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ABSTRACT

Methods for Inference in Graphical Models

Adrian Weller

Graphical models provide a flexible, powerful and compact way to model relationships between

random variables, and have been applied with great success in many domains.

Combining prior beliefs with observed evidence to form a prediction is called inference. Prob-

lems of great interest include finding a configuration with highest probability (MAP inference) or

solving for the distribution over a subset of variables (marginal inference). Further, these methods

are often critical subroutines for learning the relationships. However, inference is computationally

intractable in general. Hence, much effort has focused on two themes: finding subdomains where

exact inference is solvable efficiently, or identifying approximate methods that work well. We ex-

plore both these themes, restricting attention to undirected graphical models with discrete variables.

First we address exact MAP inference by advancing the recent method of reducing the problem

to finding a maximum weight stable set (MWSS) on a derived graph, which, if perfect, admits poly-

nomial time inference. We derive new results for this approach, including a general decomposition

theorem for models of any order and number of labels, extensions of results for binary pairwise

models with submodular cost functions to higher order, and a characterization of which binary pair-

wise models can be efficiently solved with this method. This clarifies the power of the approach on

this class of models, improves our toolbox and provides insight into the range of tractable models.

Next we consider methods of approximate inference, with particular emphasis on the Bethe

approximation, which is in widespread use and has proved remarkably effective, yet is still far

from being completely understood. We derive new formulations and properties of the derivatives

of the Bethe free energy, then use these to establish an algorithm to compute log of the optimum

Bethe partition function to arbitrary ε-accuracy. Further, if the model is attractive, we demonstrate

a fully polynomial-time approximation scheme (FPTAS), which is an important theoretical result,

and demonstrate its practical applications. Next we explore ways to tease apart the two aspects of



the Bethe approximation, i.e. the polytope relaxation and the entropy approximation. We derive

analytic results, show how optimization may be explored over various polytopes in practice, even

for large models, and remark on the observed performance compared to the true distribution and the

tree-reweighted (TRW) approximation. This reveals important novel observations and helps guide

inference in practice. Finally, we present results related to clamping a selection of variables in a

model. We derive novel lower bounds on an array of approximate partition functions based only

on the model’s topology. Further, we show that in an attractive binary pairwise model, clamping

any variable and summing over the approximate sub-partition functions can only increase (hence

improve) the Bethe approximation, then use this to provide a new, short proof that the Bethe partition

function lower bounds the true value for this class of models.

The bulk of this work focuses on the class of binary, pairwise models, but several results apply

more generally.
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Chapter 1

Introduction

A graphical model is a structured probabilistic model for a system of random variables whose

joint distribution may be compactly specified by the product of potential functions over subsets

of the variables. In this thesis, we focus on discrete undirected graphical models, also termed

Markov random fields (MRFs), wherein each potential function returns a nonnegative measure of

compatibility of the settings of its variables. These potential functions are typically unnormalized,

hence, in order to provide a probability distribution which sums to 1, a normalizing constant called

the partition function must be computed. The complete set of variables, together with the set of the

potential function subsets, specify a topology which is naturally represented by a hypergraph.

This formulation provides a natural platform over which to seek efficient algorithms that lever

the conditional independence properties of the variables, which are captured via graph separation,

and is well-suited to help make meaningful sense out of large, complex data sets, as are increasingly

familiar across many domains. There is a rich history of contributions from, and applications to,

many fields, including:

• Modeling phase transitions in statistical physics (Bethe, 1935; Peierls and Born, 1936; Yeo-

mans, 1992). Indeed, Bethe’s ideas from the 1930s are still finding remarkably fresh applica-

tion today, as we shall explore in Part III.

• Signal processing and speech recognition (Viterbi, 1967; Baum et al., 1970; Forney, 1973;

Rabiner, 1990).

• Communication and coding theory (Frey, 1998; McEliece et al., 1998).
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• Combinatorics (Barahona, 1982; Barahona and Mahjoub, 1986; Chandrasekaran et al., 2011).

• Computer vision and image processing (Woods, 1976; Geman and Geman, 1984; Felzen-

szwalb and Huttenlocher, 2004; Li, 1995; Blake et al., 2011).

• Modeling protein structure (Yanover and Weiss, 2002; Kamisetty et al., 2007; Yanover et al.,

2008).

Given a graphical model with its potential functions, sometimes together with a set of some

observed variables, there are three canonical problems of inference:

1. Maximum a posteriori (MAP) inference, which is the task of identifying a setting of all the

unobserved variables with maximum probability. An example is image reconstruction, where

a noisy image is received and we try to reconstruct the most likely image which was initially

sent.

2. Marginal inference, which is computing the probability distribution of a given subset of vari-

ables. For example, a medical diagnosis system might observe many characteristics of a

patient, such as temperature, blood pressure and other symptoms; given this information, we

would like to estimate the probability that the patient has various diseases.

3. Evaluating the partition function, which involves summing over all possible configurations.

For example, counting the number of independent sets of a graph.

All are computationally challenging. Given the numerous applications, there is an extensive

literature of the many approaches that have been explored. In this thesis, we shall examine and

make contributions to each of the three problems. In Part I, we introduce notation and provide

general background, then present our contributions in Parts II and III.

1.1 Summary of Contributions

In Part II, we approach the problem of MAP inference by building on a recent method introduced by

Jebara (2009) and Sanghavi et al. (2009). This reduces the problem to the graph theoretic challenge

of finding a maximum weight stable set (MWSS) in a derived weighted graph, termed a nand Markov

random field (NMRF). Terms and earlier results used from graph theory are provided in Section 3.3.
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• In Chapter 4, we derive new results for this approach, including a general decomposition

theorem for MRFs of any order and number of labels, extensions of results for binary pairwise

models with submodular cost functions to higher order, and a characterization of which binary

pairwise MRFs can be efficiently solved with this method. This helps to define the power of

the approach, improves our toolbox and provides insight into the range of tractable models.

In Part III, we consider approximate inference techniques to estimate marginal probabilities and

the partition function, focusing on the Bethe approximation. This has a long history beginning in

statistical physics in the 1930s, and is in widespread use through the belief propagation algorithm,

yet is still far from being completely understood. We make contributions in several ways:

• In Chapter 6, we derive novel bounds and results on marginals of the Bethe approximation

and derivatives of the Bethe free energy, building on the work of Korc̆ et al. (2012), including

a new characterization of the Hessian matrix of second partial derivatives. This demonstrates

interesting qualitative properties: the main diagonal is always positive (hence the function is

convex if all but one variables are held fixed), and importantly, all off-diagonal entries are

negative for an attractive edge or positive for a repulsive edge. Thus, an attractive model has

submodular energy. By bounding the terms of the Hessian, we are able to derive an optimiza-

tion algorithm over a discrete mesh, which may be framed as multi-label MAP inference, to

solve for log of the optimal Bethe partition function to arbitrary ε-accuracy.

• By also analyzing properties of the first derivatives of the Bethe free energy, we show how the

mesh efficiency may be dramatically improved for almost all problems, unless ε is extremely

small. Applying the method to attractive binary pairwise models, the earlier submodularity

result means that the derived mesh optimization problem is submodular for any discretization

and hence can be solved in polynomial time using graph cuts. This leads to a fully polynomial-

time approximation scheme (FPTAS) to approximate log of the Bethe partition function for

any attractive binary pairwise model (any topology).

• In Chapter 7, we contribute to a deeper understanding of the Bethe approximation by sep-

arately analyzing the two aspects of its approximation: the polytope relaxation from the

marginal polytope to the local polytope, and the Bethe entropy approximation. We demon-

strate novel theoretical insights and also investigate empirically the merits of optimizing over
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the local, cycle or marginal polytopes, comparing results to the true values and those obtained

using the tree-reweighted (TRW) approach.

• In Chapter 8, we make further use of the properties of the derivatives of the Bethe free energy

derived in Chapter 6. We are able to demonstrate that, in an attractive binary pairwise model,

clamping any variable to each of its two values and summing over the optimal Bethe sub-

partition functions obtained, can only increase (and hence improve) the partition function

approximation obtained. In deriving this result, we show an interesting stronger result on

how the optimal Bethe partition function varies as one variable is held to various fixed values.

We combine this result with an observation on clamping to derive a new proof from first

principles of a recent, important result, that the Bethe partition function for an attractive

binary pairwise model is always a lower bound for the true value (Ruozzi, 2012). Further, we

are able to derive a related lower bound for the approximate partition function of a range of

approximation methods, which applies in the multi-label case.

Appendices are provided at the end with additional proofs and technical material.

1.2 Publications

Much of the work in this thesis is based upon material appearing in the publications below, all are

available at www.cs.columbia.edu/˜adrian.

• Weller and Jebara (2013a)

A. Weller and T. Jebara. Bethe bounds and approximating the global optimum. In Artificial

Intelligence and Statistics, 2013.

• Weller and Jebara (2013b)

A. Weller and T. Jebara. On MAP inference by MWSS on perfect graphs. In Uncertainty in

Artificial Intelligence (UAI), 2013.

• Weller et al. (2014)

A. Weller, K. Tang, D. Sontag, and T. Jebara. Understanding the Bethe approximation: When

and how does it go wrong? In Uncertainty in Artificial Intelligence (UAI), 2014.

www.cs.columbia.edu/~adrian


CHAPTER 1. INTRODUCTION 5

• Weller and Jebara (2014a)

A. Weller and T. Jebara. Approximating the Bethe partition function. In Uncertainty in

Artificial Intelligence (UAI), 2014.

And in the following paper to appear in NIPS 2014:

• Weller and Jebara (2014b)

A. Weller and T. Jebara. Clamping variables and approximate inference. In Neural Informa-

tion Processing Systems (NIPS), 2014.

Related work appears in

• Tang et al. (2013) K. Tang, A. Weller, and T. Jebara. Network ranking with Bethe pseu-

domarginals. In NIPS Workshop on Discrete Optimization in Machine Learning, December

2013.

1.2.1 Earlier work

Earlier work explored the related theme of structured prediction methods for chord classification in

music:

• (Weller et al., 2009) A. Weller, D. Ellis, and T. Jebara. Structured prediction models for

chord transcription of music audio. In International Conference on Machine Learning and

Applications, 2009.

When combined with Dan Ellis’ already-powerful approach to chord transcription, we submitted

the best overall entry to the MIREX open competition that year, see results at http://www.

music-ir.org/mirex/wiki/2009:Audio_Chord_Detection_Results.

An overview of the complete 2010 LabROSA chord recognition system is available here http:

//www.ee.columbia.edu/˜dpwe/pubs/Ellis10-chords.

http://www.music-ir.org/mirex/wiki/2009:Audio_Chord_Detection_Results
http://www.music-ir.org/mirex/wiki/2009:Audio_Chord_Detection_Results
http://www.ee.columbia.edu/~dpwe/pubs/Ellis10-chords
http://www.ee.columbia.edu/~dpwe/pubs/Ellis10-chords
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Part I

General Background
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Chapter 2

Notation and Preliminaries

In this Chapter, we provide a brief survey of undirected graphical models, introducing notation

and preliminary results. For further reading, several excellent texts are available such as those by

Wainwright and Jordan (2008), Koller and Friedman (2009) or Murphy (2012).

2.1 Markov Random Fields

Markov random fields (MRFs), also termed undirected probabilistic graphical models, are a central

tool in machine learning with wide use in many areas including speech recognition (Lafferty et al.,

2001), vision (Li, 1995) and computational biology (Yanover and Weiss, 2002). A model (V,Π)

is specified by a set of n random variables V = {X1, . . . , Xn} together with potential functions

over subsets c of V , Π = {πc : c ∈ C ⊆ P(V )}, where P(V ) is the powerset of V .1 Throughout

this thesis, we deal exclusively with finite and discrete MRFs, where each variable Xi may take

finite ki possible values which we label χi = {0, . . . , ki − 1}. Let x = (x1, . . . , xn) be one

particular complete configuration from the set of all possible configurations X =
∏n
i=1 χi, and xc

be a configuration of just the variables in c, which we write asXc. A potential function πc maps each

possible setting xc of its variables Xc to a non-negative real number πc(xc). The joint probability

1In the literature, the potential functions are more commonly labeled φ or ψ but we have saved these symbols for

other related purposes, which are also in common use.
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distribution is given by

p(x) =
1

Z

∏
c∈C

πc(xc), where Z =
∑
x∈X

∏
c∈C

πc(xc). (2.1)

Z is the normalizing constant, termed the partition function, which ensures that the distribution

sums to 1.2 Treating the variables as nodes, the potential functions’ argument sets define hyperedges

in a hypergraph topology (see 3.3 for definitions of terms from graph theory).

An MRF embodies conditional independence relationships through graph separation. LetXA, XB

and XC be three sets of variables from V . From (2.1), it may easily be shown that if XC separates

XA from XB , i.e. if removing XC leaves no path in the MRF hypergraph from any node of XA

to any node of XB , then XA is conditionally independent of XB given XC . The Hammersley-

Clifford theorem (unpublished, 1971) shows that the converse is true in the following sense. Pro-

vided p(x) > 0 ∀x ∈ X , if graph separation implies conditional independence, then the probability

distribution may be written as a product of factors as in (2.1), with one function for each maximal

clique c. For details, see (Koller and Friedman, 2009, §4.3).

In this thesis, we shall also often require p(x) > 0 ∀x ∈ X . One reason for this is that we

typically write (2.1) using log-potential functions given by ψc(xc) = log πc(xc). With this form,

(2.1) becomes

p(x) =
1

Z
exp

(∑
c∈C

ψc(xc)

)
, (2.2)

where we require p(x) > 0 in order to avoid infinite exponents. This is reminiscent of a similar

expression from statistical physics, where the probability of a configuration of the system is given

by a Gibbs (or Boltzmann) distribution, written

p(x) =
1

Z
exp (−βE(x)) , where β =

1

kT
. (2.3)

k is Boltzmann’s constant, which we may take to be 1, T is the temperature of the system, andE(x)

is the energy of the particular configuration (Yeomans, 1992). If we take T = 1, (2.2) and (2.3)

have the same form provided the energy of a configuration is defined as

E(x) = −
∑
c∈C

ψc(xc). (2.4)

2The symbol Z stands for zustandssumme, which means sum over states in German.
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Since it is sensible for energy to be the sum of potential functions, sometimes the ψc functions are

referred to as potential functions instead of the exponentiated form πc.

A physical interpretation considers a high-dimensional energy landscape, where lower energy

states are more desirable and have higher probability. Accordingly, the energy is also sometimes

described as a cost function, with lower values being better, i.e. more likely. Alternatively, we shall

sometimes discuss the score or a configuration, defined to be the negative of its energy. Higher score

configurations have higher probability.

2.1.1 Alternative factor graph representation

A popular equivalent representation of the hypergraph topology is a factor graph (Kschischang

et al., 1998). This is a bipartite graph where the variables V form one stable partition and each

subset or factor c ∈ C is a node in the other partition, with an edge from c to each variable it

contains.

2.1.2 Conditioning on observed variables

Suppose V is split into observed variables Y = y and unobserved variables XU so x = (xu, y)

with xu ∈ Xu. Then p(xu|y) = p(xu,y)
p(y) = p(xu,y)∑

x′u∈Xu
p(x′u,y) .

This is just a new smaller MRF with modified potentials on the variable set XU , with a new

partition function to normalize the new distribution.

Hence the MRF framework is rich enough to handle conditioning. Henceforth, when we discuss

MRFs, they might or might not have been based on conditioning on observed variables.

2.2 Problems of Inference

Given a model specified by a set of variables V and their log-potential compatibility functions ψc,

there are 3 canonical inference tasks:

1. Maximum a posteriori (MAP) inference, which is the task of identifying a setting of all the

unobserved variables with maximum probability.3 From (2.2), we see that in our notation,

3Some authors use MAP inference to mean the more general, and typically harder, problem of identifying a setting

of a given subset of the unobserved variables with maximum probability. A phrase that unambiguously means a MAP



CHAPTER 2. NOTATION AND PRELIMINARIES 10

this is the combinatorial problem of identifying

x∗ ∈ arg max
x∈X

∑
c∈C

ψc(xc). (2.5)

Given the definition of energy (2.4), this problem is also described as energy minimization.

2. Marginal inference, which is computing the probability distribution of a given subset of vari-

ables. Let Xc be the given subset, then

p(xc) =
∑

x∈X :Xc=xc

p(x) =

∑
x∈X :Xc=xc

exp
(∑

c∈C ψc(xc)
)∑

x∈X exp
(∑

c∈C ψc(xc)
) . (2.6)

3. Evaluating the partition function,

Z =
∑
x∈X

exp

(∑
c∈C

ψc(xc)

)
. (2.7)

It is clear that problems 2 and 3 are closely related, since marginal inference may be viewed as

the ratio of a sub-partition function to the full partition function. These problems, which involve

summing over an exponential number of states, are typically more challenging than problem 1,

where only a single optimal configuration must be identified. Yet the problems are more closely

related than they may initially appear.

Considering (2.3), note that in the limit as the temperature → 0, all the probability mass is

focused on just the MAP state(s), hence marginal inference approaches MAP inference. Recently,

a fascinating, different relationship was shown by applying MAP inference to randomly perturbed

models, from which conclusions may be drawn about the partition function (Papandreou and Yuille,

2011; Hazan and Jaakkola, 2012; Ermon et al., 2013).

The work in Chapter 6 adds a further link between inference problems by demonstrating that

finding a MAP configuration over a derived multi-label MRF may be used to approximate to arbi-

trary precision the Bethe partition function approximation of a binary pairwise model. In addition,

in Appendix C.4, we explore the consequences for this method as the temperature→ 0.

configuration of all the unobserved variables is a most probable explanation (MPE) (Darwiche, 2009).
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2.2.1 Reparameterizations

A reparameterization is a transformation of the log-potential functions {ψc} → {ψ′c} such that ∀x ∈

X ,
∑

c∈C ψ
′
c(xc) =

∑
c∈C ψc(xc)+ a constant. Considering (2.2), the constant is absorbed into the

new partition function, i.e. Z ′ = Z exp(constant), resulting in the same probability distribution.

Further, the rank ordering of configurations is clearly unchanged, thus a MAP solution is unaffected.

However, this type of transformation can significantly simplify subsequent problems of inference,

as we shall see in Parts II and III.

2.3 Parameterization and the Exponential Family

One way to specify the log-potential functions ψc is a log-linear form using real-valued sufficient

statistics of the variables φl(x), for l = 1, . . . , d, together with a parameter vector θ ∈ Rd so that

equation 2.2 for the probability of a state becomes

pθ(x) = p(x|θ) =
1

Z(θ)
exp (θ · φ(x)) , or equivalently p(x|θ) = exp (θ · φ(x)− logZ(θ)) .

A general form known as the standard overcomplete representation provides a sufficient statistic

as an indicator function for every possible configuration of each subset c ∈ C, resulting in d =∑
c∈C

∏
i∈c χi. This simplifies some methods of analysis but in any overcomplete representation,

there is redundancy in that multiple linear combinations a·φ(x) are equal to a constant, and thus give

rise to the same probability distribution. A concise alternative is a minimal representation where the

parameter vector θ is unique for each distribution. In an overcomplete representation, as described

in Section 2.2.1, any transformation θ → θ′ such that for any x ∈ X , θ′ · φ(x) = θ · φ(x)+

a constant, is a reparameterization. The constant is absorbed into the new partition function, i.e.

Z(θ′) = Z(θ) exp(constant), resulting in an identical probability distribution.

The representation in the exponential family reveals many insights, as discussed in (Wainwright

and Jordan, 2008, §3). We provide a few key observations, on which we shall expand in Chapter 5.

2.3.1 Derivatives of logZ

The log-potential function logZ(θ) has several useful properties:
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• The derivatives yield expected values of the sufficient statistics, specifically:

∂ logZ(θ)

∂θl
= Eθ[φl(x)] =

∑
x∈X

φl(x)pθ(x),

∂2 logZ(θ)

∂θl1∂θl2
= Eθ[φl1(x)φl2(x)]− Eθ[φl1(x)]Eθ[φl2(x)]. (2.8)

• logZ is a convex function of θ.

2.3.2 Maximum entropy

The log-linear representation has a remarkable property with respect to the expected values of the

sufficient statistics: of all probability distributions consistent with a given set of expected values, it

is the one with maximum (Shannon) entropy, where this entropy is defined by

S(p) = −
∑
x∈X

p(x) log p(x). (2.9)

From this perspective, the θ parameters emerge in the optimization process as Lagrange multipliers

associated with the constraints.

There is a deep relationship between entropy and the log-partition function, in that they are

conjugate duals of each other, see (Wainwright and Jordan, 2008, §3.6.1) for details.

2.4 Binary Pairwise Models and The Ising Model

We now turn to the particular case of binary pairwise models, which form the main subject of this

thesis.

A binary model is one in which every variable has just two states, i.e. χi = {0, 1} ∀i ∈ V .

A pairwise model is one where all potential functions are defined over at most two variables, i.e.

|c| ≤ 2 ∀c ∈ C. Provided n > 1, note that potential functions over just one variable may always be

absorbed or converted into a pairwise function over two variables. Hence, the topology of a pairwise

model may be described by a simple graph (that is with no loops or double edges). A planar model

is one whose topology is a planar graph. See Section 3.3 for definitions from graph theory.

Focusing on binary pairwise models may appear restrictive but the framework is rich enough

to exhibit the behavior of a complex interacting system. These models play a key role in many
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applications, both directly and as critical subroutines in solving more elaborate problems (Blake

et al., 2011; Pletscher and Kohli, 2012). Further, in the sense described below, a general MRF

may be converted into an equivalent binary pairwise model, though this may lead to an exponential

increase in the state space. Recent work by Eaton and Ghahramani (2013) has clarified the nature

of the relationship. We summarize their results:

• Binary pairwise MRFs are not universal, in the sense that there exist models that cannot be

simply reduced to the binary pairwise form.

• However, pairwise MRFs (without the restriction of binary), binary 3-wise MRFs (potential

functions over triplets of variables, i.e. arity 3), planar pairwise, and also planar binary MRFs,

all are universal.

• Further, binary pairwise MRFs (even if restricted to planar) are positive universal, meaning

that any general model where strictly p(x) > 0 ∀x ∈ X can be simply reduced to this form.

• Binary pairwise MRFs (even if restricted to planar) are almost universal, in the sense that one

can construct a binary pairwise model that simply reduces any general model (even if it has

configurations with 0 probability) to within an arbitrarily small approximation error.

2.4.1 Parameterizations, reparameterizations and associativity

For the bulk of this thesis, we shall be focused on binary pairwise MRFs with p(x) > 0 ∀x ∈ X .

Let n = |V | be the number of variables, each of which takes values in B = {0, 1}. Let E represent

the edge relationships, that is E = {c ∈ C : |c| = 2}. Let m = |E| be the number of edges. Let

N (i) = {j ∈ V : (i, j) ∈ E} be the neighbors of variable Xi.

As introduced in 2.3, one way to specify such a model is using the standard overcomplete rep-

resentation, which here means a θ vector with 2n+ 4m dimensions, that is θ is a vector with 2n di-

mensions, (θ1:0, θ1:1, . . . , θn:0, θn:1), concatenated together with a four element vector (θij:00, θij:01,

θij:10, θij:11) for each edge (i, j) ∈ E . Alternatively, we may write the parameters in functional form

as: θi(a) = θi:a for i ∈ V, a ∈ B, which we term the singleton potentials; and θij(a, b) = θij:ab for

(i, j) ∈ E and a, b ∈ B, which we term the edge or pairwise potentials.

Reparameterizations were introduced in Section 2.2.1. One simple reparameterization is just

to add or subtract a constant from any log-potential function. Hence, without loss of generality,
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we may assume that θi(0) = 0 ∀i ∈ V . The same idea can be used to require any one particular

element of θij(a, b) to be 0. We can go further using the following idea.

A singleton transformation is a change in one or more singleton potentials, together with a cor-

responding change to a pairwise potential which brings it to a convenient form. It is easily checked

that a reparameterization of an edge potential via singleton transformations,

θij:00 θij:01

θij:10 θij:11

 →θ′ij:00 θ′ij:01

θ′ij:10 θ′ij:11

 is valid if and only if θij:00+θij:11−θij:01−θij:10 = θ′ij:00+θ′ij:11−θ′ij:01−θ′ij:10.

Hence this one quantity, which we call the associativity or weight of the edge and write Wij , may

be used to describe the edge, and is invariant with respect to any singleton transformation (hence is

well-defined).

If the associativity of an edge is positive, we describe that edge as attractive (equivalently as-

sociative, ferromagnetic or regular). This is equivalent to θij for the edge being supermodular, or

the edge having submodular cost function. In this case, the edge tends to pull the variables corre-

sponding to its two end vertices toward the same value. If the associativity of an edge is negative,

we describe it as repulsive, in which case it tends to push the variables corresponding to its two

end vertices apart to different values. An edge with 0 associativity may be removed since we may

transform its edge potential to the zero matrix. A binary pairwise model is attractive if and only if

every one of its edges is attractive. Inference in attractive models is much easier than for the general

case, as we shall see in Section 2.5.1.

Accordingly, all but one of the four values of an edge potential function may be taken to be

0. A minimal (unique) form which we shall use extensively in Part III uses parameters {θi ∀i ∈

V ; Wij ∀(i, j) ∈ E} so that the energy of a configuration has the form

E(x) = −
∑
i∈V

θixi −
∑

(i,j)∈E

Wijxixj . (2.10)

Although this form facilitates analysis, a disadvantage is that if Wij is increased in order to increase

the attractive pull between variables Xi and Xj , it also has the effect of increasing the probability

that each variable will be equal to 1 rather than 0. Accordingly, a different reparameterization which

we shall sometimes use, particularly when specifying input parameters of a model, instead makes
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use of the symmetric form

E(x) = −
∑
i∈V

θixi −
∑

(i,j)∈E

Wij

2
[xixj + (1− xi)(1− xj)], (2.11)

where the associativity of an edge continues to be Wij . It is easy to see that the reparameterization

required to map from the form of (2.11) to that of (2.10) takes θ′i ← θi−
∑

j∈N (i)Wij , whereN (i)

is the set of neighbors of Xi, while leaving Wij unchanged.

2.4.2 The Ising model

In the early 1920s, Ernst Ising was studying phase transitions in statistical physics, specifically the

macro magnetic properties of materials as the temperature is varied, under the supervision of his

PhD advisor, Wilhelm Lenz. In a rare turn of events, what has come to be named the Ising model

was in fact proposed by his advisor. As described by Prof Barry Simon:4

This model was suggested to Ising by his thesis adviser, Lenz. Ising solved the one-dimensional

model, . . . , and on the basis of the fact that the one-dimensional model had no phase transition,

he asserted that there was no phase transition in any dimension. As we shall see, this is false. It

is ironic that on the basis of an elementary calculation and erroneous conclusion, Ising’s name

has become among the most commonly mentioned in the theoretical physics literature. But

history has had its revenge. Ising’s name, which is correctly pronounced “E-zing,” is almost

universally mispronounced “I-zing.”

In the classical Ising model, there is a system of n magnetic atoms with spins σi ∈ {−1,+1}.

Neighboring atoms, as specified by an edge set E , influence each other ferromagnetically, meaning

that the energy of a configuration is lower by a positive amount βJ for each pair of neighboring

atoms that are aligned with the same spin, where β = 1
kT as in (2.3). In addition there is an external

field with strength h so that the total energy is given by

E = −β

J ∑
(i,j)∈E

σiσj + h
∑
i

σi

 .

Physicists are interested in identifying the ground state, which is the lowest energy state, of the

system, which corresponds to MAP inference. They also derive much useful information from

computing the partition function.

4This quote appears at http://math.arizona.edu/ tgk/541/chap1.pdf .
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The problem can be generalized to allow different Jij parameters for each edge interaction,

and individual local fields hi for each atom. It is easy to see that this may be mapped via Wij =

4βJij , θi = 2β(hi −
∑

j∈N (i) Jij) into the canonical binary pairwise MRF form of (2.10).

In statistical physics, a topic of great interest is to identify possible phase transitions in macro

behavior of the system as the temperature T , or other parameters are varied. Often the typical

behavior over ensembles of systems, as the size tends to infinity, is studied. The Ising model led to

a prediction of a phase transition that was later experimentally observed (Nobel prize to Onsager).

In contrast, in machine learning, computer science and combinatorics, we are typically inter-

ested in the properties of individual, finite systems. Even in these settings, however, phase tran-

sitions in behavior can be observed as parameters vary. Examples of work in this area include

(Kanefsky and Taylor, 1991; Hogg et al., 1996; Zhang, 2004; Coppersmith et al., 2004). We pro-

vide a novel perspective on one form of this phenomenon in Section 7.5.

2.5 Related Problems and Complexity Results

Computing Z belongs to the class of counting problems #P (Valiant, 1979). A fully polynomial-time

randomized approximation scheme (FPRAS) was derived for binary pairwise models by Jerrum and

Sinclair (1993), but only when singleton potentials are uniform (i.e. a uniform external field), and

the resulting runtime is high at O(ε−2m3n11 log n). Marginal inference is NP-hard (Cooper, 1990),

even to approximate (Dagum and Luby, 1993). The MAP problem is typically easier, yet is still

NP-hard (Shimony, 1994), even to approximate (Abdelbar and Hedetniemi, 1998).

MAP inference may be reduced to finding a maximum weight stable set (MWSS) in a derived

weighted graph (Sanghavi et al., 2009; Jebara, 2009), as we shall explore in Part II. Further, the

MWSS problem may easily be reduced to MAP inference on a binary pairwise MRF. Hence, binary

pairwise MRFs are universal for MAP. This was also demonstrated by showing that optimization of

pseudo-Boolean functions may be reduced to optimization of quadratic pseudo-Boolean functions

(Boros and Hammer, 2002).

MAP inference is also easily seen to be at least as general as the classic NP-hard MAXCUT

problem (Karp, 1972). Each variable is a node and is assigned to a partition based on its value.

Goemans and Williamson (1994) provided a polynomial-time approximation algorithm based on a
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semidefinite program relaxation guaranteed to be within a ratio of 0.878 of the optimum solution.

Khot et al. (2007) showed that if the unique games conjecture is true, then this result is optimal.

However, if the model is attractive (all edge weights are positive) then the problem is a MINCUT

problem, solvable in polynomial time. Further, MAXCUT is solvable in polynomial time for a pla-

nar graph by a reduction to the matching problem. This applies to planar binary pairwise MRFs

with no local fields (singleton potentials). Further, for this subclass of models, the partition function

may be computed in polynomial time (Kastelyn, 1963; Fisher, 1966; Globerson and Jaakkola, 2006;

Schraudolph and Kamenetsky, 2009). Since singleton potentials may be emulated by adding an ex-

tra variable with appropriate pairwise terms, this shows that problems with such singleton potentials

are tractable provided the resulting graph is planar. Hence, in particular, models with outerplanar

graphs are tractable (Batra et al., 2010)5. However, Barahona (1982) demonstrated that even MAP

inference on general planar binary pairwise models (with arbitrary singleton potentials) is NP-hard

via a reduction to planar MWSS, which is NP-hard (Garey and Johnson, 1979).

