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SUMMARY

e We focus on binary pairwise graphical models (i.e. binary variables X, ..., X, € {0,1}" with singleton and edge potentials).

e We show that each model is in an equivalence class, allowing a user easily to select whichever model is most beneficial for analysis or inference.
e This generalizes earlier theoretical results and is useful in practice, particularly for dense models with weak singleton potentials.

e The approach is related to clamping but demonstrates new insights and results, and obtains a clamping ‘for free’.
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e Singleton and edge potentials are essentially
the same, only appear different due to choice
of rooting.

e We introduce maxtW: strength of an edge weight satu-
rates, works well in our context

EXPERIMENTS ON RANDOM MODELS (USING BETHE APPROX) AND DISCUSSION
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