 2 4 8 12 16
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Experiments: attractive complete graph n = 10, TRW

unary θi ∼ U[−0.1, 0.1],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Note low unary potentials
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Experiments: mixed complete graph n = 10, TRW

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

Note regular singleton

potentials
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Experiments: attractive random graph n = 50, p = 0.1

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

‘worst Clamp’ performs worse

here due to suboptimal

solutions found by Frank-Wolfe
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Experiments: mixed random graph n = 50, p = 0.1

unary θi ∼ U[−2, 2],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Performance still good for

clamping just one variable
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Experiments: attractive ‘lamp’ graph

unary θi ∼ U[−2, 2],
edge Wij ∼ U[0,Wmax ]

Error of estimate of logZ

Mpower performs well,

significantly better than maxW
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Experiments: mixed ‘lamp’ graph

unary θi ∼ U[−2, 2],
edge Wij ∼ U[−Wmax ,Wmax ]

Error of estimate of logZ

Mpower performs well,

significantly better than maxW
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