Inference may be performed in polynomial time using the junction tree algorithm (Lauritzen and

Spiegelhalter, 1988a; Lauritzen, 1996; Cowell et al., 1999) provided the treewidth of the model’s

graph is bounded (the runtime is exponential in the treewidth). The treewidth may be defined to

be one less than the optimal (minimum) cardinality of a maximum clique in a triangulation of the

graph.6 Further, under mild assumptions, this was shown to be the only restriction which will allow

efficient inference for any potential functions (Chandrasekaran et al., 2008).

2.5.1 Models with submodular energies

In order to identify subclasses of problems that may be solved in polynomial time, restrictions may

be placed either on the nature of the potential functions, or on the topology of the model. An

important subclass of MRFs are those that restrict the log-potential functions to be supermodular,

or equivalently, to have energy (cost) functions which are submodular.

For V a finite set, letP(V ) be its power set (the set of all subsets). A set function f : P(V )→ R

5Since outerplanar graphs have treewidth (see next paragraph for a definition) at most two, this result is less strong

than it may appear.

6The concept of treewidth was introduced by Halin (1976) while investigating the Hadwiger number. Later, it was

rediscovered and presented by Robertson and Seymour (1984), after which it came into widespread use.
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is submodular iff ∀A,B ⊆ V, f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B). An equivalent definition

captures the idea of ‘diminishing returns’: f : P(V ) → R is submodular iff ∀A ⊂ B ⊂ V, x ∈

V \B, f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

This may be generalized to a lattice, which is a partially ordered setL in which any two elements

a, b ∈ L have a join (or least upper bound) a ∨ b, and a meet (or largest lower bound) a ∧ b. A

function on a lattice is submodular iff ∀a, b ∈ L, f(a ∨ b) + f(a ∧ b) ≤ f(a) + f(b). A function f

is supermodular iff −f is submodular.

Submodular functions behave in some ways like convex functions, and in some ways like con-

cave functions. They have attracted attention in combinatorics (Lovász, 1983), economics (Topkis,

1998; Milgrom and Roberts, 1990), and increasingly in machine learning (Bach, 2013; Bilmes,

2014).

In our context, a pairwise multi-label function on a set of ordered labels Xij = {0, . . . , ki −

1} × {0, . . . , kj − 1} is submodular iff

∀x, y ∈ Xij , f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y) (2.12)

where for x = (x1, x2) and y = (y1, y2), (x ∧ y) = (min(x1, y1),min(x2, y2)) and (x ∨ y) =

(max(x1, y1),max(x2, y2)). For binary variables this is equivalent to the edge being attractive (see

Section 2.4.1). A function over more than two variables is submodular iff every projection onto any

two variables is submodular.

While this is a subclass of all general models, it is still rich enough to be of great interest, and has

direct application in areas where it is reasonable to have a prior that neighboring variables will take

similar values, such as image denoising (Greig et al., 1989). Further, methods have been explored

which decompose a general model into a number of submodular problems on the same topology

(Osokin et al., 2011).

MAP inference is solvable in O(n3) time for attractive binary pairwise models, for example via

graph cuts (Greig et al., 1989; Goldberg and Tarjan, 1988), though note that marginal inference and

computing Z are not (Jerrum and Sinclair, 1993).

Given the tractability of attractive binary pairwise models, i.e. binary pairwise models with

submodular cost functions, much work has focused on understanding which other models can be

reduced to these. Building on the ‘battleship’ construction of Ishikawa (2003), a key paper by
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Schlesinger and Flach (2006) showed that this can be done for any pairwise multi-label model

with submodular cost functions, which is important for our work in Chapter 6.10. Observe that the

definition of submodularity relies on a particular ordering of the labels for each variable. Schlesinger

(2007) introduced the notion of permuted submodular to mean a model where there exists some

permutation of the labels of variables such that the resulting cost functions are submodular; and

further demonstrated that testing for the existence of such a permutation, and finding one if it exsits,

may be performed in polynomial time.

Zivny et al. (2009) showed that models with submodular cost functions of arity 3 (i.e. potential

functions over triplets) can always be mapped to the attractive binary pairwise case, but not models

with submodular functions of arity 4 or higher, unless other conditions are also satisfied. We reach

a related, similar, conclusion in Section 4.6. However, Arora et al. (2012) recently demonstrated a

novel graph cuts method for submodular cost functions of any order over binary variables, though

the time is exponential in the order of the potentials.

2.6 Approaches to Analyzing Graphical Models

There is a vast literature on approaches to analyzing graphical models. Here we provide a very brief

history to provide context.

The junction tree algorithm (Pearl, 1988; Lauritzen and Spiegelhalter, 1988a; Lauritzen, 1996;

Cowell et al., 1999) is a dynamic programming approach which may be used either in sum-product

form for marginal inference, or max-product form for MAP inference.7 The sum-product form will

return the true marginal distributions over all factors, and the max-product form is guaranteed to

return a correct MAP assignment, but in either case, the model’s topology must first be triangu-

lated, then messages passed between resulting cliques, leading to runtime that is exponential in the

treewidth (see Section 2.5). A popular variant is simply to omit the triangulation phase, and proceed

using cliques of size 2, i.e. each edge of the model. This approach is termed belief propagation

(BP). If the topology is a tree then this is efficient and exact. If not, then messages pass around cy-

cles and the algorithm is known as loopy belief propagation (LBP), which often produces excellent

results (McEliece et al., 1998; Murphy et al., 1999) but in general has no guarantees on accuracy or

7More generally, the algorithm may be used for any commutative semi-ring.
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even convergence.

Historically, close variants of belief propagation were derived independently in different disci-

plines. These include the Kalman filter for signal processing (Kalman, 1960), the Viterbi algorithm

(Viterbi, 1967), decoding algorithms for recent error-correcting codes including low-density par-

ity check codes (Gallager, 1962) and turbo codes (Berrou and Glavieux, 1996; MacKay and Neal,

1996; McEliece et al., 1998), and the transfer-matrix method in statistical mechanics (Baxter, 1982).

A different approach for MAP inference considers instead the appropriate integer program.

This is then typically relaxed in two ways: (i) the integer program is relaxed to a linear program

(LP); and (ii) rather than optimize over the space of all valid distributions, termed the marginal

polytope, instead this is relaxed to the local polytope, which enforces only pairwise (rather than

global) consistencies and is computationally easier to handle. As shown by Yedidia et al. (2001),

this LP relaxation is in fact closely connected to the LBP algorithm. Indeed, the solution to the

dual of the LP is a fixed point of LBP, which can therefore be considered an efficient and easily

parallelizable computational approach to try to solve the dual problem.

The dual problem can be solved by other methods such as block coordinate descent, which

leads to the max-product linear programming (MPLP) algorithm (Globerson and Jaakkola, 2007).

This is guaranteed to converge monotonically (though perhaps to a local optimum). This idea was

developed further by Sontag and Jaakkola (2009), where the coordinate descent is performed on

spanning trees of the graphical model, leading to improved performance.

2.6.1 Variational methods for marginal inference

The Kullback-Leibler divergence (KL-divergence) between two discrete probability distributions

q(x), p(x), is defined by D(q||p) =
∑

x q(x) log q(x)
p(x) . It is easily shown by Jensen’s inequality that

D(q||p) ≥ 0 with equality iff q = p. Consider (2.2) which gives the true distribution p. For any

distribution q(x), let S(q(x)) be its Shannon entropy. It is easily seen that

0 ≤ D(q||p) =
∑
x

q(x) log
q(x)

p(x)
= −

∑
c∈C

Eq (ψc(xc)) + logZ − S(q(x)).

Hence logZ = maxq
∑

c∈C Eq (ψc(xc)) + S(q(x)) or equivalently − logZ = minq FG(q), where

FG(q) = Eq (−ψc(xc)) − S(q(x)) is the expected energy minus the entropy of the distribution,

termed the (Gibbs) free energy, with the optimum occurring when q = p, i.e. the true distribution.
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This optimization is to be performed over all valid probability distributions, that is over the marginal

polytope. However, this problem is intractable. Various approximations have been introduced, most

famously the Bethe approximation, as discussed in Part III, which relaxes the marginal polytope to

the local polytope, and uses the Bethe entropy approximation (which in general is neither an upper

nor lower bound on the true entropy, though it is exact for acyclic models).

If instead, a concave upper bound on the entropy is employed, a concave upper bound on the

log-partition function is obtained, which may be efficiently optimized to yield an upper bound on

the true partition function. A well-known example is the tree-reweighted approximation (TRW)

(Wainwright et al., 2005; Wainwright and Jordan, 2008).

For both MAP and marginal inference, efficient ways to optimize over tighter relaxations of

the marginal polytope have been explored (Sontag and Jaakkola, 2007; Sontag et al., 2008; Son-

tag, 2010). The practicalities of dealing with this for the Bethe approximation, and the associated

potential benefits and drawbacks, are addressed in Chapter 7.
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Part II

Exact MAP Inference by MWSS on

Perfect Graphs
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This Part builds on methods introduced by Jebara (2009) and Sanghavi et al. (2009), and is

based on work that appeared in (Weller and Jebara, 2013b).
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Chapter 3

Additional Background

3.1 MAP Inference and Tractable Cases

Finding MAP assignments of MRFs has been an intense area of research for many years. An early

example is the Viterbi algorithm for hidden Markov models (Viterbi, 1967). The belief propaga-

tion algorithm and junction tree generalizations (Pearl, 1988; Lauritzen and Spiegelhalter, 1988a)

showed that the topological restriction of bounded treewidth allows polynomial time inference. Fur-

ther, under mild assumptions, this was shown to be the only restriction which will allow efficient

inference for any score functions (Chandrasekaran et al., 2008). Max-product belief propagation on

graphs with cycles proved to be extremely helpful in the context of turbo-decoding (McEliece et al.,

1998).

Binary pairwise graphical models with more general (and often dense) topologies yet whose

potentials are all attractive were shown to be solvable efficiently using graph-cuts or network flow

(Greig et al., 1989; Goldberg and Tarjan, 1988).1 More recently, MAP estimation for graphical

models with cycles involving matching and b-matching problems2 was shown to be solvable effi-

ciently using the max-product algorithm (Bayati et al., 2005; Huang and Jebara, 2007; Sanghavi

et al., 2008; Bayati et al., 2008). In previous work, these known cases were all shown to com-

pile to a maximum weight stable set problem on a perfect graph, which is known to be solvable in

1This result has recently been generalized to higher order potentials by Arora et al. (2012).

2These graphical models involve topological constraints as well as various constraints on the potential functions (not

simply associativity or submodularity).
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polynomial time (Jebara, 2009, 2014). This Part of the thesis derives new results for this approach,

first described in (Jebara, 2009; Sanghavi et al., 2009), and examines which other models may be

handled in this manner, see Chapter 4.

An earlier method examining triangulated3 micro-structure graphs was presented (Jégou, 1993)

in the context of constraint satisfaction problems (CSPs). Valued CSPs (VCSPs) use soft constraints

with explicit costs, and are closely related to MAP inference problems, see (Dechter, 2003) for a

survey. Many techniques have been developed, including optimal soft arc consistency (Cooper et al.,

2010), belief propagation (Weiss et al., 2007) and linear program relaxations (Sontag et al., 2008),

which may be considered to proceed through identifying helpful reparameterizations (see Section

3.7).

In general, many different methods are available, see Kappes et al. (2013) for a recent survey.

Some, such as dual approaches, may provide a helpful bound even if the optimum is not found.

3.2 Notation and Preliminaries

As described in Part I, we shall consider only discrete, finite MRFs (V,Ψ), which may be specified

by a set of n variables V = {X1, . . . , Xn} together with (log) potential functions over subsets c of

V , Ψ = {ψc : c ∈ C ⊆ P(V )}, where P(V ) is the powerset of V . Each variable Xi may take

finite ki possible values which we label {0, . . . , ki − 1}. Write x = (x1, . . . , xn) for one particular

complete configuration and xc for a configuration just of the variables in c. A potential function ψc

maps each possible setting xc of its variables c to a real number ψc(xc).

The probability of each configuration x is given by the equation below, which also defines the

notion of energy E(x),4

p(x) =
e
∑
c∈C ψc(xc)

Z
=
e−E(x)

Z
, E = −

∑
c∈C

ψc(xc), (3.1)

3Triangulated, or chordal, graphs are a subclass of perfect graphs.

4Throughout this Part, we assume p(x) > 0 ∀x, with finite ψc(xc) terms. There are reasonable distributions where

this does not hold, i.e. distributions where ∃x : p(x) = 0, but this can often be handled by assigning such configurations

a sufficiently small positive probability ε. Also cost functions are the negative of our ψs, thus submodular cost functions

are equivalent to supermodular ψs.
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where the partition functionZ :=
∑

x e
−E(x) is the normalizing constant to ensure that probabilities

sum to 1.

Identifying a configuration of variables that is most likely, termed maximum a posteriori or

MAP inference, is very useful in many contexts, yet in general is NP-hard (Shimony, 1994). Given

(3.1), it is equivalent to energy minimization. In our notation this is the combinatorial problem of

identifying

x∗ ∈ arg max
x=(x1,...,xn)

∑
c∈C

ψc(xc). (3.2)

In general, an MRF may be considered a hypergraph together with associated ψc functions

(see Section 3.3 for definitions). A popular alternative representation is a factor graph, which is a

bipartite graph where the variables V form one stable partition and each c ∈ C is a node in the other

partition, with an edge from c to each variable it contains. In the special case that all variables Xi

take values only in B = {0, 1}, the model is said to be binary. If |c| ≤ 2 ∀c ∈ C then the model

is pairwise. Binary pairwise models play a key role in computer vision both directly and as critical

subroutines in solving more complex problems (Pletscher and Kohli, 2012). Further, it is possible

to convert a general MRF into an equivalent binary pairwise model, see Section 2.4.

3.3 Terms from Graph Theory

We follow standard definitions and omit some familiar terms, see (Diestel, 2010). For further infor-

mation on related topics from graph theory, including a sketch of recent work on claw-free graphs,

and on recognizing perfect graphs, see Appendix A.

A graph G(V,E) is a set of vertices V , and edges E ⊆ V × V . Let n = |V | and m = |E|.

Throughout this paper, unless otherwise specified, all graphs are finite and simple, that is a vertex

may not be adjacent to itself (no loops) and each pair of vertices may have at most one edge (no

multiple edges).

The complete graph on n vertices, written Kn, has all
(
n
2

)
edges. A path of length n is a graph

Pn with n edges connecting n + 1 vertices as v1 − v2 − · · · − vn − vn+1. An induced subgraph

H(U,F ) of a graph G(V,E) is a graph on some subset of the vertices U ⊆ V , inheriting all edges

with both ends in U , so F = {(v, w) ∈ E : v, w ∈ U}. The union of two subgraphs, H1(V1, E1)

and H2(V2, E2) of a graph G(V,E), written H1 +H2, is the induced subgraph of G on V1 ∪ V2.
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A hypergraph (V,E) is a generalization of a graph where the elements of E are any non-empty

subsets of V , not necessarily of size two. A general MRF may be regarded as a hypergraph (V,C)

together with functions {ψc} ∀c ∈ C. For the special case of a pairwise model, the structural

relationships are naturally interpreted as a graph.

A graph is connected if there is a path connecting any two vertices. A cut vertex of a connected

graph G is a vertex v ∈ V such that deleting v disconnects G. A graph is 2-connected, equivalently

biconnected, if it is connected and contains no cut vertex. A block is a maximal connected subgraph

with no cut vertex of the subgraph. Every block is either K2 (two vertices joined by an edge) or a

maximal 2-connected subgraph containing a cycle. Different blocks of G overlap on at most one

vertex, which must be a cut vertex. Hence G can be written as the union of its blocks with every

edge in exactly one block. These blocks are connected without cycles in the block tree for each

connected component of G.

A cutset S of a graph G is a set of vertices S ⊆ V (G) s.t. G \ S is disconnected. A star-cutset

S of G is a cutset s.t. ∃ some x ∈ S s.t. x is complete to S \ {x}.

A stable set in a graph is a set of vertices, no two of which are adjacent. A weighted graph

(V,E,w) is a graph with a nonnegative real value for each vertex, called its weight w(v). A maxi-

mum weight stable set (MWSS) is a stable set with maximum possible weight. A maximal maximum

weight stable set (MMWSS) is a MWSS of maximal cardinality (this is useful in our context since,

after reparameterization, we may have many nodes with 0 weight, see Sections 3.6 and 3.7).

A clique in a graph is a set of vertices, of which every pair is adjacent. The clique number of a

graph G, written ω(G), is the maximum size of a clique in G.

The complement of a graph G(V,E) is the graph Ḡ(V, F ) on the same vertices with an edge in

F iff it is not in E. Hence a clique is the complement of a stable set and vice versa.

A coloring of a graph is a map from its vertices to the integers (considered the colors of the

vertices) such that no two adjacent vertices share the same color. The chromatic number of a graph

G, written χ(G), is the minimum number of colors required to color it. Observe that clearly χ(G) ≥

ω(G) for any graph G.

A graph G is perfect iff χ(H) = ω(H) for all induced subgraphs H of G. As examples, any

bipartite or chordal graph is perfect. Related concepts (see Theorem 3.5.5) are: a hole in a graph G

is an induced subgraph which is a cycle of length≥ 4 (note this means the cycle must be chordless);
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an antihole is an induced subgraph whose complement is a hole. A hole or antihole is odd if it has

an odd number of vertices. Note that, as a special case, a hole with 5 vertices is isomorphic to an

antihole of the same size. It is easily shown that odd holes and antiholes are not perfect. A graph is

Berge if it contains no odd holes or antiholes (equivalently, if neither the graph nor its complement

contains an odd hole).

3.4 Further Terms

This Section may be skipped on a first reading, and referred to later for definitions.

A nand Markov random field (NMRF, Jebara, 2009) may be considered a particular kind of

binary pairwise MRF, where each edge potential enforces a nand operation. Each edge log-potential

is of the form ψij(Xi, Xj) =


−∞ Xi = Xj = 1

0 otherwise
. Hence, when considered in its exponentiated

form as a potential function, see equations (2.1) and (2.2), πij(Xi, Xj) =


0 Xi = Xj = 1

1 otherwise
. A

MAP configuration of the NMRF must have at most one variable from each edge set to 1, hence is

equivalent to finding a maximum weight stable set (MWSS).

A clique group for a set of variables c is a clique in an NMRF corresponding to all possible

settings xc of those variables of its MRF, see Section 3.6.

An snode is a node in an NMRF relating to a setting of a single variable from its MRF. Equiv-

alently, it is a node from a clique group deriving from c = {Xi} for some i. An enode is a node

from a clique group deriving from some c ∈ C with |c| ≥ 2. For example, when considering binary

pairwise models, an enode derives from an edge of the MRF.

Given a graph G(V,E), its line graph L is the graph that takes E as its vertices, with e, f ∈ E

adjacent in L iff they share an end vertex in G.

For a graph (V,E), if X ⊆ V and v ∈ V \X then v is complete to X if v is adjacent to every

member of X . If X,Y ⊆ V are disjoint, then X is complete to Y if every vertex in X is complete

to Y .

A cutset S of a graph G is a set of vertices S ⊆ V (G) such that G \ S is disconnected. A

star-cutset S of G is a cutset such that ∃ some x ∈ S such that x is complete to S \ {x}.
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A signed graph (Harary, 1953) is a graph (V,E) together with one of two possible signs for each

edge. This is a natural structure when considering binary pairwise models, where we characterize

edges as either associative or repulsive, see Section 3.8. When discussing signed graphs, we use the

notation ⊕ to show an associative edge, and 	 for a repulsive edge. For example, x ⊕ y 	 z is a

graph with 3 vertices x, y and z, and two edges, where x and y are adjacent via an associative edge,

and y and z are adjacent via a repulsive edge.

A frustrated cycle in a signed graph is a cycle with an odd number of repulsive edges.

A BR structure (see Figure 3.1 for an example) is a signed graph over variables V with asso-

ciative edges EA and repulsive edges ER such that (V,ER) is bipartite and ∃ a disjoint bipartition

V = V1 ∪ V2 with all ER crossing between the partitions V1 − V2, and no EA crossing between

them. Either EA or ER may be empty, so for example, this includes any signed graph with only

associative edges. See Lemma 4.5.1 for equivalent definitions.

x1

x2

x3

x4

x5

x6

Figure 3.1: An example BR structure. Solid blue (dashed red) edges are associative (repulsive).

Deleting any edges maintains the BR property.

A Tm,n structure (see Figure 3.2 for an example) is a 2-connected signed graph containing

m + n ≥ 1 triangles on a common base given by: 2 base vertices s, t connected via a repulsive

edge, so s	 t; together with m ≥ 0 vertices ri, each adjacent only to s and t via repulsive edges, so

s	 ri 	 t; and n ≥ 0 vertices ai, each adjacent only to s and t via associative edges, so s⊕ ai ⊕ t.

Note Tm,n would be bipartite, with {s, t} as one partition and all other vertices in the other, except

that we have the repulsive edge s	 t.

A Un structure (see Figure 3.3 for an example) is a 2-connected signed graph containing n ≥ 1

triangles on a common base given by: 2 base vertices s, t connected via an associative edge, so s⊕t;

together with n ≥ 1 vertices vi, each adjacent only to s and t via one associative and one repulsive

edge (either way), so either s⊕ vi 	 t or s	 vi ⊕ t.
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s

t

r1r2 a1 a2 a3

Figure 3.2: An example Tm,n structure with m = 2 and n = 3. Solid blue (dashed red) edges are

associative (repulsive).

s

t

v1v2 v3 v4 v5

Figure 3.3: An example Un structure with n = 5. Solid blue (dashed red) edges are associative

(repulsive).

Note that U1 is the same as T0,1 but this is the only overlap. In Lemma 4.5.5, we show that,

subject to the singleton node assumption of Section 4.1, Tm,n and Un structures are the only 2-

connected signed graphs containing a frustrated cycle that map to a perfect NMRF.

3.5 Properties of Perfect Graphs

3.5.1 Complexity of MWSS

Our approach to MAP inference is to reduce the problem to finding a maximum weight stable set on

a derived weighted graph, as described in Section 3.6. This is helpful only if we can find a MWSS

efficiently, yet in general this is still an NP-hard problem for a graph with N vertices. However,

if the derived graph is perfect5, then a MWSS may be found in polynomial time via the ellipsoid

method (Grötschel et al., 1984).

Faster exact methods (Yildirim and Fan-Orzechowski, 2006) based on semidefinite program-

5There are a few other classes of graphs that also admit efficient MWSS, such as claw-free graphs, where significant

recent advances have been made (Faenza et al., 2011), but so far these have not been useful in analyzing MRFs.
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ming are possible in O(N6) and are improved using primal-dual methods (Chan et al., 2009). Al-

ternatively, linear programming can solve MWSS problems but requires O(N3√nK) time where

nK is the number of maximal cliques in the graph (Jebara, 2009, 2014). Clearly, whenever nK is

small, linear programming can be more efficient than semidefinite programming. However, in the

worst case, nK may be exponentially large in N which makes linear programming useful only in

some cases. Message-passing methods can also be applied for finding the maximum weight stable

set in a perfect graph though they too become inefficient for graphs with many cliques (Foulds et al.,

2011; Jebara, 2014).

Where other methods exist for solving exact MAP inference, the reduction to MWSS is typically

not the fastest method, yet there is hope for improvement since the field is advancing rapidly, with

significant breakthroughs in recent years (Chudnovsky et al., 2006; Faenza et al., 2011).

3.5.2 Other properties

There is a rich literature on perfect graphs. We highlight key results used later in this thesis. See

Appendix A for more background on related graph theory.

Theorem 3.5.1 (Gallai, 1962). The graph obtained by pasting two perfect graphs on a clique is

perfect.

Theorem 3.5.2 (Chvátal, 1985). The graph obtained by pasting two perfect graphs on a star-cutset

is perfect.

Theorem 3.5.3 (Substitution Lemma, Lovász, 1972). The graph obtained by substituting one per-

fect graph for a vertex of another perfect graph is also perfect.

Here, substitutingH for x inGmeans deleting x and joining every vertex ofH to those vertices

of G which were adjacent to x.

Theorem 3.5.4 (Weak Perfect Graph Theorem, Lovász, 1972). A graph is perfect iff its complement

is perfect.

Theorem 3.5.5 (Strong Perfect Graph Theorem ‘SPGT’, Chudnovsky et al., 2006). A graph is

perfect iff it contains no odd hole or antihole (equivalently, iff it is Berge; equivalently, iff neither

the graph nor its complement contains an odd hole).



CHAPTER 3. ADDITIONAL BACKGROUND 32

3.6 Reduction of MAP inference to MWSS on a NMRF

Given an MRF model (V,Ψ), construct a nand Markov random field (NMRF), see Jebara (2009):

• A weighted graph N(VN , EN , w) with vertices VN , edges EN and a weight function w :

VN → R≥0.

• Each c ∈ C of the original model maps to a clique group of N which contains one node for

each possible configuration xc, all pairwise adjacent.

• Nodes in N are adjacent iff they have inconsistent settings for any variable Xi.

• Nonnegative weights of each node in N are set as ψc(xc)−minxc ψc(xc), see Section 3.7 for

an explanation of the subtraction.

x1 x2 x3

x4

v00
21

v01
21

v10
21

v11
21

v00
23

v01
23

v10
23

v11
23

v00
24 v01

24

v10
24 v11

24

(a) Input MRF (b) Derived NMRF

Figure 3.4: An example of mapping an MRF with binary variables (shown as a factor graph) to an

NMRF (subscripts denote the factor variables c and superscripts denote the configuration xc; black

edges are between nodes in the same clique group, blue edges go between different clique groups).

See Figure 3.4 for an example. Jebara (2014) proved that a maximal cardinality set of consistent

configuration nodes in N with greatest total weight, i.e. a MMWSS of N (see Section 3.3), will

identify a globally consistent configuration of all variables of the original MRF that solves the MAP

inference problem (3.2).

Sketch proof: (Slightly different to Jebara (2014), this will allow us to extend the result after

discussing pruning in Section 3.7.) A MMWSS S is consistent by construction and clearly contains

at most one node from each clique group. It remains to show it has at least one from each clique

group. Suppose a clique group has no representative. Identify a member of this group which could
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be added to S, establishing a contradiction since S is maximal, as follows: the group overlaps with

some variables of S, copy the settings of these; for all other variables in the group, pick any setting.

Note that if we do not insist on a maximal MWSS, it is possible that we do not get a representative

for some clique groups and hence do not obtain a complete MAP configuration for the initial MRF.

3.7 Reparameterizations and Pruning

A reparameterization is a transformation

{ψc} → {ψ′c} such that ∀x,
∑
c∈C

ψc(xc)=
∑
c∈C

ψ′c(xc) + constant.

This clearly does not modify (3.2) but can be helpful to simplify the problem.

One particular reparameterization is to add a constant just to any ψc function, since any consis-

tent configuration has exactly one setting for each group of variables c. Hence we may subtract the

minimum ψc(xc) and assume that in each clique group of N , the minimum weight of a node is ex-

actly zero. The earlier reduction result in Section 3.6 holds provided we insist on a maximal MWSS

(MMWSS). To find a MMWSS, it is sufficient first to remove or prune the zero weight nodes, find a

MWSS on the remaining graph, then reintroduce a maximal number of the zero weight nodes while

maintaining stability of the set. Different reparameterizations will yield different pruned NMRFs.

By the earlier argument: MWSS will find one member from each of some of the clique groups, then

we can always find one of the zero weight nodes to add from each of the remaining groups using

any greedy method. Hence we have shown the following result.

Lemma 3.7.1. MAP inference on an MRF is tractable provided ∃ an efficiently identifiable efficient

reparameterization such that the MRF maps to a perfect pruned NMRF.

3.8 Singleton Transformations, Binary Pairwise MRFs and Associa-

tivity

Another useful reparameterization is what we term a singleton transformation, which is a change

in one or more ψ functions for a single variable, with corresponding changes to a higher order term

which brings it to a convenient form.
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Considering binary pairwise models only, it is easily shown that a reparameterization of an edge

via singleton transformations,

ψ00 ψ01

ψ10 ψ11

→
ψ′00 ψ′01

ψ′10 ψ′11

 is valid iff ψ00 +ψ11−ψ01−ψ10 =

ψ′00 +ψ′11−ψ′01−ψ′10. Hence this quantity, which we call the associativity of the edge, is invariant

with respect to any singleton transformation, and thus is well defined.

We describe an edge as either associative6, in which case it tends to pull its two end vertices

toward the same value, or repulsive, in which case it tends to push its two end vertices apart to

different values, according to whether its associativity is > 0 or < 0. An edge with 0 associativity

may be removed since we may transform its edge potential to the zero matrix. A binary pairwise

model is associative iff every one of its edges is associative.

An associative edge may be reparameterized such that three of its entries are 0, and therefore

may be pruned, leaving only either ψ′00 or ψ′11 (or both, though for our purposes of mapping to a

perfect NMRF, it is always easier to prune more nodes) with a positive value. Similarly, we may

reparameterize a repulsive edge x	 y to leave only a (x = 0, y = 1) or (x = 1, y = 0) node.7

6Other equivalent terms used are attractive, ferro-magnetic or regular. This is equivalent to ψ for the edge being

supermodular, or having submodular cost function.

7For repulsive edges, selecting one or other form is exactly analogous to choosing an orientation of the edge, x→ y

or x ← y. Further, such enodes from repulsive edges are adjacent iff their directed edges connect ‘head to tail’, hence

the induced subgraph of an NMRF on these repulsive enodes is exactly a directed line graph of (V,ER).
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Chapter 4

New Results

Here we provide our main new results for the MWSS approach to MAP inference.

4.1 Singleton Clique Groups

Since typically we would like to allow any finite values for singleton potential functions, and single-

ton transformations as described in Section 3.8 without restriction, in some of this Chapter (specif-

ically, in Sections 4.4 and 4.5) we assume that any NMRF includes the complete clique group for

each of the single variables of its MRF.

In particular contexts, however, one may drop this requirement, and since this would remove

nodes from the NMRF, it might be thought that this can only help to show perfection (since any

induced subgraph of a perfect graph is perfect). Typically, however, if singleton nodes are removed

through reparameterization (as described in Section 3.7), it is at the cost of adding additional edge

nodes, such that the gain of fewer singleton nodes is more than offset by the disadvantage of adding

extra edge nodes, which usually have more neighbors in the NMRF, and thus often leads to a greater

risk of forming an odd hole or antihole in the NMRF. In addition, care must then be taken to confirm

the decomposition result of Theorem 4.2.1. Nevertheless, in Appendix B we explore the possible

benefits of relaxing the assumption of the presence of all singleton nodes, and observe that there are

situations where it can be helpful.
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4.2 New Results for All MRFs

Theorem 4.2.1 (MRF Decomposition). IfMRFA(VA,ΨA) andMRFB(VB,ΨB) both map to per-

fect NMRFs NA and NB , and have exactly one variable s in common, i.e. VA ∩ VB = {s}, with

consistent ψs, then the combined MRF ′(VA ∪ VB,ΨA ∪ΨB) maps to an NMRF N ′ which is also

perfect. The converse is true by the definition of perfect graphs.

