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Motivation and Notation 1) Fair Model Training

Dilemma in Fair Learning

Fairness Notion: p%-Rule (Acceptance Rate Parity)

U.S. law requires decisions in credit, education, employment, and housing do ! [Py =1]z=1) P(J=1]|z=0) D
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Fixed-Point-Friendly Optimization Techniques

solution: solution: :
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To enforce fairness, sensitive attributes must be examined. Yet, users Lagrangian multipliers: m@in > Lo(xi, yi) + Amax {F(0, x;, y;, z}), 0}
may feel uncomfortable in revealing these attributes or modelers may eted sradiants: p =1 9_ o
be legally restricted in utilizing them [1, 2]. projected gradients: o TF( = Vo)
Notation : interior point log barrier: min Y lo(x;, vi) — plog(—F(0, x;, yi, zi))
check if model O satisfies constraint F ! =1

g . . c = I[F(9,%,,2) < 0]
the users, i.e., individuals using a service

the modeler providing a service, e.g., bank, insurance company, etc. modeler § = — : regulator Results

jointly compute a signature for the fair model

i the regulator, e.g., governmental institution, non-profit, etc. o0) 5£(6) Accuracy and p%-Rule
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x are the non-sensitive features, e.g., GPA, salary, etc.

ettt et et an e ens E Synthetic COMPAS Ban

........................................................ 0.7 | =

y is the (non-sensitive) label, e.g., paid back loan, recidivism, etc. N
z are the sensitive attributes, e.g., gender, race, etc.
) are model parameters
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sp(6@) is a signature of a model
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Secure Multi-Party Computation (MPC)
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MPC allows two (or more) parties holding secret values to evaluate an agreed-
upon function without learning anything besides the outcome and what can
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be inferred from it [3]. 5 — — e — — e — — e
Remark: Here, privacy and secrecy constraints are separate from setup- _
_ _ _ _ _ _ _ modeler failed regulator Dat t d F ibilit
dependent attacks, like model extraction or inversion (see differential privacy). m—— atasets and reasibility
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approximate non-linearities may lead to loss of accuracy X challenge p sensitive attributes 1 1 7 1 1
certification 802ms 827/ms  288ms 250ms 765 ms
training (online time, 10 epochs) 43 min 51 min /min  1min 111 min
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