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SUMMARY

We address exact MAP inference for undirected graphical models, i.e. finding a
global mode configuration with highest probability. We are interested in when
this is efficient, i.e. solvable in time polynomial in the number of variables.

We focus on binary pairwise (Ising) models, e.g. vision, RBMs, or social
networks, and explore the limits of an exciting recent method (Jebara, 2009):

•Reduce the problem to finding a maximum weight stable set (MWSS) in a
derived weighted graph called a nand Markov random field (NMRF);

•This approach is efficient if the pruned NMRF is a perfect graph.

RESULTS

Only a few signed topologies were known always to admit efficient MAP inference:

•Acyclic models (via dynamic programming),

•Attractive models, i.e. all edges attractive (via graph cuts or LP relaxation)

. Generalizes to balanced models (no frustrated cycles, see below).

These were previously shown to be solvable via a perfect NMRF. Here we go
further to establish the following result, which defines the power of the approach:

Theorem (main result)

A binary pairwise model maps efficiently to a perfect pruned NMRF for any valid
potentials iff each block of the model is balanced or almost balanced.

•Our approach is the only method known to solve all such models efficiently.

FRUSTRATED, BALANCED, ALMOST BALANCED

•Each edge of a model may be characterized as attractive (pulls variables toward
the same value) or repulsive (pushes variables apart to different values).

•A frustrated cycle contains an odd number of repulsive edges. These are
challenging for many methods of inference.

•A balanced model contains no frustrated cycle ⇔ its variables form two
partitions with all intra-edges attractive and all inter-edges repulsive.

•An almost balanced model contains a variable s.t. if it is removed, the remaining
model is balanced.

Blue edges are attractive, dashed red edges are repulsive.
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STABLE SETS, MWSS IN WEIGHTED GRAPHS

A set of (weighted) nodes is stable if no two are adjacent.
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•Finding a MWSS is NP-hard in general, but is known to be efficient
for perfect graphs.

PERFECT GRAPHS

Berge defined perfect graphs in 1960. The Strong Perfect Graph
Theorem (Chudnovsky et al., 2006) yields an alternative definition:

•A graph is perfect iff it contains no odd hole or odd antihole.

•An odd hole is an induced subgraph which is a (chordless) odd
cycle of length ≥ 4.

•An antihole is the complement of a hole (each edge of antihole is
present iff not present in hole).
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BLOCK DECOMPOSITION

A cut vertex of a connected graph is a vertex s.t. removing it
disconnects the graph. A block is a maximal subgraph that does not
contain a cut vertex. A graph may be repeatedly split apart at cut
vertices until what remains is the unique block decomposition.
In general, this could contain Ω(|number of vertices|) blocks.

Example image

from wikipedia.

Here each color indicates a block. Multi-colored vertices are cut
vertices, hence belong to multiple blocks.

REDUCTION TO MWSS ON AN NMRF

Given a model with potentials {ψc} over variable sets {c}, construct a nand
Markov random field (NMRF, Jebara, 2009) N , defined as follows:
•A weighted graph N(VN,EN,w) with vertices VN, edges EN and a weight

function w : VN → R≥0.
•Each c of the original model maps to a clique in N . This contains one node for

each possible configuration xc, with all these nodes pairwise adjacent in N .
•Nodes in N are adjacent iff they have inconsistent settings for any variable Xi .
•Nonnegative weights of each node in N are set as ψc(xc)−minxc ψc(xc), hence

the minimum weight is zero which facilitates pruning.
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In NMRF, subscripts denote variable set c , superscripts denote configuration xc.

Intuition: A MAP configuration has maxx
∑

c ψc(xc) =
∑

c maxxc ψc(xc) s.t. all
the xc settings are consistent, which is enforced by requiring a stable set.

Earlier results:

•A MMWSS of the NMRF returns a MAP configuration of the original model.

•To find a MMWSS of the NMRF: zero-weight nodes may be pruned (removed),
a MWSS found, then zero-weight nodes added back greedily.

•MAP inference is efficient if ∃ an efficiently identifiable efficient
reparameterization s.t. the model maps to a perfect pruned NMRF.

•Decomposition: If each block of a model yields a perfect NMRF, then so too
will the whole model (Weller and Jebara, 2013).

EXAMPLE APPLICATION TO A FRUSTRATED CYCLE

In the paper, we show constructively how MAP inference may be performed
efficiently for any model composed of (possibly many) almost balanced blocks.

Here we illustrate the approach for one almost balanced

block. Blue edges are attractive, dashed red are

repulsive. Straight edges are reparameterized s.t. they

lead to one node in the pruned NMRF, wiggly edges may

have all 4 possible nodes. Gray edges are ‘phantom

edges’ introduced to absorb nodes from singleton

potentials. The special vertex s was chosen as x1,

removing this renders the remaining graph balanced (in

fact acyclic in this example). Marks are shown next to

their vertices for the two partitions in the balanced

portion of the model. See paper for details.
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