Proof. 1 See Section 3.4 for notation. We may assume both ΨA and ΨB contain the same ψs

forming the complete s clique groupKs inNA andNB (see Section 4.1, though in fact this Theorem

holds more generally, provided only that both NA and NB have the same nodes from the clique

group for s).

Let the possible values of s be {0, . . . , k−1}, and si be the snode corresponding to (s = i). Let

Ai be all those vertices of NA \ {si} which have setting s = i, similarly define Bi for NB . Observe

that Ai is complete to Aj for all i 6= j, and similarly for Bi. N ′ is the result of pasting NA and NB

on Ks, together with all edges from Ai to Bj if i 6= j.

Hence N ′ admits a star-cutset given by X = Ks + A0 + · · ·+ Ak−1 + B0 + · · ·+ Bk−1 with

s0 complete to X \ {s0}. Thus by Theorem 3.5.2, it is sufficient to show that NA +X and NB +X

are each perfect. But this is true by Theorem 3.5.3, sinceNA+X = NA+B0 + · · ·+Bk−1 may be

obtained fromNA by substituting (via Theorem 3.5.3)Bi+si for si, i = 0, . . . , k−1; and similarly

for NB .

4.2.1 Block decomposition

Theorem 4.2.1 is a powerful tool for analyzing MRFs of any order and number of labels. As a

special case, we have an immediate corollary.

Theorem 4.2.2. A pairwise MRF maps to a perfect NMRF for all valid ψ iff each of its blocks maps

to a perfect NMRF.

This provides an elegant way to derive a previous result (Jebara, 2009):

1This proof, due to Maria Chudnovsky, is shorter and neater than the authors’ original.
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Theorem 4.2.3. A pairwise MRF whose graph structure is a tree (i.e. no cycles) maps to a perfect

NMRF.

Proof. By Theorem 4.2.2, we need only consider one edge together with its two end vertices (then

use induction). The edge clique group together with each one of the singleton clique groups is the

complement of a bipartite graph, hence is perfect (by Theorem 3.5.4). Now paste the two together

on the edge clique group to show the whole is perfect (by Theorem 3.5.1).

We show the following further general result.

Lemma 4.2.4. Neither a hole H nor an antihole A of size≥ 5 in a NMRF can contain≥ 2 members,

say s1 and s2, of any singleton clique group.

Proof. In H , s1 and s2 must be next to each other, then moving out round H one node in each

direction, we cannot avoid a chord, contradiction. In A, there must be at least 2 nodes between s1

and s2 in at least one direction. Taking this way round A, the node next to s1 must be adjacent to s2

but not s1, so has setting s = 1. Continuing round A, the next node must be adjacent to s1, so must

have an s value 6= 1 but then it is adjacent to its predecessor, contradiction.

4.2.2 Remarks on the decomposition result

An interesting question is whether it might be possible to extend Theorem 4.2.1 to allow pasting on

more than one variable. Unfortunately, we illustrate why this is not possible, except for restricted

settings which are unlikely to be of interest.

Using similar notation to Theorem 4.2.1, suppose we paste on the edge s− t and let us assume

that at least one of the original NMRFs, say NA, contains a hole running through the clique groups

of s, s − t and t, connecting back via path P (for example, the hole might be {s1t1, t0, P, s0}).

SinceNA is perfect, P must have an even number of edges. But now, apart from restricted cases, the

combined NMRF will contain a hole of the following form: {s0t1, t0, P, s0} in NA, together with

s1 from NB . This is an odd hole, hence the combined NMRF is not perfect (by Theorem 3.5.5).
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4.3 New Result for Pairwise MRFs (any number of labels)

Lemma 4.3.1. An antihole A of size ≥ 7 (odd or even) in an NMRF N derived from a pairwise

MRF M (any number of labels) cannot contain an snode.

Proof. Suppose A contains snode si0 , where {ir : r = 0, . . . } are distinct indices to labels of s.

Consider 4 nodes furthest from si0 around A (the furthest 4 if A is odd), label these in order around

A as x, x′, y′, y. All 4 must be adjacent to si0 , hence all have setting s 6= i0. Let x have s = i1,

then moving around A we observe that x′, y′ and y must in turn all similarly have setting s = i1

to avoid disallowed adjacencies between neighbors in A. By Lemma 4.2.4, all must be enodes. x

and y must be adjacent, hence have different settings for some other variable t. Let x have settings

(s = i1, t = j0) and y have settings (s = i1, t = j1), where {jr : r = 0, . . . } are distinct indices

to labels of t. Now consider x′: it must be adjacent to y so has some t setting, call it x′t, which

6= j1. But all such settings will lead to x′ being adjacent to x, contradiction, unless x′t = j0 but then

x = x′, again contradiction.

4.4 New Results for Binary Pairwise MRFs

The results of this Section 4.4 and the next Section 4.5 are subject to the singleton node assumption

of Section 4.1.

Lemma 4.4.1. Let M be a binary pairwise MRF. ∃ a reparameterization such that M maps to

perfect pruned NMRF⇔ ∃ a reparameterization with just one enode per edge in the pruned NMRF

which is perfect.

Proof. (⇐) is clear. (⇒) see Section 3.8. With a standard reparameterization, we may always

achieve just one pruned enode (either 00 or 11 for associative, 01 or 10 for repulsive) from those

already present. The result follows from the definition of a perfect graph.

Therefore henceforth, when referring to a pruned NMRF of a binary pairwise MRF, we may

assume just one enode per edge.

Lemma 4.4.2. An antihole A of size ≥ 7 can never occur in a pruned NMRF N from a binary

pairwise MRF M.
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Proof. Suppose A exists containing an snode, WLOG say s0. This must be adjacent to ≥ 4 nodes

in A, all of which must have s = 1 settings. The 2 closest to s0 around A one way must both

be adjacent to the closest to s0 around A the other way, which cannot be achieved, hence A must

contain only enodes. By Lemma 4.4.1, we have only one enode per edge of M . Two enodes are

adjacent in N if they have one end in common with different settings - since only 2 settings are

possible, a triangle in N must derive from edges inM that formed a triangle. Given 2 enodes which

are adjacent, there is exactly one possible third enode with which they can form a triangle (e.g. for

s0t1 and t0u0, s1u1 is the unique third possible enode). Yet A must contain ≥ 2 triangles which

have the same 2 members but a different third member, contradiction.

Since an antihole of size 5 is equivalent to a hole of the same size, SPGT (Theorem 3.5.5) gives

the following.

Lemma 4.4.3. For a binary pairwise MRF, a pruned NMRF is perfect⇔ it contains no odd hole.

4.5 Which Binary Pairwise MRFs Yield Perfect MRFs

The results of this Section 4.5 and the previous Section 4.4 are subject to the singleton node as-

sumption of Section 4.1.

By Theorem 4.2.2, we need only consider 2-connected graphs G (considering both associative

and repulsive edges), and by Lemma 4.4.3 we need only check for odd holes. G either contains a

frustrated cycle or does not. If it does, we shall see that G must have the form Tm,n or Un. If not,

we show G must have the form BR. See Section 3.4 for definitions.

Lemma 4.5.1 (Harary, 1953). The following are equivalent properties for a signed graph G on

vertices V :

1. G contains no frustrated cycle

2. G is of the form BR

3. G is flippable to fully associative

(1)⇔(2) by a variant of the standard proof that a graph is bipartite iff it has no odd cycle,

considering repulsive edges. (3) means ∃ some subset S ⊆ V such that if we replace each Xi ∈ S

by Yi = 1 − Xi, and modify potential functions accordingly, thereby flipping the nature of each
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edge incident to Xi between associative and repulsive, then all edges of G can be made associative.

(2)⇔(3) by setting S as either partition.

Theorem 4.5.2. A binary pairwise MRF with the form BR maps efficiently to a bipartite NMRF N .

Proof. Let the partitions of the variables be S and T with snodes {s0
i , s

1
i } from S, and {t0j , t1j} from

T . Choose a reparameterization such that any associative edge x⊕ y maps to an enode (x = 0, y =

0), and for any repulsive edge pick either form. Hence in N we have:

{ei} associative enodes from S, form (si = 0, sj = 0),

{fi} associative enodes from T , form (ti = 0, tj = 0),

{ai} repulsive enodes S → T , form (si = 0, tj = 1),

{bi} repulsive enodes S ← T , form (si = 1, tj = 0).

Observe N is bipartite with partitions {ai, s0
i , t

1
j , ei} and {bi, s1

i , t
0
j , fi}.

We now explore the case that G has a frustrated cycle.

Lemma 4.5.3. Any cycle C in a binary pairwise MRF generates an induced (chordless) cycle H in

its NMRF N with size at least as great, and with the same parity (odd/even number of vertices) as

the number of repulsive edges (odd/even) in the MRF’s cycle.

In particular, if M contains any frustrated cycle with ≥ 4 edges, or with 3 edges requiring any

snode to link the enodes in N , then this maps to an odd hole in N .

Proof. By Lemma 4.4.1, we may assume just one enode in N per edge in G. Form a cycle H in N

using the enodes corresponding to the edges of C, together with connecting snodes as required (if

two enodes meet at a variable and have the same setting, add an snode with the opposite setting).

Clearly H is chordless and |H| ≥ |C|.

Pick some enode e1 and orientation around H . Consider the end parity of e1, that is the setting

for the next variable around H . For subsequent enodes, to maintain end parity requires an even

(odd) total number of nodes, including possible snodes, for associative (repulsive) edges, and the

reverse to flip end parity. Let am and af be the number of times end parity is maintained and flipped

respectively using all associative edges around H , and similarly define rm and rf for all repulsive

edges. In order to connect to the other end of e1 after traversing H requires in total (including e1)

an odd number of flips, hence af + rf ≡ 1 (mod 2). The total number of nodes in H is comprised
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of the first enode together with all subsequent nodes, hence

|H| ≡ 1 + 0.am + 1.af + 1.rm + 0.rf (mod 2)

≡ af + rm + 1 (mod 2) ≡ rf + rm (mod 2).

Using Lemmas 4.4.3 and 4.5.3 we show the following result.

Lemma 4.5.4. Let M be a binary pairwise MRF that maps to an NMRF N . If N is not perfect then

∃ a frustrated cycle in M that maps to an odd hole in N . Hence, N is perfect⇔ @ such a cycle in

M .

Proof. By Lemma 4.4.3, N contains an odd hole H . By Lemma 4.2.4, any snode in H is adjacent

to two enodes, and hence H must have derived from a cycle in M . Lemma 4.5.3 completes the

proof.

Lemma 4.5.5. The only 2-connected binary pairwise MRFs containing a frustrated cycle, that map

to a perfect NMRF, are of the form Tm,n or Un.

Proof. See Section 3.4 for definitions. By Lemmas 4.5.3 and 4.5.4, we need only consider a frus-

trated triangle inM whose enodes inN require no connecting snodes. This triangle may have either

(1) one repulsive and two associative edges, which we shall show must be of the form Un or Tm,n

with n ≥ 1, or (2) three repulsive edges, which we shall show must be of the form Tm,n.

It is simple to check that, in either case, a fourth vertex adjacent to all 3 vertices of the triangle,

resulting in a K4 clique, does not admit a reparameterization that avoids a frustrated cycle requiring

connecting snodes.

Case 1: Triangle with one repulsive edge. We have a U1 structure. Let the configuration in

the MRF be s ⊕ t 	 v1 ⊕ s. In order to avoid connecting snodes in N , we must have one of

the following two reparameterizations: {(s = 0, t = 0), (t = 1, v1 = 0), (v1 = 1, s = 1)} or

{(s = 1, t = 1), (t = 0, v1 = 1), (v1 = 0, s = 0)}. Once one edge has been selected, the others can

follow in only one way. Consider what may be added to this graph while remaining 2-connected and

avoiding a frustrated cycle with ≥ 4 edges. Any additional vertex v2 must be attached by disjoint

paths to at least 2 vertices x and y of the triangle. If either path has length ≥ 2 then, by choosing
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one or other path in the original U1 from x to y, we always find a frustrated cycle with ≥ 4 edges,

leading to an odd hole. Using the argument from the preceding paragraph, v2 must be adjacent to

exactly 2 vertices of U1. If these vertices are connected by an associative edge, we now have U2;

otherwise we have T0,2. Checking cases now shows that the only way to add further vertices results

in Un or Tm,n structures, with any m ≥ 0, n ≥ 1 allowed.

Case 2: Triangle with three repulsive edges. We have T1,0. Similar reasoning to case 1 shows

that the only possibilities are Tm,n for any m ≥ 1, n ≥ 0.

Taking the results of this Section together, we have the following characterization.

Theorem 4.5.6. A binary pairwise MRF maps to a perfect NMRF for all valid ψc iff each of its

blocks (using all edges) has the form BR, Tm,n or Un.

4.5.1 Remarks

Theorem 4.5.6 certainly has theoretical value in establishing the boundaries of the MWSS approach

for this class of MRFs. Further, it appears to broaden the landscape of tractable models. Each of

the three block categories is itself tractable by other methods in isolation: QPBO (Rother et al.,

2007) is guaranteed to be able to handle a BR structure (though not Tm,n or Un), or indeed a BR

structure may be flipped to yield a fully associative model which can be solved with any appropriate

technique such as graph cuts; and each Tm,n or Un has low tree width so admits traditional inference

methods.

Initially, we believed our approach was the first to be able to handle an MRF containing Ω(n) of

these structures, including high tree widthBR sections, automatically in polynomial time. However,

as pointed out by David Sontag (private correspondence), the LP relaxation on the triplet-consistent

polytope2 will solve all our cases exactly in polynomial time. In addition, it can go further to handle

any block with treewidth 2. For a fuller discussion of this result, along with a discussion of which

additional binary pairwise MRFs are tractable via a reparameterization to a perfect pruned NMRF

if the singleton node assumption of Section 4.1 is relaxed, see Appendix B.

2Whereas the usual local polytope enforces consistency between all pairs of variables, the triplet-consistent polytope,

denoted TRI, enforces consistency across all triplets of variables.
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4.5.1.1 Efficient detection

Detecting if a binary pairwise MRF with topology (V,E) satisfies our conditions may be performed

in time O(|E|): identifying block structure is an application of DFS, then each block type may

be efficiently checked. The Tm,n and Un structures are straightforward. For BR, first test if it is

bipartite using just ER (an application of BFS). Next check each component by ER to see that no

EA cross partitions. Then stitch together partitions from different components (if more than one)

using EA. If any EA cross partitions then it is easy to see ∃ a frustrated cycle with ≥ 4 edges which

would lead to an odd hole in the NMRF.

4.6 Higher Order Submodular Cost Functions

As noted in the introduction, Jebara (2014) has shown that a fully associative binary pairwise model,

which is equivalent to a model with supermodular pairwise ψ functions (submodular cost functions),

can always be reparameterized so as to yield a bipartite pruned NMRF. Indeed, we have seen in

Section 3.8 that, for each associative edge x⊕ y, one may reparameterize and prune the edge clique

group so as to leave only either form (x = 0, y = 0) or (x = 1, y = 1). Here we extend the analysis

to consider higher order models, still focusing on submodular cost functions over binary variables.

We shall show that for potentials over 3 variables, a bipartite pruned NMRF is obtained for any

topology iff all cost functions are submodular. Further, we show that submodularity is a necessary

but strictly insufficient condition to obtain a bipartite pruned NMRF for all orders higher than 3.

Considering other approaches, this is similar to the result of Zivny et al. (2009) that all order 3

submodular functions over Boolean variables can be represented by order 2 submodular functions

using auxiliary variables, but this is not always true when the order > 3. Also, Kolmogorov and

Zabih (2004) showed that submodularity was necessary for a function to be graph-representable.

However, Arora et al. (2012) recently demonstrated a novel graph cuts method for submodular cost

functions of any order3 over binary variables. Still, our result usefully clarifies the boundaries of

our approach if we restrict to bipartite NMRFs only, and there is hope yet that a broader class of

models may map to the wider class of perfect NMRFs.

3The time is exponential in the order of the potentials.
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4.6.1 Notation

Let ψ be an order k potential function over k binary variables X = {X1, . . . , Xk}. Let one setting

be x = (x1, . . . , xk). Let x−ij be a setting for all variables other thanXi andXj . Let ψx = ψ(X =

x). Define the supermodularity s of ψ with respect to Xi, Xj on the projection given by x− ij, as

sijx−ij = ψ(Xi = 0, Xj = 0) + ψ(Xi = 1, Xj = 1) − ψ(Xi = 1, Xj = 0) − ψ(Xi = 0, Xj = 1)

where all other variables in X \ {Xi, Xj} are held fixed at x− ij.

Define αk =
∑

all 2k settings of x(−1)#0s in xψx. Observe that for k = 2, this is the supermodular-

ity s term. For k = 3, this is the difference between s with (any) one variable set to 0 and that with

the same variable set to 1. For k = 4, we have the sum of two s terms minus two others, etc.

∀Y ⊆ P(X), let OY and IY be weighted indicator functions. The O functions are 0 unless all

of Y are 0. The I functions are 0 unless all of Y are 1. Otherwise, OY and IY take values ZY and

AY , respectively. Y = b means fix variables Y at value b where b ∈ B = {0, 1}.

In order to map to a bipartite pruned NMRF for any topology at order k, we must be able to

represent every ψx as the sum of a constant term and nonnegative4 O and I indicator functions over

all subsets of X , which correspond exactly to the nodes in the pruned NMRF (which is then clearly

bipartite with stable sets corresponding to the {OY } and {IY }).

4.6.2 Results

Theorem 4.6.1. For k ≥ 2, mapping to a bipartite pruned NMRF for any topology⇒ ψ is super-

modular, equivalently every projection of ψ onto two variables is supermodular.

Proof. Given the ψx representation from the previous paragraph, consider which AY , ZY terms

survive when a general supermodularity term sijx−ij is computed. For some Y , analyze AY terms (a

similar result holds for ZY terms): Y will include either none, one or two of the variables {Xi, Xj}.

Consider the cases: If none, then AY does not feature in the sijx−ij computation. If one, then we get

plus AY (from the Xi = Xj = 1 term) minus AY (from the appropriate other term), so they cancel.

Finally, if two, then we simply get plus the AY term. Hence for every sijx−ij , it must be equal to the

sum of some AYi and ZYj terms, all of which are constrained to be ≥ 0. Hence all supermodularity

4It is critical that the functions be nonnegative in order that the corresponding nodes in the NMRF are the only ones

not pruned.
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terms are ≥ 0.

Further, for k = 4, it is easily checked that αk = AX + ZX , where we require AX , ZX ≥ 0,

yet it also equals sijx−ij=00 + sijx−ij=11 − s
ij
x−ij=01 − s

ij
x−ij=10 (for any 2 variables Xi, Xj), which

may be positive but equally may be negative.5 Similarly for all k > 4, we are not able to represent

all supermodular ψ functions.

Theorem 4.6.2. For general interactions over k = 3 variables, ψ is supermodular⇔ we obtain a

bipartite pruned NMRF for any topology.

Proof. (⇐) follows from Theorem 4.6.1. (⇒) we provide a constructive proof:6

If αk ≥ 0, use only OY for |Y | ≥ 2. Set ZX = αk. For |Y | = 2, set ZY = sY1 . For |Y | = 1,

set ZY = ψ(Y = 0, (X \ Y ) = 1)− ψ111. Set constant to ψ111 to observe we match ψx values ∀x.

Now reparameterize all singleton terms and prune as usual, see Section 3.7.

If αk ≤ 0, use only IY for |Y | ≥ 2. Set AX = −αk. For |Y | = 2, set AY = sY0 . For |Y | = 1,

set AY = ψ(Y = 1, (X \ Y ) = 0) − ψ000. As before, set constant to ψ000 to check values, then

reparameterize all singleton terms and prune, see Section 3.7.

4.7 Conclusions

The MWSS approach to MAP inference is an exciting, recent approach, leveraging the rapid progress

in combinatorics. Here we have derived new general tools (Section 4.2), defined the scope of the

approach in an important, broad setting (Sections 4.4 and 4.5), and clarified the power of mapping

to bipartite NMRFs (Section 4.6).

Future areas to explore include the open questions in Appendix B (where we consider reparam-

eterizations that absorb singleton nodes), non-bipartite perfect NMRFs for higher order potentials,

and variables with a greater number of labels.

5An example of supermodular ψ for k = 4 where αk < 0: ψ(x1, x2, x3, x4) = 0 except ψ(0, 0, 0, 0) =

2, ψ(1, 0, 0, 0) = ψ(0, 1, 0, 0) = ψ(0, 0, 1, 0) = ψ(0, 0, 0, 1) = 1.

6In fact, as shown, we need use only either exclusively OY or IY nodes for |Y | ≥ 2, which may further improve

efficiency.
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Part III

On the Bethe Approximation
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The material in this Part is based upon work in (Weller and Jebara, 2013a, 2014a; Weller et al.,

2014) and to appear in (Weller and Jebara, 2014b). Related code is available at

http://www.cs.columbia.edu/˜jebara/code/betheCleanUAI.tar.

http://www.cs.columbia.edu/~jebara/code/betheCleanUAI.tar
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Chapter 5

Additional Background

This Chapter provides additional background to the Bethe approximation.

5.1 Marginal Inference and Estimating the Partition Function

One popular method to tackle the problems of estimating the partition function and marginal in-

ference is the ‘sum-product’ version of the message-passing algorithm called belief propagation

(Pearl, 1988). If the topology of the model is a tree, this will return the exact solution in linear time

in n, the number of variables. If the method is applied to general topologies, termed loopy belief

propagation (LBP), results are often strikingly good (McEliece et al., 1998; Murphy et al., 1999),

though there are cases where it performs poorly, typically when there are many short cycles with

strong edge interactions (Wainwright and Jordan, 2008, § 4.1), and in general it may not converge

at all.

Coming from a seemingly different perspective, variational methods show that the partition

function may be obtained by minimizing the free energy over the marginal polytope. Recall Section

2.6.1, where it was shown that

− logZ = min
q∈M
FG(q) = min

q∈M
Eq(E)− S(q(x)).

M is the marginal polytope which comprises all globally valid probability distributions over all the

variables, i.e. for binary variables, it is the convex hull of all 2n configurations. FG is the Gibbs

free energy, with the global optimum arg min occurring at the true distribution.
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The Bethe approximation (Bethe, 1935) has two aspects, both pairwise approximations:

1. Relax the marginal polytope M to the local polytope L which enforces only pairwise consis-

tency (thus we may obtain a pseudo-marginal solution that is not globally valid; see Section

6.2 for more details); and

2. Use the Bethe entropy approximation SB=
∑

i∈V Si +
∑

(i,j)∈E Sij − Si − Sj . Here Si is

the entropy of the singleton distribution of Xi, and Sij is the entropy of the pairwise pseudo-

marginal of Xi and Xj . Note that Sij − Si − Sj = −Iij ≤ 0, where Iij is the mutual

information for an edge (see Wainwright and Jordan, 2008, §4 for details).

This yields the Bethe partition function ZB at the global optimum of the Bethe free energy F ,

− logZB = min
q∈L
F(q) = min

q∈L
Eq(E)− SB(q(x)).

An illustration of the marginal and local polytopes is provided in Figure 5.1, which also shows

the cycle polytope, which will be explored in Chapter 7.

marginal polytope

global consistency
cycle polytope

cycle consistency
local polytope

local consistency

Figure 5.1: Illustration of marginal, cycle and local polytopes. The marginal polytope is always

within the cycle polytope which is always within the local polytope but in some cases they can be

equal (for example, if the model has a tree topology). This is a stylistic representation, note that

vertices of the marginal polytope are also vertices of the cycle and local polytopes, which can add

further vertices (Sontag, 2010).

Yedidia et al. (2001) demonstrated a remarkable connection between the minimization of F and

LBP, in that any fixed point of LBP corresponds to a stationary point of the Bethe free energy. This
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was refined by Heskes (2002), who showed that every stable fixed point of LBP is a local minimum

of the Bethe free energy.

Much work has focused on understanding conditions under which LBP is guaranteed to con-

verge to the global optimum (Heskes, 2004; Mooij and Kappen, 2007; Watanabe, 2011), but outside

these restricted settings, until recently, there were no methods even to approximate ZB . Some con-

jectured that when LBP behaves poorly, it is likely that the Bethe approximation, as given by the

global minimum, also performs poorly, but it has not previously been possible to test this.

Other approaches to minimizing the Bethe free energy such as gradient descent (Welling and

Teh, 2001), double-loop methods (Yuille, 2002) or Frank-Wolfe (Frank and Wolfe, 1956; Belanger

et al., 2013), will converge but only to a local minimum, and with no runtime guarantee. Focusing

on the important class of binary pairwise models, Shin (2012) introduced an algorithm guaranteed

to return an approximately stationary point of F in polynomial time,1 though with a bound on the

maximum degree, ∆ = O(log n), where n is the number of variables.

Ruozzi (2012) recently proved that ZB ≤ Z for attractive models, using the technique of graph

covers. Similarly, for graphical models whose partition function is the permanent of a non-negative

matrix, ZB is recoverable via convex optimization and, here too, ZB ≤ Z (Huang and Jebara, 2009;

Vontobel, 2010; Watanabe and Chertkov, 2010; Gurvits, 2011). Otherwise, beyond cases where the

graph is acyclic, efficiently computing or approximating ZB remains an active research topic.

An interesting, recent example of the quality of the Bethe approximation is the analysis of Chan-

drasekaran et al. (2011), where the approximation is shown to be very useful to count independent

sets of a graph. Further, it is demonstrated that if the shortest cycle cover conjecture of Alon and

Tarsi (1985) is true, then the Bethe approximation is very good indeed for a random 3-regular graph.

As one further motivation for algorithms related to message passing, it was recognized that some

form of this paradigm might be a useful simplified model for how neurons in the brain communicate

(Doya, 2007), though this is highly speculative.

1An approximately stationary point is a pseudo-marginal vector where the magnitude of the derivative of the Bethe

free energy is guaranteed to be below a given level. The value of F at such a point could be far from the optimum.
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Chapter 6

Discrete Methods to Approximate the

Partition Function

In this Chapter, we show how discrete MAP inference techniques may be used to find logZB ,

that is log of the optimal Bethe partition function ZB , of a binary pairwise model to within an

arbitrary level of accuracy, specified by ε. For attractive models, we derive a fully polynomial-

time approximation scheme (FPTAS), which addresses a long-standing theoretical question. Our

approach is practical for use on small real-world problems. Further, since other methods which

approximate the Bethe optimum, such as LBP or CCCP (Yuille, 2002), may converge only to a local

optimum, our new method provides a new benchmark against which to compare other approaches.

The overall approach is to construct a provably sufficient mesh M(ε), i.e. to discretize the

problem in such a way that we guarantee that the optimum discretized point q∗ will have Bethe free

energy F(q∗) within ε of the true optimum. Two approaches for constructing this sufficient mesh

are considered: one called curvMesh, based on bounding second derivatives ofF , as was introduced

in (Weller and Jebara, 2013a); and another, typically much more efficient method called gradMesh,

introduced in (Weller and Jebara, 2014a), based on bounding first derivatives. In either case, we

first preprocess in order to bound the possible locations of any minima of the Bethe free energy

F away from the extreme values of 0 or 1, where derivatives become infinite, inside an orthotope

we term the Bethe box. Then we consider how best to solve the resulting discrete optimization

problem. The analysis of second derivatives, extending the work of Korc̆ et al. (2012), also crucially
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Figure 6.1: Stylized example showing Bethe free energy over two variables. We preprocess in order

to rule out the region shown in red. This leaves the area shown in blue which we term the Bethe box.

This is discretized using a sufficient mesh, shown in white. The red dot indicates the (continuous)

global minimum. The purple dot is the mesh point with closest location. The green dot is the lowest

point on the mesh, hence this is the discretized optimum returned.

demonstrates that if the initial binary model is fully attractive (i.e. has submodular cost functions),

then the resulting multi-label pairwise MAP problem is submodular, hence can be solved efficiently

by graph cuts (Schlesinger and Flach, 2006; Greig et al., 1989; Goldberg and Tarjan, 1988). See

Figure 6.1 for a stylized example, and Algorithm 1 for a high level summary of the approach.

This Chapter is organized as follows. In Section 6.1 we describe related work. In Sections

6.2-6.5, we establish notation and present various preliminary results, including various bounds and

important properties of the derivatives of the Bethe free energy. We apply these in Section 6.6 to

derive a mesh construction approach based on bounding first derivatives, which we call gradMesh.

In Section 6.7, we provide an alternative approach based on bounding second derivatives, which we

call curvMesh. This is typically significantly less efficient then gradMesh but is superior for very
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small values of ε. In Section 6.8, we discuss the resulting discrete optimization problem. In certain

settings this is tractable, and in general we mention several features that can make it easier to find a

satisfactory solution, or at least to bound its value. Experiments are described in Section 6.9, where

we compare the efficiency of the various methods for mesh construction, and demonstrate practical

application of the algorithm. In particular, interestingly we show an example of a model where LBP

fails to converge yet the Bethe approximation, as obtained using our algorithm, returns reasonable

results. Conclusions are presented in Section 6.10.

Algorithm 1 Mesh method to return ε-approximate global optimum logZB for a general binary

pairwise model
Input: ε, model parameters (convert using Section 6.2.1 if required)

Output: estimate of global optimum logZB guaranteed to be in range [logZB−ε, logZB], together

with corresponding pseudo-marginal as arg for the discrete optimum

Preprocess by computing bounds on the locations of minima, see Section 6.4.

Construct a sufficient mesh using one of the methods in this Chapter, see Sections 6.6 and 6.7 (all

approaches are fast, so several may be used and the most efficient mesh selected).

Attempt to solve the resulting multi-label MAP inference problem, see Section 6.8.

If unsuccessful, but a strongly persistent partial solution was obtained, then improved location

bounds may be generated (see Section 6.8.2.1), repeat from 2.

At anytime, one may stop and compute bounds on logZB , see Section 6.8.2.

6.1 Related Work

Jerrum and Sinclair (1993) derived a fully polynomial-time randomized approximation scheme

(FPRAS) for the true partition function, but only when singleton potentials are uniform (i.e. a

uniform external field), and the runtime is high at O(ε−2m3n11 log n). Heinemann and Globerson

(2011) have shown that models exist such that the true marginal probability cannot possibly be the

location of a minimum of the Bethe free energy. Approaches have been developed to solve related

convex problems but results are typically less good (Meshi et al., 2009). Our work demonstrates an

interesting connection between MAP inference techniques (NP-hard) and estimating the partition

function Z (#P-hard). A different connection was shown by using MAP inference on randomly
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perturbed models to approximate and bound Z (Hazan and Jaakkola, 2012).

