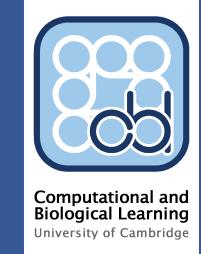


Uprooting and Rerooting Graphical Models Adrian Weller, University of Cambridge



SUMMARY

We focus on binary pairwise graphical models (i.e. binary variables X₁,..., X_n ∈ {0,1}ⁿ with singleton and edge potentials).
We show that each model is in an equivalence class, allowing a user easily to select whichever model is most beneficial for analysis or inference.
This generalizes earlier theoretical results and is useful in practice, particularly for dense models with weak singleton potentials.
The approach is related to clamping but demonstrates new insights and results, and obtains a clamping 'for free'.

UPROOTING

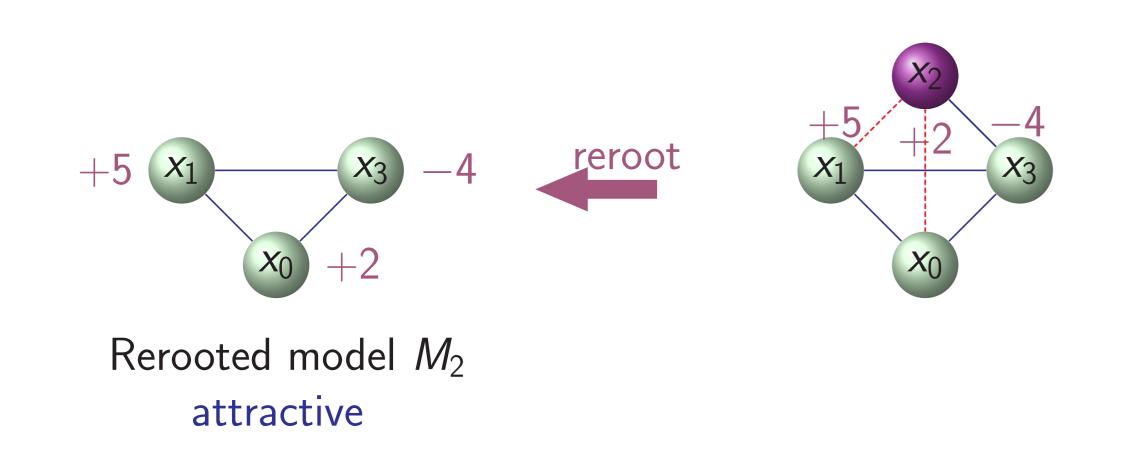
Transform singleton potentials \longrightarrow edge potentials to X_0 **Score for an edge iff its end variables are different** M^+ is fully symmetric with no singleton potentials M is M^+ with X_0 clamped to 0, write $M = M_0$

If we don't clamp, each config of $M \rightarrow$ pair of configs of M^+ with the same score, e.g. $\frac{x_1 \ x_2 \ x_3}{1 \ 0 \ 1} \rightarrow \begin{cases} \frac{x_0 \ x_1 \ x_2 \ x_3}{0 \ 1 \ 0 \ 1} \\ 1 \ 0 \ 1 \ 0 \end{cases}$

0	1	0	1	\checkmark		\checkmark	\checkmark		\checkmark
0	1	1	0	\checkmark	\checkmark			\checkmark	\checkmark
0	1	1	1	\checkmark	\checkmark	\checkmark			
1	0	0	0	\checkmark	\checkmark	\checkmark			
1	0	0	1	\checkmark	\checkmark			\checkmark	\checkmark
1	0	1	0	\checkmark		\checkmark	\checkmark		\checkmark
1	0	1	1	\checkmark			\checkmark	\checkmark	
1	1	0	0		\checkmark	\checkmark	\checkmark	\checkmark	
1	1		1		\checkmark		\checkmark		\checkmark
1	1	1	0			\checkmark		\checkmark	\checkmark
1	1	1	1						

