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• Based on parity, i.e., equality of treatment or impact
• Sensitive feature value z 𝜖 𝓩, classifier 𝝷z

• Group benefit: Exp. getting beneficial outcome

• Parity treatment: 

• Parity impact:

• No parity → Wrongful relative disadvantage
- Is parity the only criterion of fairness?

2. Existing notions of fairness 
• Classifiers automate human decision making

- Learn from past decisions made by humans

• Outcomes with social implications
- Loan approval, hiring, bail decisions, etc.
- Sensitive feature groups (men, women, etc.)
- Beneficial outcomes (e.g., getting loan)

• Potential for unfairness (many recent examples)

• What constitutes as unfairness?
- Wrongful relative disadvantage [Altman’16]

1. Data driven decision making

3. Parity can be a stringent criterion

Bz(✓z) = Ex|z[I{sign(✓z(x)) = 1}]

Bz(✓z) = Bz(✓z0) for all z, z0

Bz(✓z) = Bz0(✓z0) for all z, z0
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4. New notions of fairness
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Bz(✓z) � Bz(✓z0) for all z, z0

(Inspired by Envy-freeness)

Bz(✓z) � Bz(✓
0

z) for all z, z0

𝝷’z: Parity impact classifier 
(Inspired by Bargaining Solution)

More benefits
High accuracy

Key Idea: All groups prefer 
their respective outcomes 
despite disparity

5. Training preferentially fair classifiers

Both objects and constraints non-convex
Hard to solve efficiently

Convex objective, convex-concave constraints
Efficient solution procedures (DCCP) [Shen’16]

Goal: Maximize accuracy subject to preferred treatment criterion (similar procedure for preferred impact)

Can accommodate any convex boundary-based classifier (e.g., logistic regression, linear / non-linear SVM)

6. Evaluation and discussion
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Evaluation takeaways 
- Preferential fairness leads to higher accuracy
- Higher group benefits as compared to parity 

Moving forward
- Individual- vs. group-level preferences
- Beyond convex boundary-based classifiers

Paper and code at: fate-computing.mpi-sws.org

Datasets 
- ProPublica COMPAS data: African-American (0) & White (1)
- Adult data: Female (0) & Male (1)
- NYPD SQF data: African-American (0) & White (1)

Insight: Preferential fairness subsumes parity fairness 
- Each parity treatment classifier also satisfies preferred treatment
- Each parity impact classifier also satisfies preferred impact
- Theoretically, preferential fairness allows for more accurate solutions