6.2 Preliminaries

We focus on a binary pairwise MRF over n variables X1, . . . , Xn ∈ B = {0, 1} with graph topol-

ogy (V, E) and follow notation similar to Welling and Teh (2001). Let x = (x1, . . . , xn) be one

particular configuration. We assume1

p(x) =
e−E(x)

Z
, E = −

∑
i∈V

θixi −
∑

(i,j)∈E

Wijxixj , (6.1)

where the partition function Z =
∑

x e
−E(x) is the normalizing constant. Let m = |E| be the

number of edges, N (i) be the neighbors of i in the topology, and di = |N (i)| be the degree of i.

Given any joint probability distribution q(X1, . . . , Xn) over all variables, the (Gibbs) free en-

ergy is defined as FG(q) = Eq(E)−S(q), where S(q) is the (Shannon) entropy of the distribution.

Using variational methods, a remarkable result is easily shown (see Section 2.6.1 or Wainwright and

Jordan, 2008): minimizing FG over the set of all globally valid distributions (termed the marginal

polytope) yields a value of − logZ at the true marginal distribution p, given in (6.1).

This minimization is, however, computationally intractable, hence the approach of minimizing

the Bethe free energy F makes two approximations: (i) the marginal polytope is relaxed to the local

polytope, where we require only local consistency, that is we deal with a pseudo-marginal vector

q, which here may be considered the set of all singleton and pairwise marginals {qi = q(Xi =

1) ∈ [0, 1] ∀i ∈ V, µij = q(xi, xj) ∈ [0, 1]2×2 ∀(i, j) ∈ E} subject to the usual conditions for

probability distributions (non-negative, sum to 1), together with pairwise consistency requirements

qi =
∑

j∈N (i) µij , qj =
∑

i∈N (j) µij ∀i, j ∈ V; and (ii) the entropy S is approximated by the Bethe

entropy SB =
∑

(i,j)∈E Sij +
∑

i∈V(1−di)Si, where Sij is the entropy of µij , and Si is the entropy

of the singleton distribution with probabilities {1− qi, qi}.

1The energy E can always be thus reparameterized with finite θi and Wij terms provided p(x) > 0 ∀x, see Section

2.4.1. There are reasonable distributions where this does not hold, i.e. ∃x : p(x) = 0 but this can often be handled by

assigning such configurations a sufficiently small positive probability ε.
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The local polytope constraints imply that, given qi and qj ,

µij =

1 + ξij − qi − qj qj − ξij

qi − ξij ξij

 , (6.2)

where µij(a, b) = q(Xi = a,Xj = b), and we must have ξij ∈ [max(0, qi + qj − 1),min(qi, qj)]

in order that all terms are non-negative.

Hence, the global optimum of the Bethe free energy,

F(q) = Eq(E)− SB(q) (6.3)

=
∑

(i,j)∈E

−
(
Wijξij + Sij(qi, qj)

)
+
∑
i∈V

(
− θiqi + (di − 1)Si(qi)

)
,

is achieved by minimizing F over the local polytope, with ZB defined such that the result obtained

equals − logZB . See (Wainwright and Jordan, 2008) for details. Let αij = eWij − 1. αij = 0 ⇔

Wij = 0 may be assumed not to occur else the edge (i, j) may be deleted. αij has the same sign as

Wij , if positive then the edge (i, j) is attractive or associative; if negative then the edge is repulsive.

The MRF is attractive if all edges are attractive. As shown by Welling and Teh (2001), one can

solve for the optimum ξij explicitly in terms of qi and qj by minimizing F , leading to a quadratic

with real roots,

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0. (6.4)

For αij > 0, ξij(qi, qj) is the lower root, for αij < 0 it is the higher. Thus we may consider the

minimization ofF over q = (q1, . . . , qn) ∈ [0, 1]n, that is we must search over n dimensions, which

is still hard, but much easier than also having to search over pairwise marginals for every edge.

Collecting the pairwise terms of F from (6.3) for one edge, define

fij(qi, qj) = −Wijξij(qi, qj)− Sij(qi, qj). (6.5)

We are interested in discretized pseudo-marginals where for each qi, we restrict its possible

values to a discrete meshMi of points in [0, 1]. The points may be spaced unevenly and we may

have Mi 6= Mj . Let Ni = |Mi|, and define N =
∑

i∈V Ni and Π =
∏
i∈V Ni, the sum and

product respectively of the number of mesh points in each dimension. WriteM for the entire mesh.
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Let q̂ be the location of a global optimum of F . We say that a mesh constructionM(ε) is sufficient

if, given ε > 0, it can be guaranteed that ∃ a mesh point q∗ ∈
∏
i∈VMi such thatF(q∗)−F(q̂) ≤ ε.

The resulting discrete optimization problem may be framed as MAP inference in a multi-label MRF,

where variable i takes values inMi, with the same topology (see Section 6.8).

We shall use the sigmoid function σ(x) = 1/(1 + exp(−x)) in deriving bounds. We write Ai

for the lower bound of qi and Bi for the lower bound of 1− qi in the Bethe box, so the box is given

by Ai ≤ qi ≤ (1−Bi) ∀i ∈ V . Define ηi = min(Ai, Bi).

6.2.1 Input model specification

To be consistent with Welling and Teh (2001), for all theoretical analysis in this Chapter, we assume

the reparameterization in (6.1). However, when an input model is specified, in order to avoid bias,

we use singleton terms θi as in (6.1), but instead use pairwise energy terms given by −Wij

2 xixj −
Wij

2 (1 − xi)(1 − xj). With this form, varying Wij alters only the degree of association between

i and j. We assume maximum possible values W and T are known with |θi| ≤ T ∀i ∈ V , and

|Wij | ≤ W ∀(i, j) ∈ E . The required transformation to convert from input model to the format of

(6.1), simply takes θi ← θi −
∑

j∈N (i)Wij/2, leaving Wij unaffected.

6.2.2 Submodularity

In our context, a pairwise multi-label function on a set of ordered labels Xij = {1, . . . ,Ki} ×

{1, . . . ,Kj} is submodular iff

∀x, y ∈ Xij , f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y) (6.6)

where for x = (x1, x2) and y = (y1, y2), (x ∧ y) = (min(x1, y1),min(x2, y2)) and (x ∨ y) =

(max(x1, y1),max(x2, y2)). For binary variables, submodular energy is equivalent to being attrac-

tive. For a more general discussion, see Section 2.5.1.

The key property in this Chapter is that if all pairwise cost functions fij overMi ×Mj from

(6.5) are submodular, then the global discretized optimum may be found efficiently using graph cuts

(Schlesinger and Flach, 2006). In analyzing second derivatives of F in Section 6.5, we show that

this condition always holds provided the initial model is fully attractive.
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6.3 Flipping Variables

The technique of flipping variables will be very useful for our analysis. Given a model on binary

variables {Xi}, we can consider a new model with variables {X ′i}, where X ′i = 1 − Xi for some

selection of i. Flipping a variable flips the parity of all its incident edges so attractive↔ repulsive.

Flipping both ends of an edge leaves its parity unchanged.

6.3.1 Flipping all variables

Consider a new model with variables {X ′i = 1 − Xi, i = 1, . . . , n} and the same edges. Instead

of θi and Wij parameters, let those of the new model be θ′i and W ′ij . Identify values such that the

energies of all states are maintained up to a constant2:

E = −
∑
i∈V

θiXi −
∑

(i,j)∈E

WijXiXj = const−
∑
i∈V

θ′i(1−Xi)−
∑

(i,j)∈E

W ′ij(1−Xi)(1−Xj).

Matching coefficients gives W ′ij = Wij , θ
′
i = −θi −

∑
j∈N (i)

Wij .

(6.7)

If the original model was attractive, so too is the new.

6.3.2 Flipping some variables

Sometimes it is helpful to flip only a subsetR ⊆ V of the variables. This can be useful, for example,

to make the model locally attractive around a variable, which can always be achieved by flipping

just those neighbors to which it has a repulsive edge. Let X ′i = 1−Xi if i ∈ R, else X ′i = Xi for

i ∈ S, where S = V \ R. Let Et = {edges with exactly t ends inR} for t = 0, 1, 2.

As in 6.3.1, solving for W ′ij and θ′i such that energies are unchanged up to a constant,

W ′ij =


Wij (i, j) ∈ E0 ∪ E2,

−Wij (i, j) ∈ E1

θ′i =


θi +

∑
(i,j)∈E1 Wij i ∈ S,

−θi −
∑

(i,j)∈E2 Wij i ∈ R.
(6.8)

Lemma 6.3.1. Flipping variables changes affected pseudo-marginal matrix entries’ locations but

not values. F is unchanged up to a constant, hence the locations of stationary points are unaffected.

2Any constant difference will be absorbed into the partition function and leave probabilities unchanged.
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Proof. By construction, energies are the same up to a constant. The singleton entropies are sym-

metric functions of qi and 1 − qi so are unaffected. The impact on pseudo-marginal matrix entries

follows directly from definitions. Thus Bethe entropy is unaffected.

6.4 Preliminary Bounds

We derive the following results, bounding the locations of stationary points of the Bethe free energy.

We write ξij for the optimum Bethe pairwise marginal parameter described in Section 6.2.

Lemma 6.4.1. αij ≥ 0⇒ ξij ≥ qiqj , αij ≤ 0⇒ ξij ≤ qiqj

Proof. The quadratic equation (6.4) for ξij may be rewritten ξij−qiqj = αij(qi−ξij)(qj−ξij). Both

terms in parentheses on the right are elements of the pseudo-marginal matrix µij so are constrained

to be ≥ 0.

For each variable Xi, we define the sum of the magnitude of incident attractive edge weights

Wi =
∑

j∈N (i):Wij>0Wij , and similarly for incident repulsive edge weights, let

Vi = −
∑

j∈N (i):Wij<0Wij .

Theorem 6.4.2. For general edge types (associative or repulsive), at any stationary point of the

Bethe free energy, σ(θi − Vi) ≤ qi ≤ σ(θi +Wi). Proof in Appendix C.

Let the Bethe box be the smallest closed orthotope we can identify that must contain a global

optimum of F . We define Ai and Bi to be the minimum values in the Bethe box for qi and 1 − qi

respectively, hence the Bethe box is given by
∏
i∈V [Ai, 1−Bi], and by Theorem 6.4.2, we may take

Ai = σ(θi − Vi), Bi = 1− σ(θi +Wi) ∀i. These bounds alone are sufficient for all our theoretical

analysis. Improved {Ai, Bi} bounds may, however, be found by various methods, including Bethe

bound propagation (BBP, a new approach we developed, see Section C.1 in the Appendix), which

returns ranges guaranteed to include any stationary points of F . An alternative approach, which

we term MK, was derived in (Mooij and Kappen, 2007), based on considering the set of possible

beliefs after iterating LBP, starting from any initial values. Since any minimum of F corresponds to

a fixed point of LBP (Yedidia et al., 2001), this method may be used as an alternative to BBP. MK

considers cavity fields around each variable, which requires more time, but the bounds obtained are

no worse, and sometimes significantly better. Both BBP and MK require O(m) time per iteration in



CHAPTER 6. DISCRETE METHODS TO APPROXIMATE THE PARTITION FUNCTION 59

an efficient implementation, with each Ai and Bi term monotonically nondecreasing at each step.

They typically converge within 50 iterations, even for large, dense models, and may be stopped at

any time.

Define ηi = min(Ai, Bi), i.e. the closest that qi can come to the extreme values of 0 or 1.

Lemma 6.4.3 (Upper bound for ξij for an attractive edge). If αij > 0, then

qj − ξij ≥ qj(1−qi)
1+αij(qi+qj−2qiqj)

≥ qj(1−qi)
1+αij

, qi − ξij ≥ qi(1−qj)
1+αij(qi+qj−2qiqj)

≥ qi(1−qj)
1+αij

.

Also ξij ≤ m(αij + M)/(1 + αij) ⇒ ξij − qiqj ≤ αijm(1−M)
1+αij

, where m = min(qi, qj) and

M = max(qi, qj). Proof in Appendix C.

6.5 Derivatives of F

In (Welling and Teh, 2001), first partial derivatives of the Bethe free energy are derived as

∂F
∂qi

= −θi + logQi , where Qi =
(1− qi)di−1

qdi−1
i

∏
j∈N (i)(qi − ξij)∏

j∈N (i)(1 + ξij − qi − qj)
. (6.9)

Using the tools of convex analysis, extending the approach of Korc̆ et al. (2012), we derive

novel formulations of the second derivatives of the Bethe free energy, which will be used in this

Chapter to prove Theorem 6.5.2 (submodularity of any discretization of an attractive MRF), bound

the maximum possible curvature as needed for curvMesh (see Section 6.7), and will also be required

for the methods used in Chapter 8 for analyzing the behavior of the Bethe optimum as variables are

clamped.

Theorem 6.5.1 (Second derivatives for each edge). For any edge (i, j), for any αij ,

∂2fij
∂q2

i

=
1

Tij
qj(1− qj),

∂2fij
∂qi∂qj

=
∂2fij
∂qj∂qi

=
1

Tij
(qiqj − ξij),

∂2fij
∂q2

j

=
1

Tij
qi(1− qi)

where Tij = qiqj(1− qi)(1− qj)− (ξij − qiqj)2 ≥ 0 with equality iff qi or qj ∈ {0, 1}. (6.10)

Proof in Appendix C.

Using Theorem 6.5.1 and Lemma 6.4.1, it is easy to show the following important result.

Theorem 6.5.2 (Submodularity for any discretization of an attractive model). If a binary pairwise

MRF is submodular on an edge (i, j), i.e. Wij > 0, then the multi-label discretized MRF for any

mesh M is submodular for that edge. In particular, if the MRF is fully attractive, i.e. Wij >
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0 ∀(i, j) ∈ E , then the multi-label discretized MRF is fully submodular for any discretization. Proof

in Appendix C.

The on-diagonal Hessian terms are easily derived by considering the contribution from singleton

terms fi(qi) from (6.3). The only non-zero derivatives are with respect to qi.

fi(qi) = −θiqi + (di − 1)Si(qi),

∂fi
∂qi

= −θi − (di − 1)[log qi − log(1− qi)],

∂2fi
∂q2

i

= −(di − 1)
1

qi(1− qi)
≤ 0 for a connected graph.

Incorporating all singleton and edge terms gives the following result.

Theorem 6.5.3 (All terms of the Hessian). Let H be the Hessian of F for a binary pairwise model,

with Hij = ∂2F
∂qi∂qj

, and di = |N (i)| be the degree of variable Xi, then

Hii = − di − 1

qi(1− qi)
+
∑

j∈N (i)

qj(1− qj)
Tij

≥ 1

qi(1− qi)
, Hij =


qiqj−ξij
Tij

(i, j) ∈ E

0 (i, j) /∈ E , i 6= j

,

(6.11)

where Tij = qiqj(1− qi)(1− qj)− (ξij − qiqj)2 ≥ 0 with equality iff qi or qj ∈ {0, 1}.

Proof. Combine singleton terms from above with edge terms from Theorem 6.5.1. Observe that

Tij ≤ qiqj(1− qi)(1− qj).

Remark. Lemma 6.4.1 shows that qiqj − ξij ≤ 0 for an attractive edge, hence in an attractive

model, Hij = ∂2F
∂qi∂qj

≤ 0 ∀i, j ∈ V .

6.6 gradMesh Approach Based on Bounding First Derivatives

We construct a sufficient mesh M by analyzing bounds on the first derivatives of F (applying

a variant of the analysis that was used to derive the BBP algorithm, see the Appendix C.1). To

help distinguish between methods, we call this first derivative approach gradMesh, and the sec-

ond derivative approach curvMesh, described in Section 6.7. The gradMesh approach has several

attractive features:
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• For attractive models, we obtain a FPTAS with worst case runtime O(ε−3n3m3W 3) and no

restriction on topology, unlike with curvMesh (see Section 6.7) that requires max degree

∆ = O(log n) to guarantee polynomial runtime.

• The sufficient mesh is typically dramatically coarser than that achieved with curvMesh, lead-

ing to a much smaller subsequent MAP problem, unless ε is very small. For gradMesh, the

sum of the number of discretizing points in each dimension, N = O
(
nmW
ε

)
. For compar-

ison, curvMesh forms a mesh with N = O
(
ε−1/2n7/4∆3/4 exp

[
1
2(W (1 + ∆/2) + T )

])
.

See Section 6.9.1 for examples.

• The approach immediately handles a general model with both attractive and repulsive edges.

Hence approximating logZB may be reduced to a discrete multi-label MAP inference prob-

lem. This is valuable due to the availability of many MAP techniques, see Section 6.8.

First consider a model which is fully attractive around variable Xi, i.e. Wij > 0 ∀j ∈ N (i).

From (6.9) and Lemma 6.4.1, we obtain

∂F
∂qi

= −θi + logQi ≤ −θi + log
qi

1− qi
. (6.12)

Flip all variables (see Section 6.3). Write ′ for the parameters of the new flipped model, which is

also fully attractive, then using (6.7) and (6.12),

∂F ′

∂q′i
≤ −θ′i + log

q′i
1− q′i

⇔ −θi −Wi + log
qi

1− qi
≤ ∂F
∂qi

.

Combining this with (6.12) yields the sandwich result

−θi −Wi + log
qi

1− qi
≤ ∂F
∂qi
≤ −θi + log

qi
1− qi

.

Now generalize to consider the case that i has some neighbors R to which it is adjacent by

repulsive edges. In this case, flip those nodesR (see Section 6.3) to yield a model, which we denote

by ′′, which is fully attractive around i, hence we may apply the above result. By (6.8) we have

θ′′i = θi − Vi, and using W ′′i = Wi + Vi, we obtain that for a general model,

− θi −Wi + log
qi

1− qi
≤ ∂F
∂qi
≤ −θi + Vi + log

qi
1− qi

. (6.13)
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This bounds each first derivative ∂F
∂qi

within a range of width Vi+Wi =
∑

j∈N (i) |Wij |, which is

sufficient for the main theoretical result, see (6.17). We take the opportunity, however, to describe a

method which sometimes significantly narrows this range, thereby improving the result in practice.

Using one O(m) iteration of the belief propagation algorithm (BBP, see the Appendix), allows

us to refine the bounds for variable Xi of (6.13) based on the [Aj , 1 − Bj ] location bounds on its

neighbors j ∈ N (i), to show

fLi (qi) ≤
∂F
∂qi
≤ fUi (qi), where

fLi (qi) = −θi −Wi + log
qi

1− qi
+ logUi

fUi (qi) = −θi + Vi + log
qi

1− qi
− logLi. (6.14)

Li, Ui are each > 1 with logLi + logUi ≤ Vi + Wi. They are computed as Li =
∏
j∈N (i) Lij ,

Ui =
∏
j∈N (i) Uij , with Lij =


1 +

αijAj
1+αij(1−Bi)(1−Aj) if Wij > 0

1 +
αijBj

1+αij(1−Bi)(1−Bj) if Wij < 0

,

Uij =


1 +

αijBj
1+αij(1−Ai)(1−Bj) if Wij > 0

1 +
αijAj

1+αij(1−Ai)(1−Aj) if Wij < 0

.

See Figure 6.2 for an example. We make the following observations:

• The upper bound is equal to the lower bound plus the constantDi = Vi+Wi− logLi− logUi ≥

0.

• The bound curves are monotonically increasing with qi, ranging from −∞ to +∞ as qi ranges

from 0 to 1.

• A necessary condition to be within the Bethe box is that the upper bound is ≥ 0 and the lower

bound is ≤ 0. Hence, anywhere within the Bethe box, we must have bounded derivative,

|∂F∂qi | ≤ Di. BBP generates {[Ai, 1 − Bi]} bounds by iteratively updating with Li, Ui terms.

In general, however, we may have better bounds from any other method, such as MK, which

lead to higher Li and Ui parameters and lower Di.

F is continuous on [0, 1]n and differentiable everywhere in (0, 1)n with partial derivatives

satisfying (6.14). fLi (qi) and fUi (qi) are continuous and integrable. Indeed, using the notation
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Figure 6.2: Upper and Lower Bounds for ∂F
∂qi

. Solid blue curves show worst case bounds (6.13)

as functions of qi, and are different by a constant Vi + Wi =
∑

j∈N (i) |Wij |. Dashed red curves

show the upper fUi (qi) and lower fLi (qi) bounds (6.14) after being lowered by logLi and raised by

logUi respectively, which incorporate the information from the bounds of neighboring variables.

All bounding curves are strictly monotonic. The Bethe box region for qi must lie within the shaded

region demarcated by vertical red dashed lines, but we may have better bounds available, e.g. from

MK, as shown by Ai and 1−Bi.
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[
φ(x)

]x=b

x=a
= φ(b)− φ(a),∫ b

a
log

qi
1− qi

dqi =
[
qi log qi + (1− qi) log(1− qi)

]qi=b
qi=a

(6.15)

for 0 ≤ a ≤ b ≤ 1, which relates to the binary entropy function H(p) = −p log p− (1− p) log(1−

p), recall the definition of F . We remark that although ∂F
∂qi

tends to −∞ or +∞ as qi tends to 0 or

1, the integral converges (taking 0 log 0 = 0).

Hence if q̂ = (q̂1, . . . , q̂n) is the location of a global minimum, then for any q = (q1, . . . , qn) in

the Bethe box,

F(q)−F(q̂) ≤
∑
i:q̂i≤qi

∫ qi

q̂i

fUi (qi)dqi +
∑
i:qi<q̂i

∫ q̂i

qi

−fLi (qi)dqi. (6.16)

To construct a sufficient mesh, a simple initial bound relies on |∂F∂qi | ≤ Di. If mesh pointsMi

are chosen such that in dimension i there must be a point q∗ within γi of a global minimum (which

can be achieved using a mesh width in each dimension of 2γi), then by setting γi = ε
nDi

, we obtain

F(q∗) − F(q̂) ≤
∑

iDi
ε

nDi
= ε. It is easily seen that Ni ≤ 1 + d 1

2γi
e, hence the total number of

mesh points, N =
∑

i∈V Ni, satisfies

N ≤ 2n+
n

2ε

∑
i

Di ≤ 2n+
n

ε

∑
(i,j)∈E

|Wij |

= O

n
ε

∑
(i,j)∈E

|Wij |

 = O

(
nmW

ε

)
, (6.17)

since Di ≤ Vi +Wi =
∑

j∈N (i) |Wij |. Here W = max(i,j)∈E |Wij | and m = |E| is the number of

edges.

If the initial model is fully attractive, then by Theorem 6.5.2, we obtain a submodular multi-label

MAP problem which is solvable using graph cuts with worst case runtimeO(N3) = O(ε−3n3m3W 3)

(Schlesinger and Flach, 2006; Greig et al., 1989; Goldberg and Tarjan, 1988).

Note from the first expression in (6.17) that if we have information on individual edge weights

then we have a better bound using
∑

(i,j)∈E |Wij | rather than just mW .

For comparison, the second derivative curvMesh approach (Section 6.7) has runtime

O(ε−
3
2n6Σ

3
4 Ω

3
2 ), where Ω = O(∆eW (1+∆/2)+T ). Unless ε is very small, the new first deriva-

tive approach is typically dramatically more efficient and useful in practice. Further, it naturally

handles both attractive and repulsive edge weights in the same way.
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6.6.1 Refinements and adaptive methods

Since the resulting multi-label MAP inference problem (which is not submodular in general) is NP-

hard (Shimony, 1994), it is helpful to minimize its size. As noted above, setting γi = ε
nDi

, which

we term the simple method, yields a sufficient mesh, where |∂F∂qi | ≤ Di = Vi+Wi− logLi− logUi.

However, since the bounding curves are monotonic with fUi ≥ 0 and fLi ≤ 0, a better bound for the

magnitude of the derivative is available by setting Di = max{fUi (1−Bi),−fLi (Ai)}.

6.6.1.1 The minsum method

We define Ni = the number of mesh points in dimension i, with sum N =
∑

i∈V Ni and product

Π =
∏
i∈V Ni. For a fully attractive model, the resulting MAP problem may be solved in time

O(N3) by graph cuts (Theorem 6.5.2, (Schlesinger and Flach, 2006; Greig et al., 1989; Goldberg

and Tarjan, 1988)), so it is sensible to minimize N . In other cases, however, it is less clear what to

minimize. For example, a brute force search over all points would take time Θ(Π).

Define the spread of possible values in dimension i as Si = 1−Bi−Ai and noteNi = 1+d Si2γi
e

is required to cover the whole range. To minimize N while ensuring the mesh is sufficient, consider

the Lagrangian L =
∑

i∈V
Si
2γi
− λ(ε −

∑
i∈V γiDi), where Di is set as in the simple method

(Section 6.6.1). Optimizing gives

γi =
ε∑

j∈V
√
SjDj

√
Si
Di
, and N≤ 2n+

1

2ε

(∑
i∈V

√
SiDi

)2

(6.18)

which we term the minsum method. Note Di ≤ diW where di is the degree of Xi, hence(∑
i∈V
√
SiDi

)2 ≤ W
(∑

i∈V
√
di
)2. By Cauchy-Schwartz and the handshake lemma,(∑

i∈V
√
di
)2 ≤ n

∑
i∈V di = 2mn, with equality iff the di are constant, i.e. the graph is reg-

ular.

If instead Π is minimized, rather than N , a similar argument shows that the simple method

(Section 6.6.1) is optimal.

6.6.1.2 Adaptive methods

The previous methods rely on one bound Di for |∂F∂qi | over the whole range [Ai, 1− Bi]. However,

we may increase efficiency by using local bounds to vary the mesh width across the range. A bound



CHAPTER 6. DISCRETE METHODS TO APPROXIMATE THE PARTITION FUNCTION 66

on the maximum magnitude of the derivative over any sub-range may be found by checking just

−fLi at the lower end and fUi at the upper end.

This may be improved by using the exact integral as in (6.16). First, constant proportions ki > 0

should be chosen with
∑

i ki = 1. Next, the first or smallest mesh point γi1 ∈ Mi should be set

such that
∫ γi1
Ai
fUi (qi)dqi = kiε. This will ensure that γi1 covers all points to its left in the sense

that F [qi = γi1] − F [qi ∈ [Ai, γ
i
1]] ≤ kiε where all other variables qj , j 6= i, are held constant at

any values within the Bethe box. γi1 also covers all points to its right up to what we term its reach,

i.e. the point ri1 such that
∫ ri1
γi1
−fLi (qi)dqi = kiε. Next, γi2 is chosen as before, using ri1 as the left

extreme rather than Ai, and so on, until the final mesh point is computed with reach ≥ 1−Bi. This

yields an optimal mesh for the choice of {ki}.

If ki = 1
n , we achieve an optimized adaptive simple method. If ki =

√
SiDi∑

j∈V
√
SjDj

, we achieve

an adaptive minsum method. For many problems, this adaptive minsum method will be the most

efficient.

Integrals are easily computed using (6.15). To our knowledge, computing optimal points {γis}

is not possible analytically, but each may be found with high accuracy in just a few iterations using

a search method, hence total time to compute the mesh is O(N), which is negligible compared to

solving the subsequent MAP problem.

6.7 curvMesh Approach Based on Bounding Second Derivatives

In this Section, we describe the curvMesh approach to constructing a sufficient mesh. This is typ-

ically much less efficient than gradMesh (see Section 6.9.1 for a comparison of methods) but is

included here because it has better ε dependency, so for extremely small ε, it can produce a more

efficient mesh than gradMesh. It is also interesting in its own right and was developed first (Weller

and Jebara, 2013a).

The approach is as follows: As for gradMesh, the possible location of a global minimum q̂ is

first bounded in the Bethe box given by
∏
i∈V [Ai, 1 − Bi] by preprocessing with BBP or MK (see

Section 6.4). Next an upper bound Λ is derived on the maximum possible eigenvalue of the Hessian

H of F anywhere within the Bethe box. Then a mesh of constant width in each dimension is

introduced such that the nearest mesh point q∗ to q̂ is at most γ away in each dimension. Hence the



CHAPTER 6. DISCRETE METHODS TO APPROXIMATE THE PARTITION FUNCTION 67

`2 distance δ satisfies δ2 ≤ nγ2 and by Taylor’s theorem, F(q∗) ≤ F (q̂) + 1
2Λδ2. Λ is computed by

bounding the maximum magnitude of any element of H . Considering Theorem 6.5.3, this involves

separate analysis of diagonal Hii terms, which are positive and bounded above by the term b; and

edge Hij terms, which are negative (positive) for attractive (repulsive) edges, whose magnitude is

bounded above by a. Then Ω is set as max(a, b), and Σ as the proportion of non-zero entries in H .

Finally, Λ ≤
√

tr(HTH) ≤
√

Σn2Ω2 = nΩ
√

Σ (it may be possible to derive a tighter bound on Λ

using more sophisticated techniques, for example the method of Zhan, 2005, Corollary 2).

The approach is more natural for fully attractive models, but we show in Section 6.7.3 how a

general model may be handled. The mesh generated has N =
∑

i∈V Ni = O(ε−
1
2n2Σ

1
4 Ω

1
2 ), where

Ω = O(∆eW (1+∆/2)+T ) and ∆ = maxi∈V di is the maximum degree of the topology. Hence,

curvMesh leads to a FPTAS for attractive models only if ∆ = O(log n), interestingly the same

restriction as Shin (2012) required to find an approximately stationary point, whereas gradMesh has

no such restriction.

We remark on two reasons why curvMesh is less efficient than gradMesh. First, when computing

the mesh width based on an upper bound Λ on curvature in any direction, we must consider the worst

case throughout the entire Bethe box. Since the derivatives→∞ as one approaches the edges of 0

or 1, this depends critically on mini∈V{Ai, Bi}, so poor {Ai, Bi} bounds lead to a very fine mesh.

Secondly, the same, worst case, mesh width must be used isotropically throughout the entire Bethe

box. Both aspects are in contrast to gradMesh.

6.7.1 Bounding off-diagonal terms Hij for attractive edges

Here we derive an expression for a, an upper bound on −Hij for attractive edges, and show that

a = O(eW (1+∆/2)+T ). This is a stronger result than was derived in (Weller and Jebara, 2013a):

essentially, a more careful analysis allows a potentially small term in the numerator and denominator

of a fraction to be canceled before bounding.

Using Theorem 6.5.3, equation (6.10) and Lemma 6.4.3,
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−Hij = (ξij − qiqj)
1

Tij
≤ m(1−M)αij

1 + αij

1

m(1−M)

[
(1−m)M −m(1−M)

(
αij

1+αij

)2
]

=

(
αij

1 + αij

)
1

(1−m)M −m(1−M)
(

αij
1+αij

)2 (6.19)

where m = min(qi, qj),M = max(qi, qj). Now we use the following result.