0 $1 \ 0 \ 1 | \checkmark$ \checkmark $0 1 1 0 \checkmark \checkmark$ The original model $M=M_0$ is M^+ $1 0 0 0 \checkmark \checkmark \checkmark$ 'rooted at' $x_0 = 0$. | 1 0 0 1 | \checkmark \checkmark This is one way to $1 \ 0 \ 1 \ 0 \ \checkmark$ \checkmark select one config from $1 \ 0 \ 1 \ 1 \ \checkmark$ \checkmark \checkmark each color pair. 1 1 0 0 $\checkmark \checkmark \checkmark \checkmark \checkmark$ $1 \ 1 \ 0 \ 1$ 1 1 1 0 1 1 1 1

REROOTING



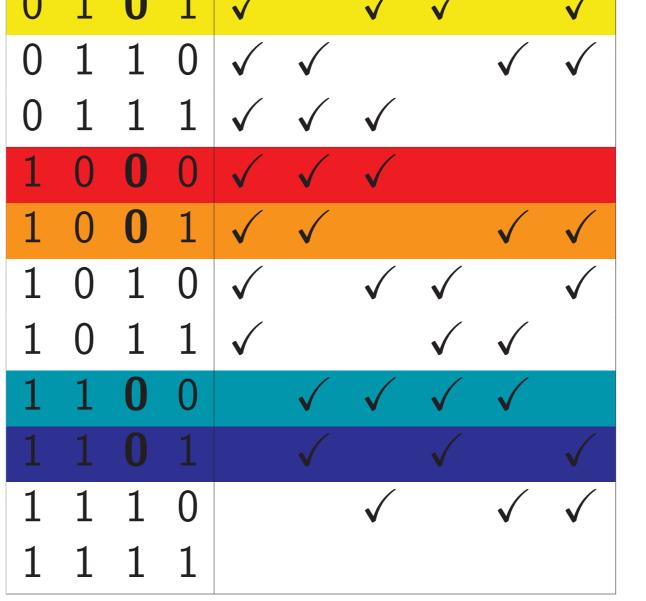
Rerooting Observations

- Rerooted models $\{M_i\}$ form an equivalence class, each has the same 'parent' uprooted model M^+ .
- Score-preserving 1-1 correspondence ∀i, configs of M_i ↔ configs of M₀.
 Inference (exact or approx) on any M_i allows

How should we pick a good root variable?

- Same as choosing a variable to clamp in M^+ .
- Rerooting substitutes an implicit initial clamp choice for a well chosen one 'for free'.
- Several existing good methods, including *maxW*. Idea: break heavy cycles and also 'spread influence'.
 We introduce *maxtW*: strength of an edge weight saturates, works well in our context

equivalent model M₂. Observe that again, this selects one config from each color pair.



 M^+ config edges: \checkmark if ends diff

simple recovery of info for M_0 .

- ★ Each M_i has the same partition function. ★ MAP config of $M_i \rightarrow$ recover MAP config of M_0 .
- * Marginals of $M_i \rightarrow$ recover marginals of M_0 .
- Inference may be much faster / more accurate on some M_i .
- Singleton and edge potentials are essentially the same, only appear different due to choice of rooting.

