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Wasserstein distances

• A class of metrics between probability distributions

•Naturally incorporate spatial information

• Applications from economics to machine learning

Def: For a metric space (X , d), the p-Wasserstein
distance between distributions µ, ν ∈ P(X ) is

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
d(x, y)p dγ(x, y)

)1/p

,

where Γ(µ, ν) ⊆ P(X × X ) is the set of joint
distributions with marginals µ and ν.

Source: commons.wikimedia.org/w/index.php?curid=64872543

Unfortunately, computation of Wp(µ, ν) is often very
expensive or outright intractable.

Sliced Wasserstein distance

Computational complexity improves if X = Rd,
µ = 1

n

∑n
i=1 δxi, ν = 1

n

∑n
i=1 δyi and d(x, y) =

‖x−y‖2, as computation of Wp reduces to a match-
ing problem with O(n5/2 log n) complexity.

If d = 1, problem further reduces to sorting with
complexity O(n log n). Sliced Wasserstein distances
take advantage of this computational speed up.

SWp : Illustration of a single projection of µ, ν with n = 4 and d = 2

Def: The p-sliced Wasserstein distance
between µ = 1

n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi is

SWp(µ, ν) :=

[
Ev
(

1

n

n∑
i=1

|〈v, xi〉−〈v, yσv(i)〉|
p

)]1/p

,

v ∼ Unif(Sd−1), and σv : [n] → [n] the bijective
mapping with the property that

〈v, xi〉 < 〈v, xj〉 ⇒ 〈v, yσv(i)〉 ≤ 〈v, yσv(j)〉 .

Our contributions

• Analysis of an estimator of sliced Wasserstein
distance based on orthogonal coupling

• Exploration of a new Wasserstein-like metric,
projected Wasserstein distance

Projected Wasserstein distance

Idea: Use the coupling σv for v ∼ Unif(Sd−1) as
SWp , but assign cost in (Rd, ‖·‖2) like Wp .

Def: The p-projected Wasserstein distance
between µ = 1

n

∑n
i=1 δxi and ν = 1

n

∑n
i=1 δyi is

PWp(µ, ν) :=

[
Ev
(

1

n

n∑
i=1

‖xi − yσv(i)‖
p
2

)]1/p

,

where v and σv are as in the definition of SWp .

Properties:

For any two distributions µ, ν ∈ P(n)(Rd) :=

{1
n

∑n
i=1 δxi :{xi}ni=1⊂Rd}, n ∈ N, and any p ≥ 1:

• PWp(µ, ν) is a metric

• SWp(µ, ν) ≤Wp(µ, ν) ≤ PWp(µ, ν)

PWp shares many properties with Wp and SWp :

•Helps with theoretical analysis of SWp

• PWp may be of independent interest

MC and orthogonal coupling

The computation of the expectation over v ∼
Unif(Sd−1) in SW (resp. PW) is often intractable
⇒ estimate via MC integration:

Ev[fµ,ν(v)] ≈ 1

m

m∑
j=1

fµ,ν(vj) ,

with fµ,ν : Sd−1→ R defined as in SW (resp. PW).

Idea: Instead of i.i.d., sample {vj}mj=1 uniformly at
random from the space of orthogonal matrices.

Mean squared error analysis

MSE can be understood through a σv induced
partition of Sd−1 =

⋃
σ∈SnEσ , Eσ :={v : σv = σ} .

Lem: Eσ is a finite union of simply connected sets.

Sd−1 partition: σv changes whenever 〈v, xi−xj〉 = 0 or 〈v, yi− yj〉 = 0

Prop: An unbiased estimator for which

P(vi ∈ Eσ, vj ∈ Eτ) > P(vi ∈ Eσ)P(vj ∈ Eτ) ,

i 6= j , σ 6= τ , has MSE strictly lower than i.i.d.

⇒ Stratification w.r.t. the σv induced partition
leads to improved MSE. The number of possible
σ ∈ Sn is n! though, making direct stratification
computationally infeasible.

Idea: View orthogonal coupling of the directions
{vj}mj=1 as an approximation to stratification.
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MSE (SW): d = 2 (left), d = 50 (right); n = 2 (top); n = 10 (bottom)

Prop: Let n = 2, d = 2. Then orthogonal coupling
dominates i.i.d. in terms of MSE for the projected
Wasserstein, but not sliced Wasserstein distance.

Difference between PWp and SWp reveals why or-
thogonal coupling sometimes hurts SWp estimation:

Prop: Let F := σ(Eσ : σ ∈ Sn), and {vj}mj=1 be
orthogonally coupled. Then {E[fPW

µ,ν (vj) | F ]}mj=1 are
pairwise independent, but the same is not true with
f SW
µ,ν . Pairwise independence ensures stratification.

Effect on downstream tasks

Sampling orthogonally coupled vectors

Exact: Sample i.i.d. and apply Gram-Schmidt

Approximate: Use
∏L

l HlDl, Hl a scaled Hadamard
matrix, Dl a diagonal Rademacher matrix

Sliced Wasserstein AE (Kolouri et al.)

Set-up: Encoder hθ : Rd → Rk, decoder gφ : Rk →
Rd, empirical distribution PX (MNIST), prior PZ.

EPX[‖gφ(hθ(X))−X‖2] + SW1((hθ)#PX, PZ) .

SGD training: Orthogonality reduces gradient variance

Trustregionpolicyoptimisation(Schulmanetal.)

Set-up: Policy πθ : st 7→ at and a fixed MDP.
Maximise J(πθ) = Eπθ[

∑∞
t=0 γ

trt]. Each step con-
strained by D(θt, θt+1) ≤ ε with D = SW1,PW1 .

Training curves: Hopper (left), HalfCheetah (right); 5 random seeds

Summary & future work

•Orthogonal coupling often improves MSE

•MSE improvement linked to stratified sampling

• Experimentally, reduced variance can help with
downstream tasks but more research needed