Lemma 6.7.1. For any k ∈ (0, 1), let y = minqi∈[Ai,1−Bi],qj∈[Aj ,1−Bj](1−m)M −m(1−M)k,

then

y =



BiAj − (1−Bi)(1−Aj)k if (1−Bi) ≤ Aj i range ≤ j range

(1− k) min{Aj(1−Aj), Bi(1−Bi)} if Ai ≤ Aj ≤ 1−Bi ≤ 1−Bj ranges overlap, i lower

(1− k) min{Aj(1−Aj), Bj(1−Bj)} if Ai ≤ Aj ≤ 1−Bj ≤ 1−Bi j range ⊆ i range

(1− k) min{Ai(1−Ai), Bi(1−Bi)} if Aj ≤ Ai ≤ 1−Bi ≤ 1−Bj i range ⊆ j range

(1− k) min{Ai(1−Ai), Bj(1−Bj)} if Aj ≤ Ai ≤ 1−Bj ≤ 1−Bi ranges overlap, j lower

BjAi − (1−Bj)(1−Ai)k if (1−Bj) ≤ Ai j range ≤ i range.

Proof. The minimum is achieved by minimizing the larger and maximizing the smaller of qi and

qj . The result follows for cases where their ranges are disjoint. If ranges overlap, then the minimum

is achieved at some qi = qj in the overlap, with value qi(1 − qi)(1 − k), which is concave and

minimized at an extreme of the overlap range.

Lemma 6.7.1 is useful in practice, and should be used to compute a = max(i,j)∈E of the bound

above. To analyze theoretical worst case, it is straightforward to see the corollary that y ≥ (1−k)η̄,

where η̄ = mini∈V ηi(1− ηi). This bound can be met, for example, if all ranges coincide. Consid-

ering Section 6.2.1 on input model specification, we see that 1
ηi(1−ηi) = O(eT+∆W/2). Hence, from

(6.19), and using αij = eWij − 1, we obtain

−Hij ≤
(

αij
1 + αij

)/
η̄

(
1−

(
αij

1 + αij

)2
)

= O(eW (1+∆/2)+T ). (6.20)

This compares favorably to the earlier bound in (Weller and Jebara, 2013a), where it was shown that

a = O(eW (1+∆)+2T ).
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6.7.2 Bounding on-diagonal terms Hii for attractive models

Here we derive b, an upper bound onHii for attractive models, and show that b = O(∆eW (1+∆/2)+T ).

Since Ω = max(a, b), this shows that Ω = O(∆eW (1+∆/2)+T ).

First we derive a lower bound for Tij at any point in the Bethe box. Let

Kij = ηiηj(1 − ηi)(1 − ηj)
2αij+1

(αij+1)2
. All terms are known from the data prior to the discrete

optimization.

Lemma 6.7.2. At any point in the Bethe box, Tij ≥ Kij .

Proof. Using Theorem 6.5.1 and Lemma 6.4.3,

Tij ≥ qiqj(1− qi)(1− qj)−
(αijm(1−M)

1 + αij

)2

≥ qiqj(1− qi)(1− qj)
[
1−

( αij
1 + αij

)2]
.

Now using (6.11) and the expression from the proof of Lemma 6.7.2,

Hii ≤
1− zi

ηi(1− ηi)
+
∑

j∈N (i)

1

qi(1− qi)
[
1−

(
αij

1+αij

)2]
≤ 1

ηi(1− ηi)

(
1− zi +

∑
j∈N (i)

(αij + 1)2

2αij + 1

)
.

Sinceαij+1 = eWij and as above, 1
ηi(1−ηi) = O(eT+∆W/2), we obtain b = O(∆eW (1+∆/2)+T ).

We remark that αij + 1 < 2αij + 1, hence we have the corollary that Hii <
1+
∑
j∈N (i) αij

ηi(1−ηi) . At

any minimum of the Bethe free energy, all eigenvalues are ≥ 0 so at these locations, the maximum

eigenvalue ≤ Tr H <
∑

i∈V
1

ηi(1−ηi) +
∑

(i,j)∈E αij

(
1

ηi(1−ηi) + 1
ηj(1−ηj)

)
.

6.7.3 Extending the second derivative approach to a general model

Using flipping arguments from Section 6.3, we are able to extend the curvMesh method to apply

to general (non-attractive) models. Interestingly, the bounds derived for Ω = max(a, b) take ex-

actly the same form as for the purely attractive case, except that now −W ≤ Wij ≤ W , whereas

previously it was required that 0 ≤Wij ≤W . Details and derivations are in the Appendix C.2.
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6.8 The Derived Multi-Label MAP Inference Problem

After computing a sufficient mesh, it remains to solve the multi-label MAP inference problem on

a MRF with the same topology as the initial model, where each qi takes values inMi. In general,

this is NP-hard (Shimony, 1994).

6.8.1 Tractable cases

If it happens that all cost functions are submodular (as is always the case if the initial model is

fully attractive by Theorem 6.5.2), then as already noted, it may be solved efficiently using graph

cut methods, which rely on solving a max flow/min cut problem on a related graph, with worst case

runtimeO(N3) (Schlesinger and Flach, 2006; Greig et al., 1989; Goldberg and Tarjan, 1988). Using

the algorithm of Boykov and Kolmogorov (2004), performance is typically much faster, sometimes

approaching O(N). This submodular setting is the only known class of problem which is solvable

for any topology.

Alternatively, the topological restriction of bounded tree-width allows tractable inference (Pearl,

1988). Further, under mild assumptions, this was shown to be the only restriction which will allow

efficient inference for any cost functions (Chandrasekaran et al., 2008). We note that if the problem

has bounded tree-width, then so too does the original binary pairwise model, hence exact inference

(to yield the true marginals or the true partition function Z) on the original model is tractable us-

ing the junction tree algorithm, making our approximation result less interesting for this class. In

contrast, although MAP inference is tractable for any attractive binary pairwise model, marginal

inference and computing Z are not (Jerrum and Sinclair, 1993).

A recent approach reducing MAP inference to identifying a maximum weight stable set in a

derived weighted graph, as described in Part II of this thesis or in (Jebara, 2014; Weller and Jebara,

2013b), shows promise, allowing efficient inference if the derived graph is perfect. Further, testing if

this graph is perfect can be performed in polynomial time (Jebara, 2014; Chudnovsky et al., 2005b).

6.8.2 Intractable MAP cases

Many different methods are available, see Kappes et al. (2013) for a recent survey. Some, such

as dual approaches, may provide a helpful bound even if the optimum is not found. Indeed, a LP



CHAPTER 6. DISCRETE METHODS TO APPROXIMATE THE PARTITION FUNCTION 71

relaxation will run in polynomial time and return an upper bound on logZB that may be useful. A

lower bound may be found from any discrete point, and this may be improved using local search

methods.

Note that the Bethe box bounds on each qi ∈ [Ai, 1 − Bi] are worst case, irrespective of other

variables. However, given a particular value for one or more qj , j ∈ N (i), either BBP (see Appendix

C.1) or MK (Mooij and Kappen, 2007) can produce better bounds on qi, which may be helpful for

pruning the solution space.

6.8.2.1 Persistent partial optimization approaches

The multi-label implementation of quadratic pseudo-Boolean optimization (Kohli et al., 2008, MQPBO),

and the method of Kovtun (2003), are examples of this class. Both consider LP-relaxations and run

in polynomial time. In our context, the output consists of ranges (which in the best case could be

one point) of settings for some subset of the variables. If any such ranges are returned, the strong

persistence property ensures that any MAP solution satisfies the ranges. Hence, these may be used

to update {Ai, Bi} bounds (padding the discretized range to the full continuous range covered by

the end points if needed), compute a new, smaller, sufficient mesh and repeat until no improvement

is obtained.

6.9 Experiments

6.9.1 Comparison of methods

We compared the efficiency of the various mesh construction methods, see Figure 6.3. We consid-

ered two values of ε: 1 (medium resolution) and 0.1 (fine resolution). For each value, we generated

random MRFs on n variables, all pairwise connected, where θi ∼ U [−2, 2] and Wij ∼ U [−W,W ],

using the input convention of Section 6.2.1. We show results first for fixed W = 5 as n is varied

from 3 to 20, then for fixed n = 10 as W is varied from 1 to 10, generating 10 random models for

each value. Of the various first derivative gradMesh methods, only minsum is shown since the oth-

ers would not be sufficiently distinguishable on these plots.3 In addition to the methods described in

3In practice, the adaptive methods typically produce a mesh with about half the number of points in each dimension.
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Figure 6.3: Variation in N = sum of number of mesh points in each dimension, log scale, as:

(top) n = number of variables is changed, keeping W = 5 fixed; (bottom) W = maximum cou-

pling strength is changed, keeping n = 10 fixed. On the left, ε = 1 (medium resolution); on the

right, ε = 0.1 (fine resolution). In each case the topology is a complete graph, edge weights are

chosen Wij ∼ U [−W,W ] and θi ∼ U [−2, 2]. Average over 10 random models for each value.

curvMeshOrig is the original method of Weller and Jebara (2013a); curvMeshNew is the refinement

described here in see Section 6.7; gradMesh is the first derivative minsum method, see Section 6.6.

For more details, see text of Section 6.9.1.
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this thesis, we also show results for the original curvMesh method described in (Weller and Jebara,

2013a), before it was improved as described in Section 6.7.4

Note that N is shown on a log axis, thus we observe that the new methods dramatically outper-

form the original curvMesh method of Weller and Jebara (2013a) by many orders of magnitude for

most cases of interest, even for small ε. Further, recall that N =
∑

iNi is the sum of the number

of mesh points in each dimension. The runtime of the overall algorithm is certainly Ω(N), even

for attractive models5, and for general models is typically a significantly higher power, thus further

demonstrating the benefit of the new methods.

6.9.2 Power network

As a first step toward applying our algorithm to explore the usefulness of the global optimum of the

Bethe approximation, here we identify one setting where LBP fails to converge, yet still we achieve

reasonable results.

We aim to predict transformer failures in a power network (Rudin et al., 2012). Since the real

data is sensitive, our experiments use synthetic data. Let Xi ∈ {0, 1} indicate if transformer i has

failed or not. Each transformer has a probability of failure on its own which is represented by a sin-

gleton potential θi. However, when connected in a network, a transformer can propagate its failure

to nearby nodes (as in viral contagion) since the edges in the network form associative dependen-

cies. We assume that homogeneous attractive pairwise potentials couple all transformers that are

connected by an edge, i.e. Wij = W ∀(i, j) ∈ E . The network topology creates a Markov random

field specifying the distribution p(X1, . . . , Xn). Our goal is to compute the marginal probability of

failure of each transformer within the network (not simply in isolation as in Rudin et al. (2012)).

Since recovering p(Xi) is hard, we estimate Bethe pseudo-marginals qi = q(Xi = 1) through our

algorithm, which emerge as the arg min when optimizing the Bethe free energy.

A single simulated sub-network of 55 connected transformers was generated using a random

preferential attachment model, resulting in average degree 2 (see Figure C.1 in the Appendix C.3).

4The original method of (Weller and Jebara, 2013a) could only handle attractive models but we augment it in a manner

similar to Section 6.7.3. Plots for attractive models, where Wij ∼ U [0,W ] are very similar to those shown.

5In our experiments on attractive models, the Boykov-Kolmogorov algorithm typically runs in time O(N1.5) to

O(N2.5).



CHAPTER 6. DISCRETE METHODS TO APPROXIMATE THE PARTITION FUNCTION 74

Typical settings of θi = −2 and W = 4 were specified (using the input model specification of

Section 6.2.1). We attempted to run BP using the libDAI package (Mooij, 2010) but were unable

to achieve convergence, even with multiple initial values, using various sequential or parallel set-

tings and with damping. However, running our gradMesh adaptive minsum algorithm with ε = 1

achieved reasonable results as shown in Table 6.1, where true values were obtained with the junction

tree algorithm.

ε = 1 PTAS for logZB Error from true value

Mean `1 error of single marginals 0.003

Log-partition function 0.26

Table 6.1: Results on simulated power network

It has been suggested that the Bethe approximation is poor when BP fails to converge (Mooij

and Kappen, 2005b). Our new method will allow this to be explored rigorously in future work. The

initial result above is a promising first step and justifies further investigation.

6.10 Discussion and Future Work

To our knowledge, we have derived the first ε-approximation algorithm for logZB for a general

binary pairwise model. From experiments run, we note that the ε bounds for the adaptive minsum

first derivative gradMesh approach appear to be close to tight since we have found models where

the optimum returned when run with ε = 1 is more than 0.5 different to that for ε = 0.1. When

applied to attractive models, we guarantee a FPTAS with no degree restriction.

As described in Section 6.9.2, Bethe pseudomarginals may be recovered from our approach by

taking the q∗ that is returned as the arg min of F over the discrete mesh. However, although F(q∗)

is guaranteed within ε of the optimum, there is no guarantee that q∗ will necessarily be close to a true

Bethe optimum pseudo-marginal. For example, the surface could be very flat over a wide region,

or the true optimum might be ε
2 better at a location far from q∗. We sketch out how our approach

may be used to bound the location of a global optimum pseudo-marginal, though note that there is

no runtime guarantee. First pick an initial ε1 and run the main algorithm to find q∗1 . Now use any

method to solve for the second best discretized mesh point q∗2 . If it happens thatF(q∗2) ≥ F(q∗1)+ε1
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then, by the nature of the mesh construction, there must be a global minimum within the orthotope

given by the neighboring mesh points of q∗1 in each dimension6 and we terminate. On the other

hand, if F(q∗2) < F(q∗1) + ε1 then reduce ε1, for example to ε1
2 and repeat until successful.

Future work includes further reducing the size of the mesh, considering how it should be selected

to simplify the subsequent discrete optimization problem, and exploring applications. See Section

C.4 for how the mesh size may be improved dramatically for many models when W is very high.

Importantly, we now have the opportunity to examine rigorously the performance of the global

Bethe optimum. In addition, this will provide a benchmark against which to compare other (non-

global) Bethe approaches that typically run more quickly, such as LBP or CCCP (Yuille, 2002).

Another interesting avenue is to use our algorithm as a subroutine in a dual decomposition approach

to optimize over a tighter relaxation of the marginal polytope, as we explore in Chapter 7.

6In fact, the optimum must be within a tighter orthotope based on the reach down and up, in each dimension, of q∗1 .



CHAPTER 7. UNDERSTANDING THE BETHE APPROXIMATION 76

Chapter 7

Understanding the Bethe

Approximation: Polytope and Entropy

Belief propagation is a remarkably effective tool for inference, even when applied to networks with

cycles. It may be viewed as a way to seek the minimum of the Bethe free energy, though with no

convergence guarantee in general. A variational perspective shows that, compared to exact infer-

ence, this minimization employs two forms of approximation: (i) the true entropy is approximated

by the Bethe entropy, and (ii) the minimization is performed over a relaxation of the marginal poly-

tope termed the local polytope. Here we explore when and how the Bethe approximation can fail

for binary pairwise models by examining each aspect of the approximation, deriving results both

analytically and with new experimental methods.

7.1 Introduction

Graphical models are a central tool in machine learning. However, the task of inferring the marginal

distribution of a subset of variables, termed marginal inference, is NP-hard (Cooper, 1990), even to

approximate (Dagum and Luby, 1993), and the closely related problem of computing the normaliz-

ing partition function is #P-hard (Valiant, 1979). Hence, much work has focused on finding efficient

approximate methods. The sum-product message-passing algorithm termed belief propagation is

guaranteed to return exact solutions if the underlying topology is a tree. Further, when applied to

models with cycles, known as loopy belief propagation (LBP), the method is popular and often
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strikingly accurate (McEliece et al., 1998; Murphy et al., 1999).

A variational perspective shows that the true partition function and marginal distributions may

be obtained by minimizing the true free energy over the marginal polytope. The standard Bethe

approximation instead minimizes the Bethe free energy, which incorporates the Bethe pairwise

approximation to the true entropy, over a relaxed pseudo-marginal set termed the local polytope.

A fascinating link to LBP was shown (Yedidia et al., 2001), in that fixed points of LBP correspond

to stationary points of the Bethe free energy F . Further, stable fixed points of LBP correspond to

minima ofF (Heskes, 2002). Werner (2010) demonstrated a further equivalence to stationary points

of an alternate function on the space of homogeneous reparameterizations.

In general, LBP may converge only to a local optimum or not converge at all. Various suf-

ficient conditions have been derived for the uniqueness of stationary points (Mooij and Kappen,

2007; Watanabe, 2011), though convergence is often still not guaranteed (Heskes, 2004). Conver-

gent methods based on analyzing derivatives of the Bethe free energy (Welling and Teh, 2001) and

double-loop techniques (Heskes et al., 2003) have been developed. Recently, algorithms have been

devised that are guaranteed to return an approximately stationary point (Shin, 2012) or a point with

value ε-close to the optimum (Weller and Jebara, 2013a).

However, there is still much to learn about when and why the Bethe approximation performs

well or badly. We shall explore both aspects of the approximation in this paper. Interestingly,

sometimes they have opposing effects such that together, the result is better than with just one

(see §7.4 for an example). We shall examine minima of the Bethe free energy over three different

polytopes: marginal, local and cycle (see §7.2 for definitions). For experiments, we explore two

methods, dual decomposition and Frank-Wolfe, which may be of independent interest. To provide

another benchmark and isolate the entropy component, we also examine the tree-reweighted (TRW)

approximation (Wainwright et al., 2005). Sometimes we shall focus on models where all edges are

attractive, that is neighboring variables are pulled toward the same value; in this case it is known

that the Bethe approximation is a lower bound for the true partition function (Ruozzi, 2012).

Questions we shall address include:

• In attractive models, why does the Bethe approximation perform well for the partition func-

tion but, when local potentials are low and coupling high, poorly for marginals?

• In models with both attractive and repulsive edges, for low couplings, the Bethe approxima-
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tion performs much better than TRW, yet as coupling increases, this advantage disappears.

Can this be repaired by tightening the relaxation of the marginal polytope?

• Does tightening the relaxation of the marginal polytope always improve the Bethe approxi-

mation? In particular, is this true for attractive models?

This Chapter is organized as follows. Notation and preliminary results are presented in §7.2. In

§7.3-7.4 we derive instructive analytic results, first focusing on the simplest topology that is not a

tree, i.e. a single cycle. Already we observe interesting effects from both the entropy and polytope

approximations. For example, even for attractive models, the Bethe optimum may lie outside the

marginal polytope and tightening the relaxation leads to a worse approximation to the partition

function. In §7.5 we examine more densely connected topologies, demonstrating a dramatic phase

transition in attractive models as a consequence of the entropy approximation that leads to poor

singleton marginals. Experiments are described in §7.6, where we examine test cases. Conclusions

are discussed in §7.7. Related work is discussed throughout the text. An Appendix with technical

details and proofs is attached at the back.

7.2 Notation and Preliminaries

Throughout this Chapter, we restrict attention to binary pairwise Markov random fields (MRFs).

We consider a model with n variables X1, . . . , Xn ∈ B = {0, 1} and graph topology (V, E); that is

V contains nodes {1, . . . , n} where i corresponds to Xi, and E ⊆ V × V contains an edge for each

pairwise relationship. Let x = (x1, . . . , xn) be a configuration of all the variables, and N (i) be the

neighbors of i. Primarily we focus on models with no ‘hard’ constraints, i.e. p(x) > 0 ∀x, though

many of our results extend to this case. We may reparameterize the potential functions (Wainwright

and Jordan, 2008) and define the energy E such that p(x) = e−E(x)

Z with

E = −
∑
i∈V

θixi −
∑

(i,j)∈E

Wij

2
[xixj + (1− xi)(1− xj)] . (7.1)

This form allows edge coupling weights Wij to be varied independently of the singleton potentials

θi. If Wij > 0 then an edge is attractive, if Wij < 0 then it is repulsive. If all edges are attractive,

then the model is attractive. We write µij for pairwise marginals and, collecting together the θi
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and Wij potential terms into a vector θ, with a slight abuse of notation, sometimes write (7.1) as

E = −θ · µ.

7.2.1 Free energy, variational approach

Given any joint probability distribution q(x) over all variables, the (Gibbs) free energy is defined as

FG(q) = Eq(E)− S(q), where S(q) is the (Shannon) entropy of the distribution.

It is easily shown (Wainwright and Jordan, 2008) that− logZ(θ) = minq FG, with the optimum

when q = p(θ), the true distribution. This optimization is to be performed over all valid probability

distributions, that is over the marginal polytope. However, this problem is intractable due to the

difficulty of both computing the exact entropy S, and characterizing the polytope (Deza and Laurent,

2009).

7.2.2 Bethe approximation

The standard approach of minimizing the Bethe free energy F makes two approximations:

1. The entropy S is approximated by the Bethe entropy

SB(µ) =
∑

(i,j)∈E

Sij(µij) +
∑
i∈V

(1− di)Si(µi), (7.2)

where Sij is the entropy of µij , Si is the entropy of the singleton distribution of Xi and

di = |N (i)| is the degree of i; and

2. The marginal polytope is relaxed to the local polytope, where we require only local (pairwise)

consistency, that is we deal with a pseudo-marginal vector q, that may not be globally consis-

tent, which consists of {qi = q(Xi = 1) ∀i ∈ V, µij = q(xi, xj) ∀(i, j) ∈ E} subject to the

constraints qi =
∑

j∈N (i) µij , qj =
∑

i∈N (j) µij ∀i, j ∈ V .

In general, the Bethe entropy SB is not concave and hence, the Bethe free energy F = E − SB

is not convex.

The global optimum of the Bethe free energy F = Eq(E)−SB(q) is achieved by minimizing F

over the local polytope, with the Bethe partition function ZB defined such that the global minimum

obtained equals − logZB .



CHAPTER 7. UNDERSTANDING THE BETHE APPROXIMATION 80

The local polytope constraints imply that, given qi and qj ,

µij =

1 + ξij − qi − qj qj − ξij

qi − ξij ξij

 (7.3)

for some ξij ∈ [0,min(qi, qj)], where µij(a, b) = q(Xi = a,Xj = b).

As in (Welling and Teh, 2001), one can solve for the Bethe optimal ξij explicitly in terms of qi

and qj by minimizing F , leading to

ξ∗ij(qi, qj) =
1

2αij

(
Qij −

√
Q2
ij − 4αij(1 + αij)qiqj

)
, (7.4)

where αij = eWij − 1, Qij = 1 + αij(qi + qj).

Thus, we may consider the Bethe approximation as minimizing F over q = (q1, . . . , qn) ∈

[0, 1]n. Further, the derivatives are given by

∂F
∂qi

= −φi + log

(1− qi)di−1

qdi−1
i

∏
j∈N (i)

(qi − ξ∗ij)
(1 + ξ∗ij − qi − qj)

 , (7.5)

where φi = θi − 1
2

∑
j∈N (i)Wij .

7.2.3 Tree-reweighted approximation

Our primary focus in this paper is on the Bethe approximation but we shall find it helpful to com-

pare results to another form of approximate inference. The tree-reweighted (TRW, Wainwright

et al., 2005) approach may be regarded as a family of variational methods, where first one selects

a point from the spanning tree polytope, that is the convex hull of all spanning trees of the model,

represented as a weighting for each edge. Given this selection, the corresponding TRW entropy is

the weighted combination of entropies on each of the possible trees. This is then combined with

the energy and optimized over the local polytope, similarly to the Bethe approximation. Hence

it provides an interesting contrast to the Bethe method, allowing us to focus on the difference in

the entropy approximation. An important feature of TRW is that its entropy is concave and always

upper bounds the true entropy (neither property is true in general for the Bethe entropy). Hence min-

imizing the TRW free energy is a convex problem and yields an upper bound on the true partition

function. Sometimes we shall consider the optimal upper bound, i.e. the lowest upper bound achiev-

able over all possible selections from the spanning tree polytope. For more details, see (Wainwright

and Jordan, 2008, §7.2.1).
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7.2.4 Cycle polytope

We shall consider an additional relaxation of the marginal polytope termed the cycle polytope. This

inherits all constraints of the local polytope, hence is at least as tight, and in addition enforces

consistency around any cycle. A polyhedral approach characterizes this by requiring the following

cycle inequalities to be satisfied (Barahona, 1993; Deza and Laurent, 2009; Sontag, 2010) for all

cycles C and every subset of edges F ⊆ C with |F | odd:∑
(i,j)∈F

(µij(0, 0) + µij(1, 1))

+
∑

(i,j)∈C\F

(µij(1, 0) + µij(0, 1)) ≥ 1. (7.6)

Each cycle inequality describes a facet of the marginal polytope (Barahona and Mahjoub, 1986). It

is typically easier to optimize over the cycle polytope than the marginal polytope, and earlier work

has shown that results are often similar (Sontag and Jaakkola, 2007).

7.2.5 Symmetric and homogeneous MRFs

For analytic tractability, we shall often focus on particular forms of MRFs. We say a MRF is

homogeneous if all singleton potentials are equal, all edge potentials are equal, and its graph has

just one vertex and edge orbit.1

A MRF is symmetric if it has no singleton potentials, hence flipping all variables 0 ↔ 1 leaves

the energy unchanged, and the true marginals for each variable are (1
2 ,

1
2). For symmetric, planar bi-

nary pairwise MRFs, it is known that the cycle polytope is equal to the marginal polytope (Barahona

and Mahjoub, 1986). Using (7.4) and (7.5), it is easy to show the following result.

Lemma 7.2.1. The Bethe free energy of any symmetric MRF has a stationary point at qi = 1
2 ∀i.

We remark that this is not always a minimum (see §7.5).

7.2.6 Derivatives and marginals

It is known that the derivatives of logZ with respect to the potentials are the marginals, and that

this also holds for any convex free energy, where pseudo-marginals replace marginals if a polytope

1This means there is a graph isomorphism mapping any edge to any other, and the same for any vertex.
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other than the marginal is used (Wainwright, 2006). Using Danskin’s theorem (Bertsekas, 1995),

this can be generalized as follows.

Lemma 7.2.2. Let F̂ = E − Ŝ(µ) be any free energy approximation, X be a compact space, and

Â = −minµ∈X F̂ be the corresponding approximation to logZ.

If the arg min is unique at pseudo-marginals τ ,

then ∂Â
∂θi

= τi(1), ∂Â
∂Wij

= τij(0, 0) + τij(1, 1).

If the arg min is not unique then let Q(θ) be the set of arg mins; the directional derivative of Â in

direction

θ ← θ + y is given by OyÂ = maxτ∈Q(θ) τ · y.

In the next Section we begin to apply these results to analyze the locations and values of the

minima of the Bethe free energy.

7.3 Homogeneous Cycles

Since the Bethe approximation is exact for models with no cycles, it is instructive first to consider the

case of one cycle on n variables, which we write as Cn. Earlier analysis considered the perspective

of belief updates (Weiss, 2000; Aji, 2000). Here we examine the Bethe free energy, which in this

context is convex (Pakzad and Anantharam, 2002) with a unique optimum.2 We consider symmetric

models, initially analyzing the homogeneous case.

With Lemma 7.2.1, we see that singleton marginals are 1
2 across all approximation methods.

For pairwise marginals, the following result holds due to convexity.

Lemma 7.3.1. For any symmetric MRF and a free energy that is convex, the optimum occurs at

uniform pseudo-marginals across all pairs of variables, either where the derivative is zero or at an

extreme point of the range.

The uniformity of the optimal edge pseudo-marginals, together with Lemma 7.2.1, shows that

all are µij =

 x 1
2 − x

1
2 − x x

 ∀(i, j) ∈ E , where just x remains to be identified. The optimum

2This follows by considering (7.2) and observing that Sij − Si (conditional entropy) is concave over the local con-

sistency constraints, hence by appropriate counting, the total Bethe entropy is concave provided an MRF has at most one

cycle.
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x with zero derivative is always contained within the local polytope but we shall see that this is not

always the case when we consider the cycle relaxation. Using (7.4), it is straightforward to derive

the following result for the Bethe pairwise marginals.

Lemma 7.3.2. For a symmetric homogeneous cycle, the Bethe optimum over the local polytope

is at x = xB(W ) = 1
2σ(W/2), where we use standard sigmoid σ(y) := 1

1+e−y . Observe that

xB(−W ) = 1/2− xB(W ).

Further, we can derive the error of the Bethe pairwise marginals by using the loop series re-

sult given in Lemma 7.4.1 of §7.4, taking log, differentiating and using Lemma 7.2.2, to give the

difference between true x and Bethe xB as

x− xB =
1

4

sech2 W
4 tanhn−1 W

4

1 + tanhn W
4

. (7.7)

Remarks: Observe that at W = 0, x−xB = 0; as W → ±∞, x−xB → 0. For W 6= 0, x−xB

is always > 0 unless n is even and W < 0, in which case it is negative. Differentiating (7.7) and

solving for where x and xB are most apart gives empirically W ≈ 2 log n+ 0.9 with corresponding

max value of x− xB ≈ 1
5n for large n.

See Figure 7.1 for plots, where, for TRW, values were computed using optimal edge weights, as

derived in the Appendix. Observe that at W = 0, all methods are exact. As W increases, the Bethe

approximations to both logZ and the marginal x rise more slowly than the true values, though once

W is high enough that x is large and cannot rise much further, then the Bethe xB begins to catch up

until they are both close to 1
2 for largeW . We remark that since the Bethe approximation is always a

lower bound on the partition function for an attractive model (Ruozzi, 2012), and both the partition

functions and marginals are equal at W = 0, we know from Lemma 7.2.2 that xB must rise more

slowly than x, as seen.

ForW > 0, tightening the polytope makes no difference. The picture is different for negativeW

if n is odd, in which case we have a frustrated cycle, that is a cycle with an odd number of repulsive

edges, which often causes difficulties with inference methods (Weller and Jebara, 2013b). In this

case, (7.6) is binding for W < −2 log(n − 1) and prevents the Bethe+cycle marginal xBC from

falling below 1
2n . As W → −∞, the true x also does not fall below 1

2n .3 Thus, as W → −∞, the

3To see this, note there are 2n configurations whose probabilities dominate asW → −∞: 01 . . . 0, its inverse flipping
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(a) Errors of logZ approximations
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Figure 7.1: Homogeneous cycle Cn, n odd, edge weights W . By Lemma 7.2.2, the slope of the error of

logZ wrt W is twice the error of x. For W > 0, local and cycle polytopes have the same values.

score (negative energy) and hence logZ → −∞ for the true distribution. This also holds for Bethe

or TRW on the cycle polytope, but on the local polytope, their energy and logZ → 0. Observe that

for W < 0, Bethe generally outperforms TRW over both polytopes.

Tables 7.1 and 7.2 summarize results asW → ±∞, again using optimal edge weights for TRW.

7.4 Nonhomogeneous Cycles

The loop series method (Chertkov and Chernyak, 2006; Sudderth et al., 2007) provides a powerful

tool to analyze the ratio of the true partition function to its Bethe approximation. In symmetric

models with at most one cycle, by Lemma 7.3.1, we know that the unique Bethe optimum is at

uniform marginals qi = 1
2 . Using this and (7.4), and substituting into the loop series result yields

the following.