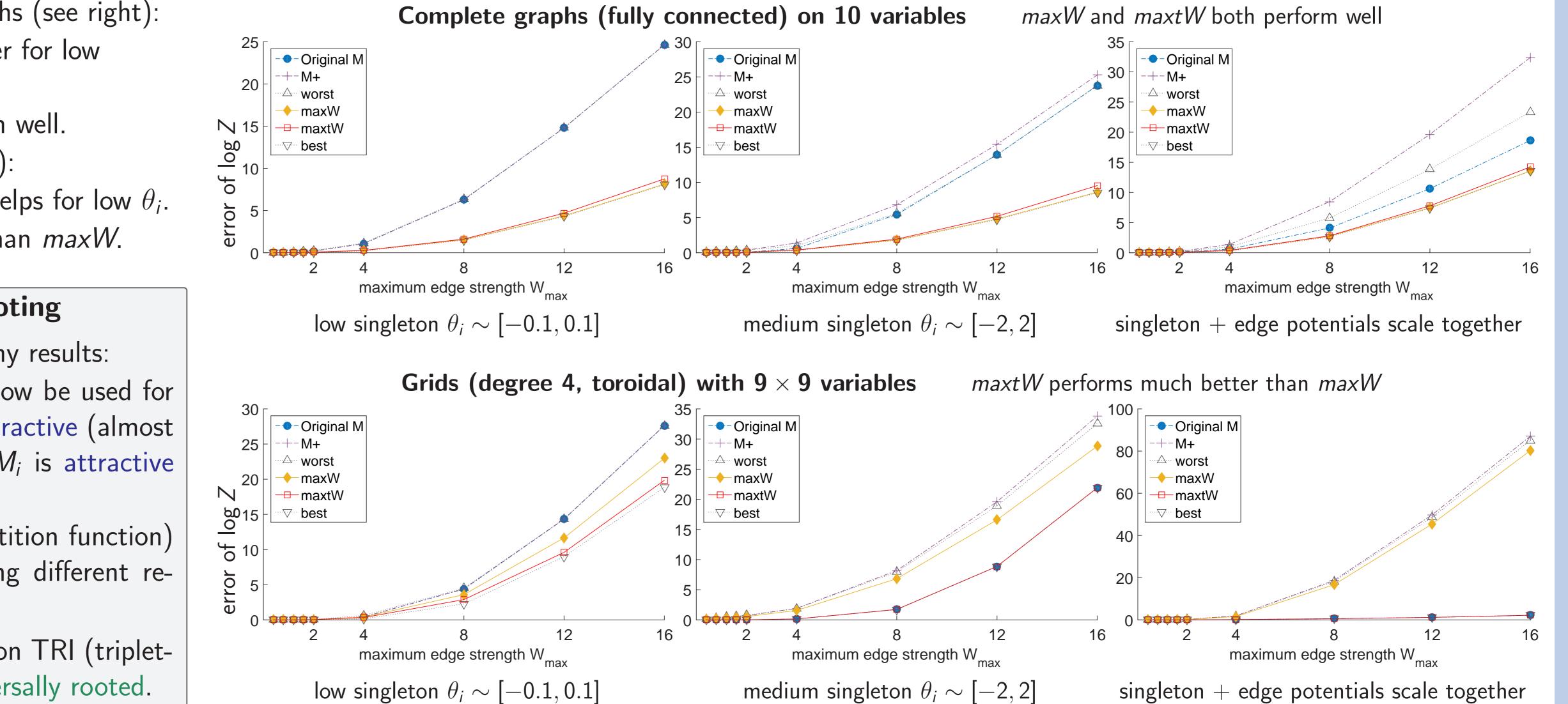
EXPERIMENTS ON RANDOM MODELS (USING BETHE APPROX) AND DISCUSSION

Empirical results for complete graphs (see right):

• Rerooting is very effective, better for low singleton potentials θ_i .

• *maxW* and *maxtW* both perform well. For grids (see lower panels to right):

Rerooting is less effective, still helps for low θ_i. *maxtW* performs much better than *maxW*.



Implications of Rerooting

We can generalize or improve many results: • e.g. max flow / min cut can now be used for models where M^+ is almost attractive (almost balanced) since then $\exists i$ s.t. M_i is attractive (balanced).

• e.g. bounds (on marginals, partition function) can be improved by considering different rerootings.

Reveals an intriguing perspective on TRI (tripletconsistent polytope): TRI is universally rooted.

Contact Adrian aw665@cam.ac.uk

Download the full paper at http://mlg.eng.cam.ac.uk/adrian

ICML 2016, New York