Orthogonal estimation of Wasserstein distances
Mark Rowland™, Jiri Hron", Yunhao Tang

Krzysztof Choromanski, Tamas Sarlos, Adrian Weller

Wasserstein distances

« A class of metrics between probability distributions
« Naturally incorporate spatial information

« Applications from economics to machine learning

Def: For a metric space (X, d), the p-Wasserstein
distance between distributions j,v € P(X) is

Wolp, v) :—( inf / d(w,y)pdv(x,y)>l/p,

vEL (p,v)
where I'(u,v) € P(X x X) is the set of joint
distributions with marginals 1 and v.

Source: commons.wikimedia.org/w/index.php?curid=64872543

Unfortunately, computation of W,(u, v) is often very
expensive or outright intractable.

Sliced Wasserstein distance

Computational complexity improves if X = R?,
o= 230 0y, vo= >0 6, and d(z,y) =
|z —y||2, as computation of W), reduces to a match-
ing problem with O(n°?logn) complexity.

It d = 1, problem further reduces to sorting with
complexity O(nlogn). Sliced Wasserstein distances
take advantage of this computational speed up.

SWy, : lllustration of a single projection of 1, with n =4 and d = 2

Def: The p-sliced Wasserstein distance
between = +>"" 5, and v ==3"" 0, is

1 n
{'v — y i/ T \Yy Yo, (1 P
(3 2ot gl

v ~ Unif(S*1Y), and o,: [n] — [n] the bijective
mapping with the property that

11/p

SWP(M) V) =

(v, 25) < v, 25) = (U, Yo,(i)) < (Vs Yo (j)) -

Our contributions

« Analysis of an estimator of sliced Wasserstein
distance based on orthogonal coupling

« Exploration of a new Woasserstein-like metric,
projected Wasserstein distance

Projected Wasserstein distance

Idea: Use the coupling o, for v ~ Unif(S?!) as
SW,, but assign cost in (R?, ||-]|2) like W,,.

Def: T7he p-projected Wasserstein distance
between = +>"" 8, and v ==-3"" 0, is

1 n 11/p
(23 e = wmo )
i=1 -

where v and o, are as in the definition of SW, .

PWP(M? V) =

)

Properties:

For any two distributions p,v € P, (RY) =
{% D it 0z, {xi}, CRY}, n €N, and any p > 1:

« PW, (1, v) is a metric
o SWi(p, v) < W, v) < PWy(p, v)

PW, shares many properties with W, and 5W
. Helps with theoretical analysis of 5W,

. PW,, may be of independent interest

MC and orthogonal coupling

The computation of the expectation over v ~
Unif(S97Y) in SW (resp. PW) is often intractable
= estimate via MC integration:

: L\
o S (V)] & m Z ACHE
j=1
with f,,: S“! — R defined as in SW (resp. PW).

Idea: Instead of i.i.d., sample {v;}7"; uniformly at
random from the space of orthogonal matrices.

Mean squared error analysis

MSE can be understood through a o, induced
partition of S ' =) .. E, B, ={v:0,=0}.

oceS,

Lem: E, is a finite union of simply connected sets.

S9=1 partition: o, changes whenever (v, z; — x;)=0or (v,y; —y;) =0

Prop: An unbiased estimator for which
IP)(UZ' c b, V; € ET) > IP)(UZ - Eg) IP)(”U]' - ET) ,

1 # 9,0 #* 7, has MSE strictly lower than i.i.d.

= Stratification w.r.t. the o, induced partition
leads to improved MSE. The number of possible
o € S, is n! though, making direct stratification
computationally infeasible.
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Idea: View orthogonal coupling of the directions
{v;}"L; as an approximation to stratification.
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MSE (SW): d = 2 (left), d = 50 (right); n = 2 (top); n = 10 (bottom)

Prop: Let n = 2,d = 2. Then orthogonal coupling
dominates i.i.d. in terms of MSE for the projected
Wasserstein, but not sliced Wasserstein distance.

Difference between PW, and SW, reveals why or-
thogonal coupling sometimes hurts SW,, estimation:

Prop: Let F = o(E,: 0 € S,), and {v;}"", be
orthogonally coupled. Then {E| i W(vi) | F] Ly are
pairwise independent, but the same is not true with
fi\y Pairwise independence ensures stratification.

Effect on downstream tasks

Sampling orthogonally coupled vectors

Exact: Sample i.i.d. and apply Gram-Schmidt

Approximate: Use HZL H;D;, H; a scaled Hadamard
matrix, D; a diagonal Rademacher matrix

Sliced Wasserstein AE (Kolouri et al.)

Set-up: Encoder hy: RY — R”, decoder g,: R¥ —
R?, empirical distribution Px (MNIST), prior Py.

Crlllgo(ho(X)) = X7 + SWi((ho) Py, Pz).

— |.I.D. estimate
— Orthogonal estimate
—— HD estimate

} —— 1.1.D. estimate 10
— Orthogonal estimate
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SGD training: Orthogonality reduces gradient variance

Trustregion policy optimisation (Schulmanetal.)

Set-up: Policy my: s; — a; and a fixed MDP.
Maximise J(mg) = E.[> ,~ 7'rs]. Each step con-
strained by D(6;,0,,1) < e with D = SW;, PW; .

Cumulative rewards
Cumulative rewards

—— No trust region
—— Trust region by SW
—— Trust region by PW

—— Trust region by SW
—— Trust region by PW
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Training curves: Hopper (left), HalfCheetah (right); 5 random seeds

Summary & future work

. Orthogonal coupling often improves MSE

« MSE improvement linked to stratified sampling

« Experimentally, reduced variance can help with
downstream tasks but more research needed