0↔ 1, and all n rotations; of these, just one has 00 and one has 11 for a specific edge.
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Model
W → −∞ W →∞

logZ ′ x log Z′

Z x

Bethe 0 0 − log 2 1/2

Bethe+cycle 0 0 − log 2 1/2

TRW log 2 0 0 1/2

TRW+cycle log 2 0 0 1/2

True distribution log 2 0 0 1/2

Table 7.1: Analytic results for homogenous cycle Cn, n even. As W → ∞, logZ ′ and logZ → ∞ so the

difference is shown.

Model
W → −∞ W →∞

logZ ′ x log Z′

Z x

Bethe 0 0 − log 2 1/2

Bethe+cycle −∞ 1/(2n) − log 2 1/2

TRW log 2 0 0 1/2

TRW+cycle −∞ 1/(2n) 0 1/2

True distribution −∞ 1/(2n) 0 1/2

Table 7.2: Analytic results for homogeneous cycle Cn, n odd. As W → ∞, logZ ′ and logZ → ∞ so the

difference is shown.

Lemma 7.4.1. For a symmetric MRF which includes exactly one cycle Cn, with edge weights

W1, . . . ,Wn, then Z/ZB = 1 +
∏n
i=1 tanh Wi

4 .

Remarks: In this setting, the ratio Z/ZB is always≤ 2 and≈ 1 if even one cycle edge is weak, as

might be expected since then the model is almost a tree. The ratio has no dependence on edges not

in the cycle and those pairwise marginals will be exact. Further, since the Bethe entropy is concave,

by Lemma 7.2.1, all singleton marginals are exact at 1
2 . Errors of pairwise pseudo-marginals on

the cycle can be derived by using the expression for Z/ZB from Lemma 7.4.1, taking log then

differentiating and using Lemma 7.2.2.

Several principles are illustrated by considering 3 variables,A,B andC, connected in a triangle.
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Figure 7.2: Log partition function and approximations for ABC triangle, see §7.4. Edge weights for AB and

AC are 10 (strongly attractive) while BC is varied as shown. Near 0: Bethe is a better approximation to logZ

but Bethe+cycle has better derivative, hence better marginals by Lemma 7.2.2; since Bethe+cycle is below

Bethe in this region, its optimum does not lie in the local polytope.

Suppose AB and AC have strongly attractive edges with weight W = 10. We examine the effect

of varying the weight of the third edge BC, see Figure 7.2.

It was recently proved (Ruozzi, 2012) thatZB ≤ Z for attractive models. A natural conjecture is

that the Bethe optimum pseudo-marginal in the local polytope must lie inside the marginal polytope.

However, our example, when BC is weakly attractive, proves this conjecture to be false. As a

consequence, tightening the local polytope to the marginal polytope for the Bethe free energy in this

case worsens the approximation of the log-partition function (though it improves the marginals), see

Figure 7.2 near 0 BC edge weight. For this model, the two aspects of the Bethe approximation to

logZ act in opposing directions - the result is more accurate with both than with either one alone.

For intuition, note that via the path B − A − C, in the globally consistent probability distribution,

B and C are overwhelmingly likely to take the same value. Given that singleton marginals are 1
2 ,

the Bethe approximation, however, decomposes into a separate optimization for each edge, which

for the weak edge BC, yields that B and C are almost independent, leading to a conflict with the

true marginal. This causes the Bethe optimum over the local polytope to lie outside the marginal

polytope. The same conclusion may be drawn rigorously by considering the cycle inequality (7.6),

taking the edge set F = {BC} and observing that the terms are approximately 1
4 + 1

4 + 2(0 + 0) ≈
1
2 < 1. Recall that here the cycle and marginal polytopes are the same (see §7.2.5). The same

phenomenon can also be shown to occur for the TRW approximation with uniform edge appearance
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probabilities.

Notice in Figure 7.2 that as the BC edge strength rises above 0, the Bethe marginals (given by

the derivative) improve while the logZ approximation deteriorates. We remark that the exactness

of the Bethe approximation on a tree can be very fragile in the sense that adding a very weak edge

between variables to complete a cycle may expose that pairwise marginal as being (perhaps highly)

inaccurate.

7.5 General Homogeneous Graphs

We discuss how the Bethe entropy approximation leads to a ‘phase shift’ in behavior for graphs with

more than one cycle when W is above a positive threshold.

The true entropy is always maximized at qi = 1
2 for all variables. This also holds for the TRW

approximation. However, in densely connected attractive models, the Bethe approximation pulls

singleton marginals towards 0 or 1. This behavior has been discussed previously (Heskes, 2004;

Mooij and Kappen, 2005a) and described in terms of algorithmic stability (Wainwright and Jordan,

2008, §7.4), or heuristically as a result of LBP over-counting information when going around cycles

(Ihler, 2007), but here we explain it as a consequence of the Bethe entropy approximation.

We focus on symmetric homogeneous models which are d-regular, i.e. each node has the same

degree d. One example is the complete graph on n variables, Kn. For this model, d = n − 1. The

following result is proved in the Appendix, using properties of the Hessian from (Weller and Jebara,

2013a).

Lemma 7.5.1. Consider a symmetric homogeneous MRF on n vertices with d−regular topology

and edge weights W . q = (1
2 , . . . ,

1
2) is a stationary point of the Bethe free energy but for W above

a critical value, this is not a minimum. Specifically, let H be the Hessian of the Bethe free energy

at q, xB be the value from Lemma 7.3.2 and 1 be the vector of length n with 1 in each dimension;

then 1TH1 = n[d− 4xB(d− 1)]/xB < 0 if xB > 1
4

d
d−1 ⇔W > 2 log d

d−2 .

To help understand this result, consider (7.2) for the Bethe entropy SB , and recall that
∑

i di =

2m (m is the number of edges, handshake lemma), hence SB = mSij − (2m − n)Si. For large

W , all the probability mass for each edge is pulled onto the main diagonal, thus Sij ≈ Si. For

m > n, which interestingly is exactly the case of more than one cycle, in order to achieve the
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optimum SB , each entropy term → 0 by tending to pairwise marginal

1 0

0 0

 or symmetrically0 0

0 1

. See the second row of Figure 7.3 for an illustration of how the Bethe entropy surface

changes dramatically as W rises, even sometimes going negative, and the top row to see how the

Bethe free energy surfaces changes rapidly as W moves through the critical threshold.

Reinforcing this pull of singleton marginals away from 1
2 is the shape of the energy surface,

when optimized for free energy subject to given singleton marginals. In the Bethe approximation,

this is achieved by computing ξij terms according to (7.4), as illustrated in the bottom row of Figure

7.3, but for any reasonable entropy term (including TRW), always ξij < min(qi, qj), hence the

energy is lower towards the extreme values 0 or 1.

Remarks: (i) This effect is specifically due to the Bethe entropy approximation, and is not af-

fected by tightening the polytope relaxation, as we shall see in §7.6. (ii) To help appreciate the

consequences of Lemma 7.5.1, observe that log d
d−2 is positive, monotonically decreasing to 0 as

d increases. Thus, for larger, more densely connected topologies, the threshold for this effect is at

lower positive edge weights. Above the threshold, qi = 1
2 is no longer a minimum but becomes

a saddle point.4 (iii) This explains the observation made after (Heinemann and Globerson, 2011,

Lemma 3), where it is pointed out that for an attractive model as n → ∞, if n/m → 0, a marginal

distribution (other than the extreme of all 0 or all 1) is unlearnable by the Bethe approximation

(because the effect we have described pushes all singleton marginals to 0 or 1). (iv) As W rises,

although the Bethe singleton marginals can be poor, the Bethe partition function does not perform

badly: For a symmetric model, as W →∞, there are 2 dominating MAP states (all 0 or all 1) with

equal probability. The true marginals are at qi = 1
2 which picks up the benefit of log 2 entropy,

whereas the Bethe approximation converges to one or other of the MAP states with 0 entropy, hence

has log 2 error.

To see why a similar effect does not occur as W → −∞, note that for W < 0 around a

frustrated cycle, the minimum energy solution on the local polytope is at qi = 1
2 . Indeed, this

4The Hessian at qi = 1
2

is neither positive nor negative definite. Moving away from the valley where all qi are equal,

the Bethe free energy rises quickly.
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Figure 7.3: Bethe free energy E − SB with stationary points highlighted (top), then entropy SB (middle)

and energy E (bottom) vs qi = q ∀i for symmetric homogeneous complete graph K5. All quantities are

evaluated at the optimum over pairwise marginals, i.e. {ξij} are computed as in (7.4). These figures are

described in Lemma 7.5.1 and the text thereafter. W ≈ 1.38 is the critical threshold, above which Bethe

singleton marginals are rapidly pulled toward 0 or 1. W = 4.5 is sufficiently high that the Bethe entropy

becomes negative at q = 1
2 (middle row).

can pull singleton Bethe marginals toward 1
2 in this case. See §7.5.1 in the Appendix for further

analysis.

7.6 Experiments

We are interested in the empirical performance of the optimum Bethe marginals and partition func-

tion, as the relaxation of the marginal polytope is tightened. Many methods have been developed

to attempt the optimization over the local polytope, primarily addressing its non-convexity, though

none is guaranteed to return the global optimum. Recently, an algorithm was derived to return

an ε-approximation to the optimum logZB based on constructing a discretized mesh of pseudo-

marginals (Weller and Jebara, 2013a, 2014a). One method for optimizing over tighter relaxations is
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Figure 7.4: Histogram of differences observed in optimum returned Bethe free energy, FW-mesh primal,

over the 20 models in the validation set (mesh using ε = 0.1, less than ε is insignificant). Negative numbers

indicate FW outperformed mesh.

to use this algorithm as an inner solver in an iterative dual decomposition approach with subgradient

updates (Sontag, 2010; Sontag et al., 2011), where it can be shown that, when minimizing the Bethe

free energy, the dual returned less ε lower bounds− logZB over the tighter polytope. This would be

our preferred approach, but for the models on which we would like to run experiments, the runtime

is prohibitive.

Hence we explored two other methods: (i) We replaced the inner solver with a faster, convergent

double-loop method, the HAK-BETHE option in libDAI (Heskes et al., 2003; Mooij, 2010), though

this is guaranteed only to return a local optimum at each iteration, hence we have no guarantee on

the quality of the final result; (ii) We applied the Frank-Wolfe algorithm (FW) (Frank and Wolfe,

1956; Jaggi, 2013; Belanger et al., 2013). At each iteration, a tangent hyperplane is computed at the

current point, then a move is made to the best computed point along the line to the vertex (of the

appropriate polytope) with the optimum score on the hyperplane. This proceeds monotonically, even

on a non-convex surface such as the Bethe free energy, hence will converge (since it is bounded),

though runtime is guaranteed only for a convex surface as in TRW.

FW can be applied directly to optimize over marginal, cycle or local polytopes, and performed

much better than HAK: runtime was orders of magnitude faster, and the energy found was in line

with HAK.5 To further justify using FW, which may only reach a local optimum, on our main

test cases, we compared its performance on a small validation set against the benchmark of dual

decomposition using the guaranteed ε-approximate mesh method (Weller and Jebara, 2014a) as an

inner solver.

5The average difference between energies found was < 0.1.
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Figure 7.5: Results for general models showing error vs true values. θi ∼ U[−2,2]. The legend is consis-

tent across plots. These may be compared to plots in (Sontag and Jaakkola, 2007).

7.6.1 Implementation and validation

To validate FW for the Bethe approximations on each polytope, we compared log partition functions

and pairwise marginals across 20 MRFs, each on a complete graph with 5 variables. Each edge

potential was drawn Wij ∼ [−8, 8] and each singleton potential θi ∼ [−2, 2]. To handle the tighter

polytope relaxations using the mesh method, we used a dual decomposition approach as follows.

For the cycle polytope, one Lagrangian variable was introduced for each cycle constraint (7.6) with

projected subgradient descent updates. For the marginal polytope, rather than imposing each facet

constraint, which would quickly become unmanageable6, instead a lift-and-project method was

employed (Sontag, 2010). These algorithms may be of independent interest and are provided in the

Supplement.

For all mesh runs, we used ε = 0.1. Note that strong duality is not guaranteed for Bethe since

6The number of facets of the marginal polytope grows extremely rapidly (Deza and Laurent, 2009).
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idation set using mesh approach + dual de-

composition over 20 models, cycle polytope,

ε = 0.1. See text in §7.6.1

the objective is non-convex, hence we are guaranteed only an upper bound on logZB; yet we were

able to monitor the duality gap by using rounded primals and observed that the realized gaps were

typically within ε, see Figure 7.6.

For FW, we always initialized at the uniform distribution, i.e. µij =

1
4

1
4

1
4

1
4

 ∀(i, j) ∈ E ,

note this is always within the marginal polytope. At each iteration, to determine how far to go along

the line to the optimum vertex, we used Matlab’s fminbnd function. This induces a minimum move

of 10−6 along the line to the optimum vertex, which was helpful in escaping from local minima.

When we tried allowing zero step size, performance became worse. Our stopping criterion was to

run for 10, 000 iterations (which did not take long) or until the objective value changed by < 10−6,

at which point we output the best value found so far, and the corresponding pseudo-marginals.

Results on the validation set are shown in Figure 7.4, indicating that FW performed well com-

pared to mesh + dual decomposition (the best standard we have for the Bethe optimum). Note,

however, that good performance on logZB estimation does not necessarily imply that the Bethe

optimal marginals were being returned for either method. There may be several local optima where

the Bethe free energy has value close to the global optimum, and methods may return different loca-

tions. This is a feature of the non-convex surface which should be borne in mind when considering

later results, hence we should not be surprised that in the validation set, although 17/20 of the runs

had `1 error in singleton marginals under 0.05, there were 3 runs with larger differences, in one case

as high as 0.7 (not shown).7

7Recall the example from §7.5, where a symmetric homogeneous MRF with complete graph Kn topology and high
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Given this performance, we used FW for all Bethe optimizations on the test cases. FW was also

used for all TRW runs, where edge appearance probabilities were obtained using the matrix-tree

theorem with weights proportional to each edge’s coupling strength |Wij |, as was used in (Sontag

and Jaakkola, 2007).

7.6.2 Test sets

Models with 10 variables connected in a complete graph were drawn with random potentials. This

allows comparison to earlier work such as (Sontag and Jaakkola, 2007) and (Meshi et al., 2009,

Appendix). In addition to examining error in log partition functions and singleton marginals as

was done in earlier work, given our theoretical observations in §7.3-7.5, we also explored the error

in pairwise marginals. To do this, we report the `1 error in the estimated probability that a pair of

variables is equal, averaged over all edges, i.e. we report average `1 error of µij(0, 0)+µij(1, 1). We

used FW to minimize the Bethe and TRW free energies over each of the local, cycle and marginal

polytopes. For each maximum coupling value used, 100 models were generated and results averaged

for plotting. Given the theoretical observations of §7.3-7.5, we are interested in behavior both for

attractive and general (non-attractive) models.

For general models, potentials were drawn for single variables θi ∼ U [−2, 2] and edges Wij ∼

U [−y, y] where y was varied to observe the impact of coupling strength.8 Results are shown in

Figure 7.5. Tightening the relaxation of the polytope from local to cycle or marginal, dramatically

improves both Bethe and TRW approximations on all measures, with little difference between the

cycle or marginal polytopes. This confirms observations in (Sontag and Jaakkola, 2007).

The relative performance of Bethe compared to TRW depends on the criteria used. Looking at

the error of singleton marginals, Bethe is better than TRW for low coupling strengths, but for high

coupling strengths the methods perform equally well on the local polytope, whereas on the cycle or

marginal polytopes, TRW outperforms Bethe (though Bethe is still competitive). Thus, tightening

edge weights was shown to have 2 locations at the global minimum, with average `1 distance between them approaching

1.

8These settings were chosen to facilitate comparison with the results of (Sontag and Jaakkola, 2007), though in that

paper, variables take values in {−1, 1} so the equivalent singleton potential ranges coincide. To compare couplings, our

y values should be divided by 4.



CHAPTER 7. UNDERSTANDING THE BETHE APPROXIMATION 94

the relaxation of the local polytope at high coupling does not lead to Bethe being superior on all

measures. However, in terms of partition function and pairwise marginals, which are important in

many applications, Bethe does consistently outperform TRW in all settings, and over all polytopes.

For attractive models, in order to explore our observations in §7.5, much lower singleton po-

tentials were used. We drew θi ∼ U [−0.1, 0.1] and Wij ∼ U [0, y] where y is varied. This is

consistent with parameters used by Meshi et al. (2009). Results are shown in Figure 7.7. When

coupling is high, the Bethe entropy approximation pushes singleton marginals away from 1
2 . This

effect quickly becomes strong above a threshold. Hence, when singleton potentials are very low, i.e.

true marginals are close to 1
2 , the Bethe approximation will perform poorly irrespective of polytope,

as observed in our attractive experiments. We note, however, that this effect rarely causes singleton

marginals to cross over to the other side of 1
2 . Further, as discussed in §7.5, the partition function

approximation is not observed to deviate by more than log 2 on average.
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Figure 7.7: Results for attractive models showing error vs true values. θi ∼ U[−0.1,0.1]. Only local

polytope shown, results for other polytopes are almost identical.
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7.7 Conclusions

We have used analytic and empirical methods to explore the two aspects of the Bethe approximation:

the polytope relaxation and the entropy approximation. We found Frank-Wolfe to be an effective

method for optimization, and note that for the cycle polytope, the runtime of each iteration scales

polynomially with the number of variables (see §7.6.1.3 in the Appendix for further details).

For general models with both attractive and repulsive edges, tightening the relaxation of the

polytope from local to cycle or marginal, dramatically improves both Bethe and TRW approxima-

tions on all measures, with little difference between the cycle or marginal polytopes. For singleton

marginals, except when coupling is low, there does not appear to be a significant advantage to

solving the non-convex Bethe free energy formulation compared to convex variational approaches

such as TRW. However, for log-partition function estimation, Bethe does provide significant bene-

fits. Empirically, in both attractive and mixed models, Bethe pairwise marginals appear consistently

better than TRW.

In our experiments with attractive models, the polytope approximation appears to makes little

difference. However, we have shown theoretically that in some cases it can cause a significant effect.

In particular, our discussion of nonhomogeneous attractive cycles in §7.4 shows that even in the

attractive setting, tightening the polytope can affect the Bethe approximation - improving marginals

but worsening the partition function. It is possible that to observe this phenomenon empirically, one

needs a different distribution over models.
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Chapter 8

Clamping Variables and Approximate

Inference

In this Chapter, we apply the earlier analysis on derivatives of the Bethe free energy (Chapter 6) to

derive new results. It was recently proved using graph covers (Ruozzi, 2012) that the Bethe partition

function is upper bounded by the true partition function for a binary pairwise model that is attractive.

Here we provide a new, arguably simpler proof from first principles. We make use of the idea of

clamping a variable to a particular value. For an attractive model, we show that summing over the

Bethe partition functions for each sub-model obtained after clamping any variable can only raise

(and hence improve) the approximation. In fact, we derive a stronger result that may have other

useful implications. Repeatedly clamping until we obtain a model with no cycles, where the Bethe

approximation is exact, yields the result. We also provide a related lower bound on approximate

partition functions of general pairwise multi-label models that depends only on the topology. We

demonstrate that clamping a few wisely chosen variables can be of practical value by dramatically

reducing approximation error.

8.1 Introduction

Marginal inference and estimating the partition function for undirected graphical models, also called

Markov random fields (MRFs), are fundamental problems in machine learning. It is well-known that

exact solutions may be obtained via variable elimination or the junction tree method, but unless the
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treewidth is bounded, this takes exponential time in general (Pearl, 1988; Lauritzen and Spiegel-

halter, 1988b; Wainwright and Jordan, 2008). Hence, much attention has focused on approximate

methods, where many approaches have been developed.

Of particular note is the Bethe approximation, which is widely used via the loopy belief propa-

gation algorithm (LBP). Though this is typically fast and results are often accurate, in general it may

converge only to a local optimum of the Bethe free energy, or may not converge at all (McEliece

et al., 1998; Murphy et al., 1999). Another drawback is that, until recently, there were no guarantees

on whether the returned approximation to the partition function was higher or lower than the true

value. Both aspects are in contrast to methods such as the tree-reweighted approximation (TRW,

Wainwright et al., 2005), which features a convex free energy and is guaranteed to return an upper

bound on the true partition function. Nevertheless, empirically, LBP or convergent implementations

of the Bethe approximation often outperform other methods (Meshi et al., 2009; Weller et al., 2014).

Using the method of graph covers (Vontobel, 2013), Ruozzi (2012) recently proved that the

optimum Bethe partition function provides a lower bound for the true value, i.e. ZB ≤ Z, for

discrete binary MRFs with submodular log potential cost functions of any arity. Here we provide

an alternative proof for attractive binary pairwise models. Our proof does not rely on any methods

of loop series (Sudderth et al., 2007) or graph covers, but rather builds on fundamental properties

of the derivatives of the Bethe free energy. Our approach applies only to binary models (whereas

Ruozzi, 2012 applies to any arity), but we obtain stronger results for this class, from which ZB ≤ Z

easily follows. We use the idea of clamping a variable and considering the approximate sub-partition

functions over the remaining variables, as the clamped variable takes each of its possible values.

Notation and preliminaries are presented in §8.2. In §8.3, we derive a lower bound, not just

for the standard Bethe partition function, but for a range of approximate partition functions over

multi-label variables that may be defined from a variational perspective as an optimization problem,

based only on the topology of the model. In §8.4, we consider the Bethe approximation for attractive

binary pairwise models. We show that clamping any variable and summing the Bethe sub-partition

functions over the remaining variables can only increase (hence improve) the approximation. To-

gether with a similar argument to that used in §8.3, this proves that ZB ≤ Z for this class of model.

To derive the result, we analyze how the optimum of the Bethe free energy varies as the singleton

marginal of one particular variable is fixed to different values in [0, 1]. Remarkably, we show that
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the negative of this optimum, less the singleton entropy of the variable, is a convex function of the

singleton marginal. This may have further interesting implications. We present experiments in §8.5,

demonstrating that clamping even a single variable selected using a simple heuristic can be very

beneficial.

8.1.1 Related work

Branching or conditioning on a variable (or set of variables) and approximating over the remaining

variables has a fruitful history in algorithms such as branch-and-cut (Padberg and Rinaldi, 1991;

Mitchell, 2002), work on resolution versus search (Rish and Dechter, 2000) and various approaches

of (Darwiche, 2009, Chapter 8). Cutset conditioning was discussed by Pearl (1988) and refined by

Peot and Shachter (1991) as a method to render the remaining topology acyclic in preparation for be-

lief propagation. Eaton and Ghahramani (2009) developed this further, introducing the conditioned

belief propagation algorithm together with back-belief-propagation as a way to help identify which

variables to clamp. Liu et al. (2012) discussed feedback message passing for inference in Gaussian

(not discrete) models, deriving strong results for the particular class of attractive models. Choi and

Darwiche (2008) examined methods to approximate the partition function by deleting edges.

8.2 Preliminaries

We consider a pairwise model with n variables X1, . . . , Xn and graph topology (V, E): V contains

nodes {1, . . . , n} where i corresponds to Xi, and E ⊆ V × V contains an edge for each pairwise

relationship. We sometimes consider multi-label models where each variable Xi takes values in

{0, . . . , Li − 1}, and sometimes restrict attention to binary models where Xi ∈ B = {0, 1} ∀i.

Let x = (x1, . . . , xn) be a configuration of all the variables, and N (i) be the neighbors of i.

For all analysis of binary models, to be consistent with Welling and Teh (2001) and Weller and

Jebara (2013a), we assume a reparameterization such that p(x) = e−E(x)

Z , where the energy of a

configuration, E = −
∑

i∈V θixi−
∑

(i,j)∈EWijxixj , with singleton potentials θi and edge weights

Wij .



CHAPTER 8. CLAMPING VARIABLES AND APPROXIMATE INFERENCE 99

8.2.1 Clamping a variable and related definitions

We shall find it useful to examine sub-partition functions obtained by clamping one particular vari-

able Xi, that is we consider the model on the n−1 variables X1, . . . , Xi−1, Xi+1, . . . , Xn obtained

by setting Xi equal to one of its possible values.

LetZ|Xi=a be the sub-partition function on the model obtained by settingXi = a, a ∈ {0, . . . , Li−

1}. Observe that true partition functions and marginals are self-consistent in the following sense:

Z =

Li−1∑
j=0

Z|Xi=j ∀i ∈ V, p(Xi = a) =
Z|Xi=a∑Li−1
j=0 Z|Xi=j

. (8.1)

This is not true in general for approximate forms of inference,1 but if the model has no cycles, then

in many cases of interest, (8.1) does hold, motivating the following definition.

Definition 8.2.1. We say an approximation to the log-partition function ZA is ExactOnTrees if it

may be specified by the variational formula − logZA = minq∈Q FA(q) where: (1) Q is some com-

pact space that includes the marginal polytope; (2) FA is a function of the (pseudo-)distribution

q (typically a free energy approximation); and (3) For any model, whenever a subset of variables

V ′ ⊆ V is clamped to particular values P = {pi ∈ {0, . . . , Li − 1}, ∀Xi ∈ V ′}, i.e. ∀Xi ∈ V ′, we

constrainXi = pi, which we write as V ′ ← P , and the remaining induced graph on V\V ′ is acyclic,

then the approximation is exact, i.e. ZA|V ′←P = Z|V ′←P . Similarly, define an approximation to be

in the broader class of NotSmallerOnTrees if it satisfies all of the above properties except that con-

dition (3) is relaxed to ZA|V ′←P ≥ Z|V ′←P . Note that the Bethe approximation is ExactOnTrees,

and approximations such as TRW are NotSmallerOnTrees, in both cases whether using the marginal

polytope or any relaxation thereof, such as the cycle or local polytope (Weller et al., 2014).

We shall derive bounds on ZA with the following idea: Obtain upper or lower bounds on the

approximation achieved by clamping and summing over the approximate sub-partition functions;

Repeat until an acyclic graph is reached, where the approximation is either exact or bounded. We

introduce the following related concept from graph theory.

1For example, consider a single cycle with positive edge weights. This has ZB < Z (Weller et al., 2014), yet after

clamping any variable, each resulting sub-model is a tree hence the Bethe approximation is exact.
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Definition 8.2.2. A feedback vertex set (FVS) of a graph is a set of vertices whose removal leaves

a graph without cycles. Determining if there exists a feedback vertex set of a given size is a clas-

sical NP-hard problem (Karp, 1972). There is a significant literature on determining the minimum

cardinality of an FVS of a graph G, which we write as ν(G). Further, if vertices are assigned non-

negative weights, then a natural problem is to find an FVS with minimum weight, which we write as

νw(G). An FVS with a factor 2 approximation to νw(G) may be found in time O(|V|+ |E| log |E|)

(Bafna et al., 1999). For pairwise multi-label MRFs, we may create a weighted graph from the

topology by assigning each node i a weight of logLi, and then compute the corresponding νw(G).

8.3 Lower Bound on Approximate Partition Functions

We obtain a lower bound on any approximation that is NotSmallerOnTrees by observing that ZA ≥

ZA|Xn=j ∀j from the definition (the sub-partition functions optimize over a subset).

Theorem 8.3.1. If a pairwise MRF has topology with an FVS of size n and corresponding values

L1, . . . , Ln, then for any approximation that is NotSmallerOnTrees, ZA ≥ Z∏n
i=1 Li

.

Proof. We proceed by induction on n. The base case n = 0 holds by the assumption that ZA

is NotSmallerOnTrees. Now assume the result holds for n − 1 and consider a MRF which re-

quires n vertices to be deleted to become acyclic. Clamp variable Xn at each of its Ln values

to create the approximation Z(n)
A :=

∑Ln−1
j=0 ZA|Xn=j . By the definition of NotSmallerOnTrees,

ZA ≥ ZA|Xn=j ∀j; and by the inductive hypothesis, ZA|Xn=j ≥
Z|Xn=j∏n−1
i=1 Li

.

Hence, LnZA ≥ Z(n)
A =

∑Ln−1
j=0 ZA|Xn=j ≥ 1∏n−1

i=1 Li

∑Ln−1
j=0 Z|Xn=j = Z∏n−1

i=1 Li
.

By considering an FVS with minimum
∏n
i=1 Li, Theorem 8.3.1 is equivalent to the following

result.

Theorem 8.3.2. For any approximation that is NotSmallerOnTrees, ZA ≥ Ze−νw .

This bound applies to general multi-label models with any pairwise and singleton potentials (no

need for attractive). The bound is trivial for a tree, but already for a binary model with one cycle we

obtain that ZB ≥ Z/2 for any potentials, even over the marginal polytope. The bound is tight, at
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least for uniform Li = L ∀i.2 The bound depends only on the vertices that must be deleted to yield

a graph with no cycles, not on the number of cycles (which clearly upper bounds ν(G)). For binary

models, exact inference takes time Θ((|V| − |ν(G)|)2ν(G)).

8.4 Attractive Binary Pairwise Models

In this Section, we restrict attention to the standard Bethe approximation. We shall use results

derived in (Welling and Teh, 2001) and Chapter 6, and adopt similar notation. The Bethe partition

function, ZB , is defined as in Definition 8.2.1, where Q is set as the local polytope relaxation and

FA is the Bethe free energy, given by F(q) = Eq(E) − SB(q), where E is the energy and SB is

the Bethe pairwise entropy approximation (see Chapter 5 for details). We consider attractive binary

pairwise models and apply similar clamping ideas to those used in §8.3. In §8.4.1 we show that

clamping can never decrease the approximate Bethe partition function, then use this result in §8.4.2

to prove that ZB ≤ Z for this class of model. In deriving the clamping result of §8.4.1, in Theorem

8.4.3 we show an interesting, stronger result on how the optimum Bethe free energy changes as the

singleton marginal qi is varied over [0, 1].

8.4.1 Clamping a variable can only increase the Bethe partition function

Let ZB be the Bethe partition function for the original model. Clamp variable Xi and form the new

approximation Z(i)
B =

∑1
j=0 ZB|Xi=j . In this Section, we shall prove the following Theorem.

Theorem 8.4.1. For an attractive binary pairwise model and any variable Xi, Z
(i)
B ≥ ZB .

We first introduce notation and derive preliminary results, which build to Theorem 8.4.3, our

strongest result, from which Theorem 8.4.1 easily follows. Let q = (q1, . . . , qn) be a location in

n-dimensional pseudomarginal space, i.e. qi is the singleton pseudomarginal q(Xi = 1) in the

local polytope. Let F(q) be the Bethe free energy computed at q using Bethe optimum pairwise

pseudomarginals given by the formula for q(Xi = 1, Xj = 1) = ξij(qi, qj ,Wij) in (Welling and

2For example, in the binary case: consider a sub-MRF on a cycle with no singleton potentials and uniform, very high

edge weights. This can be shown to have ZB ≈ Z/2 (see Section 7.4). Now connect ν of these together in a chain using

very weak edges (this construction is due to Nicholas Ruozzi).
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Teh, 2001), i.e. for an attractive model, for edge (i, j), ξij is the lower root of

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0, (8.2)

where αij = eWij − 1, and Wij > 0 is the strength (associativity) of the log-potential edge weight.

Let G(q) = −F(q). Note that logZB = maxq∈[0,1]n G(q). For any x ∈ [0, 1], consider the

optimum constrained by holding qi = x fixed, i.e. let logZBi(x) = maxq∈[0,1]n:qi=x G(q). Let

r∗(x) = (r∗1(x), . . . , r∗i−1(x), r∗i+1(x), . . . , r∗n(x)) with corresponding pairwise terms {ξ∗ij}, be an

arg max for where this optimum occurs. Observe that logZBi(0) = logZB|Xi=0, logZBi(1) =

logZB|Xi=1 and logZB = logZBi(q
∗
i ) = maxq∈[0,1]n G(q), where q∗i is a location of Xi at which

the global optimum is achieved.

To prove Theorem 8.4.1, we need a sufficiently good upper bound on logZBi(q
∗
i ) compared to

logZBi(0) and logZBi(1). First we demonstrate what such a bound could be, then prove that this

holds. Let Si(x) = −x log x− (1− x) log(1− x) be the standard singleton entropy.

Lemma 8.4.2 (Demonstrating what would be a sufficiently good upper bound on logZB). If ∃x ∈

[0, 1] such that logZB ≤ x logZBi(1) + (1− x) logZBi(0) + Si(x), then:

(i) ZBi(0) + ZBi(1)− ZB ≥ emfc(x) where fc(x) = 1 + ec − exc+Si(x),

m = min(logZBi(0), logZBi(1)) and c = | logZBi(1)− logZBi(0)|; and

(ii) ∀x ∈ [0, 1], fc(x) ≥ 0 with equality iff x = σ(c) = 1/(1 + exp(−c)), the sigmoid function.

Proof. (i) This follows easily from the assumption. (ii) This is easily checked by differentiating. It

is also given in (Koller and Friedman, 2009, Proposition 11.8).

See Figure E.1 in the Supplement for example plots of the function fc(x). Lemma 8.4.2

motivates us to consider if perhaps logZBi(x) might be upper bounded by x logZBi(1) + (1 −

x) logZBi(0) + Si(x), i.e. the linear interpolation between logZBi(0) and logZBi(1), plus the

singleton entropy term Si(x). It is easily seen that this would be true if r∗(qi) were constant. In

fact, we shall show that r∗(qi) varies in a particular way which yields the following, stronger result,

which, together with Lemma 8.4.2, will prove Theorem 8.4.1.

Theorem 8.4.3. LetAi(qi) = logZBi(qi)−Si(qi). For an attractive binary pairwise model,Ai(qi)

is a convex function.
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Proof. We outline the main points of the proof. Observe that Ai(x) = maxq∈[0,1]n:qi=x G(q) −

Si(x), where G(q) = −F(q). Note that there may be multiple arg max locations r∗(x). As shown

in Chapter 6 and Appendix C,F is at least thrice differentiable in (0, 1)n and all stationary points lie

in the interior (0, 1)n. Given our conditions, the ‘envelope theorem’ of (Milgrom, 1999, Theorem

1) applies, showing that Ai is continuous in [0, 1] with right derivative3

A′i+(x) = max
r∗(qi=x)

∂

∂x
[G(qi = x, r∗(x))− Si(x)] = max

r∗(qi=x)

∂

∂x
[G(qi = x, r∗(x))]− dSi(x)

dx
.

(8.3)

We shall show that this is non-decreasing, which is sufficient to show the convexity result of Theo-

rem 8.4.3. To evaluate the right hand side of (8.3), we use the derivative shown by Welling and Teh

(2001):

∂F
∂qi

= −θi + logQi,

where logQi = log
(1− qi)di−1

qdi−1
i

∏
j∈N (i)(qi − ξij)∏

j∈N (i)(1 + ξij − qi − qj)
(as in Section 6.5)

= log
qi

1− qi
+ log

∏
j∈N (i)

Qij , here defining Qij =

(
qi − ξij

1 + ξij − qi − qj

)(
1− qi
qi

)
.

A key observation is that the log qi
1−qi term is exactly −dSi(qi)

dqi
, and thus cancels the −dSi(x)

dx term at

the end of (8.3). Hence, A′i+(qi) = maxr∗(qi)

[
−
∑

j∈N (i) logQij(qi, r
∗
j , ξ
∗
ij)
]
. 4

It remains to show that this expression is non-decreasing with qi. We shall show something

stronger, that at every arg max r∗(qi), and for all j ∈ N (i),− logQij is non-decreasing⇔ vij =

Q−1
ij is non-decreasing. The result then follows since the max of non-decreasing functions is non-

decreasing.

See Figure 8.1 for example plots of the vij function, and observe that vij appears to decrease

with qi (which is unhelpful here) while it increases with qj . Now, in an attractive model, the Bethe

free energy is submodular, i.e. ∂2F
∂qi∂qj

≤ 0 (Section 6.5), hence as qi increases, r∗j (qi) can only

increase (Topkis, 1978). For our purpose, we must show that
dr∗j
dqi

is sufficiently large such that
dvij
dqi
≥ 0. This forms the remainder of the proof.

3This result is similar to Danskin’s theorem (Bertsekas, 1995). Intuitively, for multiple argmax locations, each may

increase at a different rate, so here we must take the max of the derivatives over all the argmax.

4We remark that Qij is the ratio
(
p(Xi=1,Xj=0)

p(Xi=0,Xj=0)

)/(
p(Xi=1)
p(Xi=0)

)
=

p(Xj=0|Xi=1)

p(Xj=0|Xi=0)
.
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Figure 8.1: 3d plots of vij = Q−1ij , using ξij(qi, qj ,W ) from (Welling and Teh, 2001).

At any particular arg max r∗(qi), writing v = vij [qi, r
∗
j (qi), ξ

∗
ij(qi, r

∗
j (qi))], we have

dv

dqi
=
∂v

∂qi
+

∂v

∂ξij

dξ∗ij
dqi

+
∂v

∂qj

dr∗j
dqi

=
∂v

∂qi
+

∂v

∂ξij

∂ξ∗ij
∂qi

+
dr∗j
dqi

(
∂v

∂ξij

∂ξ∗ij
∂qj

+
∂v

∂qj

)
. (8.4)

From Lemma C.0.4, ∂ξij∂qi
=

αij(qj−ξij)+qj
1+αij(qi−ξij+qj−ξij) and similarly, ∂ξij∂qj

=
αij(qi−ξij)+qi

1+αij(qj−ξij+qi−ξij) , where

αij = eWij−1. The other partial derivatives are easily derived: ∂v
∂qi

=
qi(qj−1)(1−qi)+(1+ξij−qi−qj)(qi−ξij)

(1−qi)2(qi−ξij)2 ,

∂v
∂ξij

=
qi(1−qj)

(1−qi)(qi−ξij)2 , and ∂v
∂qj

= −qi
(1−qi)(qi−ξij) .

The only remaining term needed for (8.4) is
dr∗j
dqi

. The following results are proved in the Ap-

pendix, subject to a technical requirement that at an arg max, the reduced Hessian H\i, i.e. the

matrix of second partial derivatives of F after removing the ith row and column, must be non-

singular in order to have an invertible locally linear function. Call this required property P . By

nature, each H\i is positive semi-definite. If needed, a small perturbation argument allows us to

assume that no eigenvalue is 0, then in the limit as the perturbation tends to 0, Theorem 8.4.3 holds

since the limit of convex functions is convex. Let [n] = {1, . . . , n} and G be the topology of the

MRF.

Theorem 8.4.4. For any k ∈ [n] \ i, let Ck be the connected component of G \ i that contains Xk.

If Ck + i is a tree, then dr∗k
dqi

=
∏

(s→t)∈P (i k)
ξ∗st−r∗sr∗t
r∗s (1−r∗s ) ,where P (i  k) is the unique path from i

to k in Ck + i, and for notational convenience, define r∗i = qi. Proof in Appendix (subject to P).

In fact, this result applies for any combination of attractive and repulsive edges. The result is

remarkable, yet also intuitive. In the numerator, ξst − qsqt = Covq(Xs, Xt), increasing with Wij

and equal to 0 at Wij = 0, and in the denominator, qs(1 − qs) = Varq(Xs), hence the ratio is
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exactly what is called in finance the beta of Xt with respect to Xs.5

In particular, Theorem 8.4.4 shows that for any j ∈ N (i) whose component is a tree,
dr∗j
dqi

=
ξ∗ij−qir∗j
qi(1−qi) . The next result shows that in an attractive model, additional edges can only reinforce this

sensitivity.

Theorem 8.4.5. In an attractive model with edge (i, j),
dr∗j (qi)

dqi
≥ ξ∗ij−qir∗j

qi(1−qi) . Proof in Appendix

(subject to P).

Now collecting all terms, substituting into (8.4), and using (8.2), after some algebra yields that
dv
dqi
≥ 0, as required to prove Theorem 8.4.3. This now also proves Theorem 8.4.1.

8.4.2 The Bethe partition function lower bounds the true partition function

Theorem 8.4.1, together with an argument similar to the proof of Theorem 8.3.1, easily yields a new

proof that ZB ≤ Z for an attractive binary pairwise model.

Theorem 8.4.6 (first proved by Ruozzi, 2012). For an attractive binary pairwise model, ZB ≤ Z.

Proof. We shall use induction on n to show that the following statement holds for all n:

If a MRF may be rendered acyclic by deleting n vertices v1, . . . , vn, then ZB ≤ Z.

The base case n = 0 holds since the Bethe approximation is ExactOnTrees. Now assume the result

holds for n−1 and consider a MRF which requires n vertices to be deleted to become acyclic. Clamp

variable Xn and consider Z(n)
B =

∑1
j=0 ZB|Xn=j . By Theorem 8.4.1, ZB ≤ Z

(n)
B ; and by the

inductive hypothesis, ZB|Xn=j ≤ Z|Xn=j ∀j. Hence, ZB ≤
∑1

j=0 ZB|Xn=j ≤
∑1

j=0 Z|Xn=j =

Z.

8.5 Experiments

For an approximation which is ExactOnTrees, it is natural to try clamping a few variables to remove

cycles from the topology. Here we run experiments on binary pairwise models to explore the po-

tential benefit of clamping even just one variable, though the procedure can be repeated. For exact

inference, we used the junction tree algorithm. For approximate inference, we used Frank-Wolfe

(FW) (Frank and Wolfe, 1956): At each iteration, a tangent hyperplane to the approximate free

5Sudderth et al. (2007) defined a different, symmetric βst = ξst−qsqt
qs(1−qs)qt(1−qt) for analyzing loop series.
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energy is computed at the current point, then a move is made to the best computed point along the

line to the vertex of the local polytope with the optimum score on the hyperplane. This proceeds

monotonically, even on a non-convex surface, hence will converge (since it is bounded), though

it may be only to a local optimum and runtime is not guaranteed. This method typically produces

good solutions in reasonable time compared to other approaches (Belanger et al., 2013; Weller et al.,

2014) and allows direct comparison to earlier results (Meshi et al., 2009; Weller et al., 2014). To

further facilitate comparison, in this Section we use the same unbiased reparameterization used by

Weller et al. (2014), with E = −
∑

i∈V θixi −
∑

(i,j)∈E
Wij

2 [xixj + (1− xi)(1− xj)].

Test models were constructed as follows: For n variables, singleton potentials were drawn θi ∼

U [−Tmax, Tmax]; edge weights were drawn Wij ∼ U [0,Wmax] for attractive models, or Wij ∼

U [−Wmax,Wmax] for general models. For models with random edges, we constructed Erdős-Renyi

random graphs (rejecting disconnected samples), where each edge has independent probability p of

being present. To observe the effect of increasing n while maintaining approximately the same

average degree, we examined n = 10, p = 0.5 and n = 50, p = 0.1. We also examined models on

a complete graph topology with 10 variables for comparison with TRW in (Weller et al., 2014). 100

models were generated for each set of parameters with varying Tmax and Wmax values.

Results are displayed in Figures 8.2 to 8.4 showing average absolute error of logZB vs logZ and

average `1 error of singleton marginals. The legend indicates the different methods used: Original

is FW on the initial model; then various methods were used to select the variable to clamp, before

running FW on the 2 resulting submodels and combining those results. avg Clamp for logZ means

average over all possible clampings, whereas all Clamp for marginals computes each singleton

marginal as the estimated p̂i = ZB|Xi=1/(ZB|Xi=0+ZB|Xi=1). best Clamp uses the variable which

with hindsight gave the best improvement in logZ estimate, thereby showing the best possible result

for logZ. Similarly, worst Clamp picks the variable which showed worst performance. Where one

variable is clamped, the respective marginals are computed thus: for the clamped variable Xi, use

p̂i as before; for all others, take the weighted average over the estimated Bethe pseudomarginals on

each sub-model using weights 1− p̂i and p̂i for sub-models with Xi = 0 and Xi = 1 respectively.

maxW and Mpower are heuristics to try to pick a good variable in advance. Ideally, we would

like to break heavy cycles, but searching for these is NP-hard. maxW is a simple O(|E|) method

which picks a variable Xi with maxi∈V
∑

j∈N (i) |Wij |, and can be seen to perform well (Liu et al.,
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Figure 8.2: Average errors vs true, complete graph on n = 10. TRW in pink. Consistent legend throughout.
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Figure 8.3: Average errors vs true, random graph on n = 10, p = 0.5. Consistent legend throughout.
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Figure 8.4: Average errors vs true, random graph on n = 50, p = 0.1. Consistent legend throughout.

2012 proposed the same maxW approach for inference in Gaussian models). One way in which

maxW can make a poor selection is to choose a variable at the centre of a large star configuration

but far from any cycle. Mpower attempts to avoid this by considering the convergent series of

powers of a modified W matrix, but on the examples shown, this did not perform significantly

better. See §E.2.1 in the Appendix for more details on Mpower and further experimental results.

FW provides no runtime guarantee when optimizing over a non-convex surface such as the

Bethe free energy, but across all parameters, the average combined runtimes on the two clamped

sub-models was the same order of magnitude as that for the original model, see Figure 8.5.
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Figure 8.5: Left: Average ratio of combined sub-model runtimes to original runtime (using maxW, other choices are

similar). Right: Example model where clamping any variable worsens the Bethe approximation to logZ.

8.6 Discussion

The results of §8.4 immediately also apply to any binary pairwise model where a subset of variables

may be flipped to yield an attractive model, i.e. where the topology has no frustrated cycle (Weller

et al., 2014), and also to any model that may be reduced to an attractive binary pairwise model

(Schlesinger and Flach, 2006; Zivny et al., 2009). For this class, together with the lower bound of

§8.3, we have sandwiched the range of ZB (equivalently, given ZB , we have sandwiched the range

of the true partition function Z) and bounded its error; further, clamping any variable, solving for

optimum logZB on sub-models and summing is guaranteed to be more accurate than solving on the

original model. In some cases, it may also be faster; indeed, some algorithms such as LBP may fail

on the original model but perform well on clamped sub-models.

Methods presented may prove useful for analyzing general (non-attractive) models, or for other

applications. As one example, it is known that the Bethe free energy is convex for a MRF whose

topology has at most one cycle (Pakzad and Anantharam, 2002). In analyzing the Hessian of the

Bethe free energy, we are able to leverage this to show the following result, which may be useful

for optimization (proof in Appendix).

Lemma 8.6.1. In a binary pairwise MRF (attractive or repulsive edges, any topology), for any

subset of variables S ⊆ V whose induced topology contains at most one cycle, the Bethe free energy

(using optimum pairwise marginals) over S, holding variables V \ S at fixed singleton marginals,

is convex.

In §8.5, clamping appears to be very helpful, especially for attractive models with low single-

ton potentials where results are excellent (overcoming TRW’s advantage in this context), but also
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for general models, particularly with the simple maxW selection heuristic. We can observe some

decline in benefit as n grows but this is not surprising when clamping just a single variable. Note,

however, that non-attractive models exist such that clamping and summing over any variable can

lead to a worse Bethe approximation of logZ, see Figure 8.5c for a simple example on four vari-

ables.

It will be interesting to explore the extent to which our results may be generalized beyond

binary pairwise models. Further, it is tempting to speculate that similar results may be found for

other approximations. For example, some methods that upper bound the partition function, such as

TRW, might always yield a lower (hence better) approximation when a variable is clamped.
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Chapter 9

Conclusions

Graphical models are a powerful tool for dealing with relationships between variables across a wide

array of disciplines including computer vision, speech recognition and computational biology. Core

algorithmic tools are needed to address the key challenges of inference. Since these problems are

NP-hard, much attention has focused on identifying subclasses of problem where efficient algo-

rithms may be applied, or constructing approximate algorithms with good performance.

In this thesis we have advanced the state of the art in both domains. In Part II, we developed a

fascinating, recent link between exact MAP inference and the problem of finding a maximum weight

stable set in a derived weighted graph, thus marrying statistical methods of machine learning with

recent developments in graph theory. We characterized the power of this approach on the important

class of binary pairwise models, provided contributions to the toolbox of methods in this domain,

and clarified the range of tractable models. In Appendix B, we have suggested interesting avenues

for future exploration.

In Part III, we turned to methods of approximate inference, with particular focus on the Bethe

approximation, which is in widespread use through the belief propagation algorithm and its con-

vergent cousins, such as CCCP. Results are often extremely accurate yet, although the ideas behind

this approximation arose many decades ago, they are still not properly understood. We made con-

tributions to this understanding by identifying key properties of the approximation, then using these

to construct a discrete algorithm guaranteed to return an ε-approximation to the Bethe log-partition

function (which, to our knowledge, was not previously possible). This will allow the merits of the

approximation finally to be tested rigorously. For the important subclass of attractive binary pair-
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wise models, our methods provide a fully polynomial time approximation scheme (FPTAS), thus

answering a longstanding theoretical question. Further, we explored where and why the two as-

pects of the approximation (the entropy approximation and the relaxation of the marginal polytope

to the local polytope) can lead to error, drawing surprising theoretical conclusions, and providing

helpful guidance for practitioners on which tools to apply to real-world problems. Additionally,

by making further explorations into the nature of the derivatives of the Bethe free energy and their

consequences for clamping methods, we derived a useful general lower bound on a broad class of

partition function approximations, and have been able to provide a new, arguably simpler and more

intuitive proof, of a landmark result. In doing so, we have derived a stronger result that may have

important further implications. There is hope that some of these results may generalize to a broader

class of models and entropy approximations.



113

Part V

Bibliography



BIBLIOGRAPHY 114

Bibliography

A. Abdelbar and S. Hedetniemi. Approximating MAPs for belief networks is NP-hard and other

theorems. Artificial Intelligence, 102(1):21–38, 1998.

S. Aji. Graphical models and iterative decoding. PhD thesis, California Institute of Technology,

2000.

D. Aldous. The ζ (2) limit in the random assignment problem. Random Structures & Algorithms,

18(4):381–418, 2001.

N. Alon and M. Tarsi. Covering multigraphs by simple circuits. SIAM Journal on Algebraic Discrete

Methods, 6:345–350, 1985.

C. Arora, S. Banerjee, P. Kalra, and S. Maheshwari. Generic cuts: An efficient algorithm for optimal

inference in higher order MRF-MAP. In ECCV (5), pages 17–30, 2012.

F. Bach. Learning with submodular functions: A convex optimization perspective. Foundations and

Trends in Machine Learning, 6(2-3):145–373, 2013.

V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected feedback vertex

set problem. SIAM Journal on Discrete Mathematics, 12(3):289–9, 1999.

F. Barahona. On the computational complexity of Ising spin glass models. Journal of Physics A:

Mathematical and General, 15(10):3241, 1982.

F. Barahona. On cuts and matchings in planar graphs. Math. Program., 60:53–68, 1993.

F. Barahona and A. Mahjoub. On the cut polytope. Mathematical Programming, 36(2):157–173,

1986. ISSN 0025-5610. doi: 10.1007/BF02592023.



BIBLIOGRAPHY 115

D. Batra, A. Gallagher, D. Parikh, and T. Chen. Beyond trees: MRF inference via outer-planar

decomposition. In CVPR, pages 2496–2503, 2010.

L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occuring in the statistical

analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41:164–

171, 1970.

R. Baxter. Exactly solved models in statistical physics. Academic, New York, 1982.

M. Bayati, D. Shah, and M. Sharma. Maximum weight matching via max-product belief propaga-

tion. In IEEE International Symposium on Information Theory, 2005.

M. Bayati, C. Borgs, J. Chayes, and R. Zecchina. On the exactness of the cavity method for weighted

b-matchings on arbitrary graphs and its relation to linear programs. Journal of Statistical Mechan-

ics: Theory and Experiment, 2008(06):L06001 (10pp), 2008.

D. Belanger, D. Sheldon, and A. McCallum. Marginal inference in MRFs using Frank-Wolfe. In

NIPS Workshop on Greedy Optimization, Frank-Wolfe and Friends, December 2013.

C. Berrou and A. Glavieux. Near optimum error correcting coding and decoding: Turbo-codes.

Communications, IEEE Transactions on, 44(10):1261–1271, 1996.

D. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

H. Bethe. Statistical theory of superlattices. Proc. R. Soc. Lond. A, 150(871):552–575, 1935.

J. Bilmes. Mathematical properties of submodularity with applications to machine learning. Ma-

chine Learning Summer School Tutorial, Reykjavik, Iceland, May 2014.

A. Blake, P. Kohli, and C. Rother, editors. Markov Random Fields for Vision and Image Processing.

MIT Press, 2011.

E. Boros and P. Hammer. Pseudo-boolean optimization. Discrete Appl. Math., 123(1-3):155–225,

November 2002. ISSN 0166-218X. doi: 10.1016/S0166-218X(01)00341-9. URL http://

dx.doi.org/10.1016/S0166-218X(01)00341-9.

S. Boyd and A. Mutapcic. Subgradient Methods, notes for EE364b, Jan 2007. http://www.

stanford.edu/class/ee364b/notes/subgrad_method_notes.pdf, 2007.

http://dx.doi.org/10.1016/S0166-218X(01)00341-9
http://dx.doi.org/10.1016/S0166-218X(01)00341-9
http://www.stanford.edu/class/ee364b/notes/subgrad_method_notes.pdf
http://www.stanford.edu/class/ee364b/notes/subgrad_method_notes.pdf


BIBLIOGRAPHY 116

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for

energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell., 26(9):1124–1137, 2004.
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M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vuskovic. Recognizing Berge graphs.

Combinatorica, 25(2):143–186, 2005b.

M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas. The strong perfect graph theorem.

Ann. Math, 164:51–229, 2006.
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Appendix A

Related Graph Theory

Graphical models provide a rich field in which to explore connections between algorithm develop-

ment, combinatorial optimization and graph theory. In Part II, a promising, recent approach to exact

MAP inference was explored based on reducing the problem to finding a maximum weight stable set

(MWSS) on a derived weighted graph called a nand Markov random field (NMRF) (Jebara, 2009;

Sanghavi et al., 2009; Jebara, 2014). In general, finding a MWSS is NP-hard, but if the NMRF is

perfect, then a MWSS may be found in polynomial time via the ellipsoid method (Grötschel et al.,

1984), thereby efficiently yielding a MAP configuration for the original MRF. In this Appendix, we

describe related results from graph theory which may be of interest. Relevant terms and properties

are provided in Sections 3.4. For terms not defined, see the papers referenced.

A.1 Recognizing Berge Graphs

Shortly after the Strong Perfect Graph Theorem (‘SPGT’) was proved (Chudnovsky et al., 2006),

Chudnovsky et al. (2005a) solved another open problem by providing a constructive proof that

checking if a graph G is Berge (and hence perfect by SPGT) can be carried out in polynomial time,

specifically O(n9). Here we provide a sketch of the algorithm:

• Check in O(n9) if G or Ḡ contains any of the following induced subgraphs, each of which

can be shown to contain an odd hole: a pyramid; a jewel; any of the structures designated of

type T1, T2 or T3
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• If any of the above is found, output NOT BERGE and stop; else it is proved that every shortest

odd hole in G and Ḡ is amenable (hence easy to find)

• Enumerate the O(n5) possible cleaners X of G

• For each cleaner X , check if G \X contains an amenable hole

• If an amenable hole is found, output NOT BERGE and stop; else

• Repeat the last 3 steps for Ḡ, if still no amenable hole is found, output BERGE

The speed bottleneck here is the O(n9) time required to test for pyramids. Note it remains an

open problem to test in polynomial time if a graph contains an odd hole. For the restricted case of

graphs with largest clique size bounded by a constant k, using similar ideas to Chudnovsky et al.

(2005a), Conforti et al. (2006) provided a polynomial time algorithm to test for an odd hole in time

O(n8k), with the speed bottleneck due to the cleaning algorithm used.

A.2 Line, Quasi-line and Claw-free Graphs

Another important class of graphs where a MWSS can be found in polynomial time is claw-free

graphs, see Figure A.1. A claw is a graph isomorphic to K1,3 (i.e. a star configuration with one

vertex adjacent to each of 3 other vertices, no two of which are adjacent to each other), and a graph

is claw-free if it does not contain a claw as an induced subgraph (see 3.3 for basic definitions). His-

torically, claw-free perfect graphs have attracted attention, being an early class on which the strong

perfect graph conjecture was shown to hold, and a class that could be recognized efficiently using

decomposition methods (Parthasarathy and Ravindra, 1976; Chvátal and Sbihi, 1988). Interest-

ingly, the MWSS problem on a claw-free graph can be considered a generalization of the weighted

matching problem for a general graph in the following way:

• Consider a graph G and its line graph L. A stable set of L is naturally in 1-1 correspondence

with a matching of G. Hence, a MWSS of L is equivalent to finding a maximum weight

matching of G. This was famously solved by the blossom algorithm (Edmonds, 1965).

• In any line graph L, it is clear that ∀v ∈ V (L), the neighbors of v can be expressed as the

union of two cliques (possibly with edges between the cliques). Any graph satisfying this

property is called a quasi-line graph.
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It is easily seen that any line graph is a quasi-line graph, and any quasi-line graph is claw-free. In

each case, the converse is not true. See Figure A.1 for examples.

Figure A.1: Illustrations of line, quasi-line and claw-free graphs , from (Faenza, 2011)

The first polynomial time algorithm for finding a MWSS in a general claw-free graph was

provided by Minty (1980) using matching-like arguments. Over time, several approaches yielded

improvements, but for many years the best runtime was O(n6). In a recent breakthrough, Faenza

et al. (2011) derived an O(n(m + n log n)) algorithm using decomposition methods. This was in

part inspired by the success of this approach in analyzing perfect graphs (Chudnovsky et al., 2006)

and in a grand characterization of all claw-free graphs (Chudnovsky and Seymour, 2005, 2007,

2008a,b,c,d, 2010, 2012). The decomposition used by Faenza et al. (2011) is weaker but admits

efficient algorithms to produce the decomposition and deal with all cases; key ideas are summarized

below.

A.2.1 Strips and their composition

To facilitate their decomposition result, Chudnovsky and Seymour (2005) introduced the notion of

strips and their composition. The version here is slightly modified as used by Faenza et al. (2011).

A strip (G,A) is a graph G (not necessarily connected) with a multi-family A of either one

(1-strip) or two (2-strip) designated cliques, called the extremities of the strip. Given a family F

of k vertex-disjoint strips, F = {(Gj , Aj), j ∈ {1, . . . , k}}, and a partition P = {P1, . . . , Pm} of
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the multi-set of all the extremities ∪j∈{1,...,k}Aj , the composition w.r.t. P is the graph G defined

by: V (G) = ∪kj=1V (Gj); u, v ∈ V (G) are adjacent iff either they were adjacent in some Gj , or

they come from extremities Ai, Aj which are in the same class of P . For this graph G, (F,P)

defines a strip decomposition of G. Note ∀P ∈ P , the vertices ∪A∈PA form a clique of G, called a

partition-clique.

A helpful previous result is from Oriolo et al. (2008): IfG is the composition of strips (Gi, Ai), i =

1, . . . , k and a MWSS can be found for each strip in time O(pi(ni)), then a MWSS of G can be

found in time O(
∑k

i=1 pi(ni) + n2 log n).1

A.2.2 Summary of the Faenza et al. (2011) algorithm for MWSS of a claw-free graph

in O(n(m+ n log n)) time

Let G be a claw-free graph with stability number α.

Algorithm 1 runs in O(mn) time and determines either: (i) α ≤ 3; or (ii) G is net-free2; or

(iii) G is the composition of (5-wheel3 or distance simplicial) strips, breaking apart at articulation

cliques, in which case the algorithm returns the decomposition.

In case (i), find a MWSS by enumeration in O(mn). In case (iii), solve MWSS on distance

simplicial strips in O(mi) by the method of Pulleyblank and Shepherd (1993); solve MWSS on 5-

wheel strips in O(mini) by enumeration; then use the algorithm of Oriolo et al. (2008) to combine

to a MWSS ofG, total timeO(n(m+n log n)). In case (ii), G has no articulation clique, and hence

no net; in this case use results of Brandstädt and Dragan (2003) and Hempel and Kratsch (2002),

and find a MWSS in O(n(m+ n log n)).

1The composition of strips (Gj , Aj) with each Gj claw-free/quasi-line/line may not lead to a graph with the same

property. However, this does hold provided we require that, for each strip, the property must hold on an auxiliary graph

where an additional vertex is added for each extremity, with the neighbors of each additional vertex equal to the members

of its associated extremity.

2A net is the graph with six vertices {v1, v2, v3, s1, s2, s3} and edges v1v2, v2v3, v1v3, and visi for i = 1, 2, 3. In

a quasi-line graph, a net clique is always an articulation clique, hence a quasi-line graph with no articulation clique is

net-free.

3A 5-wheel is an induced 5-cycle together with an extra vertex called its center which is complete to the 5-cycle.
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A.2.3 Description of the structure of quasi-line graphs

The following is due to Chudnovsky and Seymour (2005, 2012). A homogeneous pair of cliques in

G is a pair (A,B) such that:

• A,B are cliques in G with A ∩B = ∅;

• no vertex in G \ (A ∪ B) has both a neighbor and a non-neighbor in A; and the same for B;

and

• at least one of A or B has cardinality at least 2.

It is shown that every quasi-line graph that does not contain a homogeneous pair of cliques is

either a circular interval graph, or a composition of linear interval strips. This is then refined by

demonstrating that the only kind of homogeneous pairs of cliques required are those corresponding

to the inverse mappings of ends of a fuzzy interval, where at least one of the ends has inverse map

with at least two members, leading to the characterization: Every connected quasi-line graph is

either a fuzzy circular interval graph, or the composition of fuzzy linear interval strips.
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Appendix B

Appendix for the NMRF Approach to

MAP Inference

In this Appendix, we consider only binary pairwise MRFs and relax the assumption of Section 4.1.

That is, we shall consider reparameterizations where more than one enode from an edge clique

group is present in the pruned NMRF. While this can only make it harder to prove perfection of

the resulting pruned NMRF, the possible benefit is that there may be less (or no) incident singleton

snodes present. This is typically effected by an edge potential ‘absorbing’ one or both incident

singleton variable potentials. Although one might expect that edge nodes can cause more trouble

than singleton nodes, in the sense of making odd holes or antiholes more likely (since they typically

interact with more nodes in an NMRF), we shall show that in some cases, the net effect is helpful.

In particular, we show in Section B.2 that this technique expands the range of 2-connected

models that can be efficiently mapped to perfect pruned NMRFs beyond those identified in Section

4.5 to include:

(i) A general multi-triangle, where the topology is any number of triangles on a common base,

allowing all edges to take any weight (attractive or repulsive);

(ii) A frustrated cycle of any size; and

(iii) Some topologies on a complete graph on 4 variables (K4 topology, which has treewidth

3) containing a frustrated cycle; specifically, the topology must contain at least one non-

frustrated triangle.
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It is known that the LP relaxation on the triplet-consistent polytope, which we shall call LP+TRI,

is tight for any model without a frustrated cycle, and also for any model with treewidth ≤ 2 (Wain-

wright and Jordan, 2004). This clearly includes the BR, Tm,n and Un structures of Section 4.5, and

also the structures described in (i) and (ii) above. Sontag (2010) has shown that, for models with

binary variables, the triplet-consistent polytope TRI is equal to the cycle polytope. Barahona and

Mahjoub (1986) showed that the cycle polytope is equal to the marginal polytope for symmetric

(i.e. no singleton potentials) planar binary pairwise models, hence for these models, LP+TRI is

always tight. Further, David Sontag has demonstrated a result similar to our Theorem 4.2.1 de-

composition result for perfect NMRFs that applies to the LP+TRI approach (unpublished private

correspondence). In particular, if LP+TRI is tight on each of two models, which are then pasted

together on one common variable, then LP+TRI is tight on the combined model. Hence, LP+TRI

can handle all the models described in Section 4.5, and in addition the models described in (i) and

(ii) above. From extensive experiments, we believe that LP+TRI might also be tight on models in

category (iii), even though these models have treewidth 3 and contain a frustrated cycle.1

We leave open the following interesting questions for future work: (1) Can we precisely char-

acterize the set of binary pairwise models that can be handled by the NMRF approach, where we

now allow any reparameterization including absorbing singleton nodes? (2) Is this set a subset of

the models that can be handled by the LP+TRI approach?

In considering the first question (1), we caution that, while the decomposition result of Theorem

4.2.1 always allows blocks with the BR, Tm,n and Un structures of Section 4.5 to be pasted together

in any fashion, more work is required to check conditions under which the new structures (i), (ii)

and (iii) described in this Appendix, may be pasted together while preserving the ability to map

efficiently to a perfect pruned NMRF.2

1For symmetric models in category (iii), because the complete graph on 4 variables is planar, the earlier results

immediately imply that LP+TRI is tight, but we believe it might also be tight for models of category (iii) with arbitrary

singleton potentials, though we have not proved this.

2This is because, as stated in Theorem 4.2.1, when pasting blocks together on a variable, the sub-NMRFs must have

the same snodes for that variable, but the constructions in this chapter explicitly remove some snodes.
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B.1 Absorbing Singleton Potentials, Breaks, Surrogate snodes and Phan-

tom Edges

As described in Section 3.8, singleton transformations can always be applied to leave just one en-

ode per edge in a pruned NMRF, though this will typically leave snodes for each singleton potential.

Here we consider edges that absorb both incident singleton potentials (one can also consider edges

that absorb the singleton potential at just one end, but we leave that for future work), i.e. we con-

sider the reparameterization ψ′ij(xi, xj) = ψi(xi) + ψij(xi, xj) + ψj(xj), ψ
′(xi) = 0, ψ′(xj) = 0.

This removes all snodes at i and j, though now we must recognize that any of the 4 possible enodes

for such an absorbing edge could be present in the pruned NMRF. In fact, at most 3 enodes will be

present after pruning since at least one will be the minimum and can be pruned, though we cannot

know in advance which enode this will be. Henceforth we make the conservative (harder) assump-

tion that all 4 enodes are present and show that nevertheless, certain additional MRF structures can

be guaranteed to yield a perfect pruned NMRF.

Definition B.1.1. Given a particular reparameterization of a sub-MRF, a break at a variable vertex

is a missing snode in the pruned NMRF (typically because it has been absorbed by an incident edge)

such that it is not possible for enodes from some incident edges to connect through the vertex. A

particular reparameterization of a sub-MRF signed topology is unbroken if a reparameterization is

used such that it contains no breaks.

A break can be very helpful but typically introduces new difficulties. We illustrate the idea and

introduce related new terms with the following example. Consider a frustrated 5-cycle v1, . . . , v5

that has been reparameterized as in Section 3.8 to have one enode per edge. For a range of singleton

potentials, this will be unbroken and hence will form an odd hole in the pruned NMRF, as described

in Section 4.5. However, if we arrange that a particular vertex, say v3, is broken with respect to the

incident edges v2 − v3 and v3 − v4, then the odd hole could be avoided. This might be achieved

as follows: (i) first reparameterize as in Section 3.8 to get one non-zero enode per edge, choosing a

reparameterization such that both the v2−v3 enode and the v3−v4 enode have setting v3 = 0, hence

they only connect at v3 via the snode (v3 = 1); (ii) now add a phantom edge v1 − v3, which did

not exist in the original MRF; this initially has ψ13(x1, x3) = 0 ∀x1, x3 but then is reparameterized

to absorb the singleton potentials ψ1(x1) and ψ3(x3), i.e. ψ′13(x1, x3) = ψ1(x1) + ψ3(x3), ψ′1 =
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0, ψ′3 = 0. This now prevents the original odd hole from connecting at v3, apparently solving

the problem. However, at least one new odd hole has been introduced, formed by NMRF nodes

from the v3 − v4 − v5 − v1 section of the original MRF together with either one or two enodes

from the new phantom v1 − v3 edge. To see this, recall that we have chosen the v3 = 0 setting

and suppose that the v5 − v1 enode has setting v1 = x ∈ {0, 1}. Let x̄ = 1 − x. We assume

that the phantom v1 − v3 edge has all 4 enodes, so in particular it has (v1 = x̄, v3 = 1) which

would connect the ends (i.e. the enode for v3 − v4 and that for v5 − v1) with one enode, and it has

{(v1 = x̄, v3 = 0), (v1 = x, v3 = 1)} which would connect the ends with two enodes. Thus, there

is a new odd hole - we solved one problem but introduced another, for no net benefit.

If the 5-cycle were part of a larger MRF, including say v6 that is unconnected to any of the 5-

cycle, one might think that we could form the break at v3 yet avoid the problem above by introducing

a phantom edge v3− v6. However, this does not work: either the (v3 = 1, v6 = 0) or (v3 = 1, v6 =

1) enode could play the role of what we call a surrogate snode, i.e. it would play the same role as

the original (v3 = 1) snode did in connecting the original odd hole formed by v1, . . . , v5.

Despite these difficulties, we shall show, perhaps surprisingly, that the break idea can allow us to

extend the range of signed MRF structures that may be handled efficiently with the NMRF method,

for any valid potentials.

B.2 Additional Tractable Models

By reparameterizing to use edges that absorb singleton potentials, we show that all the following

structures may be added to the list of those described in Chapter 4. Unless otherwise shown, all

singleton and edge potentials may take any value (edges may be attractive or repulsive). Recall

Theorem 3.5.5 (Strong Perfect Graph Theorem) and observe that here, to show that a perfect pruned

NMRF may be efficiently constructed for these examples, since we cannot rely on the results of

Section 4.4, we must check for possible odd holes and antiholes (we need only check for odd

antiholes of size ≥ 7 since an antihole of size 5 is isomorphic to a hole of the same size).
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B.2.1 General multi-triangles

A general multi-triangle, shown in Figure B.1, is a generalized version of the Tm,n and Un structures

described in Section 3.4 and illustrated in Figures 3.2 and 3.3. It consists of n triangles {s, vi, t} on

a common base s − t. Whereas in the Tm,n and Un structures, the edges are restricted to be either

attractive or repulsive in particular configurations, here any edge types are allowed throughout the

structure.

s

t

v1 v2 v3 v4 v5

Figure B.1: An example multi-triangle structure with n = 5. All edges shown may be attractive or

repulsive. The black solid edges are reparameterized to have one enode per edge. The purple wavy

edge shows an edge that has been reparameterized so as to absorb its incident snodes.

Reparameterization. For all edges s − vi and vi − t, reparameterize such that we have just one

enode per edge. Always choose the reparameterization such that s − vi has setting s = 0 (if the

edge is attractive, use (s = 0, vi = 0); if repulsive, use (s = 0, vi = 1)). Next ∀i choose the repa-

rameterization of vi− t such that s−vi and vi− t have opposite settings for vi and hence the enodes

connect ‘directly’ in the NMRF without using an snode at vi. Let edge s− t be reparameterized so

as to absorb the snodes at s and t.

Lemma B.2.1. With the reparameterization above, a general multi-triangle has a perfect pruned

NMRF.

Proof. (i) No odd holes. If a vi − t and vj − t enode connect directly at t, then they have different

t settings and there’s no way to use an s − t enode to connect the s − vi and s − vj enodes at s

without it also being adjacent to one of the vi − t or vj − t enodes, forming a chord. If vi − t and

vj − t do not connect directly at t then in order to connect to a hole, 2 extra nodes are needed: one
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at s and one at t (one can’t connect both with one node without forming a chord). Hence, such a

hole cannot be odd.

(ii) No odd antiholes of size≥ 7. Suppose an antiholeA of size≥ 7 exists in the pruned NMRF.

Let x be a node in A and Nx be those members of A which are adjacent to x, then |Nx| ≥ 4

and ∀y ∈ Nx, y is adjacent to at least one other member of Nx. We consider possible candidate

members of A. No snode can be in A by Lemma 4.3.1.

An s− vi enode is adjacent to no other s− vj , i 6= j by construction. It might be adjacent to a

vi snode, but this can’t be in A as just noted, and up to 2 s − t snodes. This is not enough, hence

no s − vi enode can be in A. The only remaining candidates are vi − t enodes and s − t enodes.

Suppose x is a vi − t enode with setting t = 0 (a similar argument applies with setting t = 1). Nx

can consist only of vj − t or s − t enodes, all of which must have setting t = 1 to be adjacent to

x. But each of Nx must be adjacent to ≥ 1 other member of Nx hence none of Nx can be of the

form vj − t. So all of Nx must be made up of s − t enodes, but there are at most 2 of these with

t = 1, contradiction. This leaves s− t nodes as the only possible members, but there are at most 4

of these, contradiction.

B.2.2 Frustrated cycles of any size

In Chapter 4, it was shown how to handle a frustrated cycle on 3 vertices. One special case of

the multi-triangle structure of Section B.2.1 with n = 2 is a 4-cycle {s, v1, t, v2} with any types of

edges, together with an s−t edge that goes across (the purple wavy edge shown in Figure B.1). Note

that the 4-cycle could be frustrated, and the s− t edge could be arbitrarily weak. Indeed, it could be

non-existent and then be introduced as a phantom edge, as described in Section B.1. Hence, we have

shown that a frustrated 4-cycle may be mapped to a perfect pruned NMRF by adding a phantom

edge that cuts across the cycle. We shall show how this idea may be modified slightly and extended

to allow a frustrated cycle of any size ≥ 5. See Figure B.2 for an example with 6 variables.

Reparameterization. There is a cycle of n variables x1, . . . , xn with n ≥ 5. Pick one ‘star’

vertex to which all the phantom edges will be incident. Here we assume the star is x1, as illustrated

in Figure B.2. For all edges of the original cycle, reparameterize such that we obtain just one enode
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x5

x4

x3

x1

x6

x2

Figure B.2: An example frustrated cycle on 6 variables. All edges shown may be attractive or

repulsive. The black solid edges are reparameterized to have one enode per edge. The purple wavy

edges indicate phantom edges that were added and reparameterized so as to absorb all incident

snodes. x1 is the ‘star’ variable, to which all phantom edges are adjacent. The enodes of the

original cycle connect directly at x2 and x6 (shown in blue, unshaded) but do not connect directly

at x3, x4 or x5 (they might or might not connect at x1).

per edge in the following way. Pick an orientation to take around the cycle starting with the star,

and an initial value (0 or 1) for the star variable setting of the first enode. Here we shall assume a

clockwise orientation and an initial value of 0 but a similar argument applies for other choices. With

these choices, the first enode will be (x1 = 0, x2 = 0) if the edge is attractive, or (x1 = 0, x2 = 1)

if repulsive. Now continue around the cycle in the chosen direction, selecting the enode as follows:

at the second and last variables (here x2 and xn), ensure that the incident enodes connect directly at

the variable, i.e. they have different settings for the variable; at all other variables, ensure that the

incident enodes do not connect directly, i.e. they have the same setting for the variable, hence at

these variables there will breaks once snodes are absorbed. (This means that for general edge types,

after dealing with all the edges and returning to the star at the beginning of the cycle, the edges

may either connect or not at the star.) Introduce phantom edges from the star to all non-adjacent

variables on the cycle and reparameterize them so as to absorb the incident snodes (the star snodes

can be absorbed among them in any way).

Lemma B.2.2. With the reparameterization above for a cycle Cn of size n ≥ 5, a perfect pruned

NMRF is obtained.
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Proof. Let s = x1 be the star. Let u− v be an edge of Cn where neither u nor v is adjacent to s in

the original cycle. By construction, there is one u− v enode, say (u = x, v = y) and its neighbors

are all either s− u or s− v enodes.

(i) No odd holes. Suppose an odd hole H exists and consider candidate members. Clearly the

snodes at x2 and xn could not be in H. Consider an edge u− v. To form an odd hole, we must have

(s = a, u = x̄) and (v = ȳ, s = a) for some a ∈ {0, 1} else we have a triangle. To continue past

(v = ȳ, s = a), we cannot have anything with setting s = ā else it would form a chord, so we must

have (v = y, s = a); but then there is no way to continue without forming a chord. Hence there is

no such u− v enode in H .

We next consider if enodes from the remaining 4 edges of the original cycle could be in H . The

possibilities are: (1) 2 enodes ({x1 − x2, x2 − x3}, or {xn−1 − xn, xn − x1}) together with enodes

from the connecting phantom edge - but this cannot work since there could be at most 2 enodes from

any one edge (else a triangle is formed), so there are insufficient nodes; or (2) all 4 of the enodes

under consideration (if they connect at s) together with additional enodes from phantom edges - but

this cannot work since, if the 4 enodes connect at s then they have different settings there, and any

additional enode from a phantom edge will form a chord. Hence, the only remaining candidates for

members of H are the enodes from phantom edges, where more than one phantom edge must be

involved to have sufficient nodes. To connect across different phantom edges, there must be enodes

with different settings for s but there is no way to do this without at least one enode being adjacent

to ≥ 3 others, contradiction.

(ii) No odd antiholes of size ≥ 7. We proceed as in the Proof of Lemma B.2.1. Consider if an

enode from a u − v edge could be in A. It has 4 neighbors (2 from each incident phantom edge),

each of which is adjacent to 2 of the other 4. But to be in A, there must be 2 that are adjacent to

2 of the other 4, and 2 that are adjacent to 1 of the other 4, contradiction. Neither an x2 − x3 nor

x5 − x6 enode can be in A (each has up to 4 neighbors including the snode, but this cannot be in A

by Lemma 4.3.1).

Next consider the enode for s−x2 (the same argument applies to xn−s). Its possible neighbors

in A are the enodes from phantom edges at s (the possible neighbor of the enode from xn− s could

not work since it would not be adjacent to any of the other possible neighbors). It can be adjacent

to at most 2 enodes from each phantom edge clique group (the 2 which have different setting for s).
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Neighbor enodes from different phantom edge groups are not adjacent to each other (they overlap

only on s where they have the same setting). The only possibility is 2 enodes from each of 2

phantom edge clique groups, but then each of them is adjacent to just one other neighbor (the one

in its same clique group), contradiction.

The only remaining possible nodes of A are enodes from phantom edge clique groups. If one of

them, say p, is in A, then there must be a set of 4 neighbors of p, say q1, q2, q3 and q4, all in order

going around A, with p and q1 both adjacent to q3 and q4, and q3 not adjacent to q4. Hence, q3 and

q4 must be in different clique groups with the same setting for s, say s = a. To be adjacent to both,

p and q1 must each have setting s = ā. Now q2 is not adjacent to q1, so has setting s = ā but then

q2 is adjacent to q3, contradiction.

Remarks. This construction for a single cycle is superficially similar to triangulation of the MRF

topology, where all added edges are incident to one variable, and suggests a link to the LP+TRI

approach.

Note that all the edges introduced as phantom edges could equally be edges of any type that

were already in the original MRF.

B.2.3 Some frustrated K4 structures (treewidth 3)

We require that there is at least one non-frustrated triangle (which could contain 0 or 2 repulsive

edges), while all other edges and all singleton potentials are unrestricted. See Figure B.3 for the

reparameterization. The edges shown in solid blue must form a non-frustrated triangle, which allows

their enodes to be chosen such that none of them connect directly at any of the triangle’s vertices

x2, x3, x4.

Lemma B.2.3. With the reparameterization of aK4 structure shown in Figure B.3, a perfect pruned

NMRF is obtained.

Proof. The argument is similar to that in the proof for frustrated cycles in Section B.2.2. For each

of odd holes and odd antiholes: first consider the solid blue edges, which are similar to the u − v

edges of a frustrated cycle; next consider the purple wavy edges with 4 enodes, which are similar to

the phantom edges of a frustrated cycle.
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x4

x3

x2

x1

Figure B.3: An example of a frustrated yet tractable K4. All edges shown may be attractive or

repulsive, except that the triangle shown with solid blue edges must be non-frustrated (i.e. contain

either 0 or 2 repulsive edges). The solid blue edges are reparameterized to have one enode per edge

such that none of them connects directly to another. The purple wavy edges are reparameterized so

as to absorb all snodes.

B.3 Discussion

We have provided examples to show that the idea of reparameterizing edges so as to absorb singleton

potentials can significantly increase the range of binary pairwise models on which MAP inference

is tractable with the NMRF method. We hope to be able to characterize the enlarged set exactly in

future work, and to determine if this is a subset of those models that may be handled in polynomial

time using the LP+TRI method.
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Appendix C

Appendix for Discrete Methods to

Approximate the Partition Function

Here we provide details and proofs of several of the results in Chapter 6. To establish these, we also

derive additional preliminary results where required.

Lemma C.0.1. Unless qi or qj ∈ {0, 1}, all entries of the pseudo-marginal µij are strictly > 0,

whether (i, j) is associative or repulsive.1

Proof. First assume αij > 0. Considering (6.2) and using Lemmas 6.4.1 and 6.4.3, we have that

element-wise

µij ≥

 (1− qi)(1− qj) qj(1− qi)/(1 + αij)

qi(1− qj)/(1 + αij) qiqj

 (C.1)

which proves the result for this case. If αij < 0 then flip either qi or qj . As in the proof of Lemma

6.3.1, pseudo-marginal entries change position but not value.

In order to prove Theorem 6.4.2, we first show the following result.

Theorem C.0.2. If all edges incident to Xi are associative then at any stationary point of the Bethe

free energy, σ(θi) ≤ qi ≤ σ(θi+Wi). Remark the same sandwich result holds for the true marginal

pi.

1Here we assume αij is finite, see footnote 1 in Chapter 6.
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Proof. We first prove the left inequality. Consider (6.9). Using αij > 0 ∀j ∈ N (i) and Lemma

6.4.1 we have

Qi =

∏
j∈N (i)(qi − ξij)

qdi−1
i

(1− qi)di−1∏
j∈N (i)(1 + ξij − qi − qj)

≤
∏
j∈N (i) qi(1− qj)

qdi−1
i

(1− qi)di−1∏
j∈N (i)(1− qi)(1− qj)

=
qi

1− qi
which gives the result.

To obtain the right inequality, flip all variables as in Section 6.3.1. Using the first inequality, (6.7)

and Lemma 6.3.1 yields 1 − qi ≥ σ(−θi −Wi) ⇔ qi ≤ σ(θi + Wi) since 1 − σ(−x) = σ(x).

To show the result for the true marginal, let mi=a =
∑

x:xi=a
exp(

∑
i∈V θixi +

∑
(i,j)∈EWijxixj)

then using (6.1), pi = mi=1
mi=1+mi=0

. Since all Wij > 0 the result follows.

Using the technique of flipping variables (6.8), we obtain the more powerful Theorem 6.4.2 as

a corollary.

Theorem 6.4.2 For general edge types (associative or repulsive), let Wi =
∑

j∈N (i):Wij>0Wij ,

Vi = −
∑

j∈N (i):Wij<0Wij . At any stationary point of the Bethe free energy, σ(θi − Vi) ≤ qi ≤

σ(θi +Wi). The same result holds for the true marginal pi.

Proof. Using (6.8), flip all variables adjacent to Xi with a repulsive edge, i.e. setR = {j ∈ N (i) :

Wij < 0}. The resulting new model is fully associative around Xi so we may apply Theorem C.0.2

to yield the result.

A lemma which shall soon prove helpful.

Lemma C.0.3. For qi, qj ∈ [0, 1], 0 ≤ qi + qj − 2qiqj ≤ 1.

Proof. Let f = qi + qj − 2qiqj . To show the left inequality, consider m = min(qi, qj) and

M = max(qi, qj), then f ≥ 2m(1 −M) ≥ 0. For the right inequality observe 1 − f = (1 −

qi)(1− qj) + qiqj ≥ 0.

Using Lemma C.0.3, we show the following result.

Lemma 6.4.3 (Upper bound for ξij for an attractive edge) If αij > 0, then

qj − ξij ≥ qj(1−qi)
1+αij(qi+qj−2qiqj)

≥ qj(1−qi)
1+αij

=
qj(1−qi)
Kij

,
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qi − ξij ≥ qi(1−qj)
1+αij(qi+qj−2qiqj)

≥ qi(1−qj)
1+αij

=
qi(1−qj)
Kij

.

Also ξij ≤ m(αij + M)/(1 + αij) ⇒ ξij − qiqj ≤ αijm(1−M)
1+αij

, where m = min(qi, qj) and

M = max(qi, qj).

Proof. We prove the first inequality. The second follows by Lemma C.0.3 and those for qi − ξij

follow by symmetry. The final inequality follows by combining the earlier ones. Let ξij = qj + y

and substitute into (6.4),

αijy
2 + y[αij(qj − qi)− 1] + qj(qi − 1) = 0.

The function is a convex parabola which at y = 0 is at qj(qi − 1) ≤ 0.2 From Lemma 6.4.1 we

know that the left root is at ξij ≥ qiqj so we may take the derivative there, i.e. at qj + y = qiqj ⇔

y = qj(qi − 1) and by convexity establish a lower bound for qj − ξij .

We now turn to results on second and third derivatives and thence submodularity.

Theorem 6.5.1. (Second derivatives for each edge) For any edge (i, j), for any αij , writing f =

fij and µab = µij(a, b) from (6.2),

∂2f

∂q2
i

=
1

Tij
qj(1− qj)

∂2f

∂qi∂qj
=

∂2f

∂qj∂qi
=

1

Tij
(µ01µ10 − µ00µ11)

∂2f

∂q2
j

=
1

Tij
qi(1− qi)

where Tij = qiqj(1 − qi)(1 − qj) − (ξij − qiqj)2 ≥ 0 with equality only for qi or qj ∈ {0, 1}.

Further µ01µ10 − µ00µ11 = qiqj − ξij and has the sign of −αij .

Proof. We begin with the same approach as Korc̆ et al. (2012) but extend the analysis and derive

stronger results.

For notational convenience add a third pseudo-dimension restricted to the value 1. Let y =

(y1, y2, y3) be the vector with components y1 = xi, y2 = xj and y3 = 1 where xi, xj ∈ B. Define

π(y) = µij(xi, xj), and φ(y) = Wij if y = (1, 1, 1) or φ(y) = 0 otherwise. Let r = (qi, qj , 1).

Define function h used in entropy calculations as h(z) = −z log z.

2This confirms neatly that we must take the left root else y > 0⇒ µ01 < 0 (a contradiction).
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Consider (6.5) but instead of solving for ξij explicitly, express f as an optimization problem,

minimizing free energy subject to local consistency and normalization constraints in order to use

techniques from convex optimization. We have f(qi, qj) = g(r) where

g(r) = min
π

∑
y

(
− φ(y)π(y)− h(π(y))

)
s.t.

∑
y:yk=1

π(y) = rk k = 1, 2, 3. (C.2)

The Lagrangian can be written as

Lr(π,λ) =
∑

y
[(−φ(y)− 〈y,λ〉)π(y)− h(π(y))] + 〈r,λ〉

and its derivative is
∂Lr(π,λ)

∂π
= −φ(y)− 〈y,λ〉+ 1 + log π

which yields a minimum at

πλ(y) = exp(φ(y) + 〈y,λ〉 − 1). (C.3)

Since the minimization problem in (14) is convex and satisfies the weak Slater’s condition (the

constraints are affine), strong duality applies and g(r) = maxλG(r,λ) = G(r,λ∗(r)) where the

dual is simply

G(r,λ) = min
π
Lr(π,λ) = −

∑
y
πλ(y) + 〈r,λ〉. (C.4)

Let Dk(r,λ) = ∂G(r,λ)
∂λk

then Dk(r,λ∗) = 0, k = 1, 2, 3.

Hence ∂g
∂rk

= ∂G
∂rk

= λk using (C.4). Focusing on our goal of obtaining second derivatives, we

consider ∂2g
∂rl∂rk

= ∂λk
∂rl

which we shall express in terms of Ckl := ∂2G
∂λl∂λk

= ∂Dk
∂λl

.

Differentiating Dk(r,λ∗) = 0 with respect to rl,

0 =
∂Dk(r,λ∗)

∂rl
=
∂Dk

∂rl
+

3∑
p=1

∂Dk

∂λp

∂λp
∂rl

k, l = 1, 2, 3.

Considering (C.4), ∂Dk∂rl
= ∂2G

∂rl∂λk
= δkl hence 0 = δkl +

∑
pCkp

∂2g
∂rl∂rp

. Thus ∂2g
∂rl∂rk

= −[C−1]kl.

Using its definition and (C.4), we have

Ckl =
∂2G

∂λl∂λk
=

∂

∂λl

(
−
∑

y
ykπλ(y) + rk

)
= −

∑
y
ykylπλ(y) = −

∑
y:yk=yl=1

πλ(y).
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Earlier work Korc̆ et al. (2012) stopped here, recognizing that detC ≤ 0. We more precisely char-

acterize this matrix

C = −


µ10 + µ11 µ11 µ10 + µ11

µ11 µ01 + µ11 µ01 + µ11

µ10 + µ11 µ01 + µ11 1

 (C.5)

Recall constraints µ00 +µ01 +µ10 +µ11 = 1, µ01 +µ11 = qj , µ10 +µ11 = qi. NoteC is symmetric.

Applying the result above and using Cramer’s rule,

∂2f

∂q2
i

=
∂2g

∂r2
1

= − 1

detC
(µ01 + µ11)(µ00 + µ10) =

qj(1− qj)
−detC

∂2f

∂qi∂qj
=

∂2f

∂qj∂qi
=

∂2g

∂r1∂r2
=

(µ01µ10 − µ00µ11)

−detC

∂2f

∂q2
j

=
∂2g

∂r2
2

= − 1

detC
(µ10 + µ11)(µ00 + µ01) =

qi(1− qi)
−detC

.

Using (C.5) and simplifying, we obtain −detC = µ00µ10µ11 + µ10µ11µ01 + µ11µ10µ00 +

µ01µ00µ10. By Lemma C.0.1 this is strictly > 0 unless qi or qj ∈ {0, 1}. Substituting in terms from

(6.2) and simplifying establishes −detC = Tij from the statement of the theorem, and µ01µ10 −

µ00µ11 = qiqj − ξij . The sign follows from Lemma 6.4.1 or observing from (C.3) that µ00µ11µ01µ10
=

eWij = αij + 1.

Lemma C.0.4 (Finite 3rd derivatives). For any edge (i, j) with αij > 0, if qi, qj ∈ (0, 1) then all

third derivatives exist and are finite.

Proof. Using Theorem 6.5.1 noting Tij > 0 strictly and considering (6.2), it is sufficient to show
∂ξij
∂qk

is finite. We may assume k ∈ {i, j} else the derivative is 0 and by symmetry need only check
∂ξij
∂qi

. Differentiating (6.4),

∂ξij
∂qi

=
αij(qj − ξij) + qj

1 + αij(qi − ξij + qj − ξij)
,

clearly finite for αij > 0 since recalling (6.2), qi − ξij and qj − ξij are elements of the pseudo-

marginal and hence are non-negative (or use Lemma 6.4.3).

Theorem 6.5.2. If a binary pairwise MRF is submodular on an edge (i, j), i.e. αij > 0, then the

multi-label discretized MRF for any discretizationM is submodular for that edge. In particular, if
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the MRF is fully associative/submodular, i.e. αij > 0 ∀(i, j) ∈ E , then the multi-label discretized

MRF is fully submodular for any discretization.

Proof. For any edge (i, j), let f be the pairwise function fij from (6.5) and note the submodularity

requirement (6.6). Let x = (x1, x2), y = (y1, y2) be any points in [0, 1]2. Define s(x, y) =

(s1, s2) = (min(x1, y1),min(x2, y2)), and t(x, y) = (t1, t2) = (max(x1, y1),max(x2, y2)). Let

g(x, y) = f(s1, s2) + f(t1, t2)− f(s1, t2)− f(s2, t1), call this the submodularity of the rectangle

defined by x, y. We must show g(x, y) ≤ 0. Note f is continuous in [0, 1]2 hence so also is g. We

shall show that ∀(x, y) ∈ (0, 1)2, g(x, y) < 0 then the result follows by continuity.

Assume x, y ∈ (0, 1)2. Consider derivatives of f in the compact setR = [s1, t1]×[s2, t2]. Using

(6.9) and Lemma C.0.1, first derivatives exist and are bounded. By Theorem 6.5.1 and Lemma C.0.4

the same holds for second and third derivatives. Further, Theorem 6.5.1 and Lemma C.1.1 show that
∂2f
∂qi∂qj

= ∂2f
∂qj∂qi

< 0.

If a rectangle is sliced fully along each dimension so as to be subdivided into sub-rectangles

then summing the submodularities of all the sub-rectangles, internal terms cancel and we obtain the

submodularity of the original rectangle.

Hence there exists an ε such that if we subdivide the rectangle defined by x, y into sufficiently

small sub-rectangles with sides < ε and apply Taylor’s theorem up to second order with the remain-

der expressed in terms of the third derivative evaluated in the interval, then the second order terms

dominate and the submodularity of each small sub-rectangle < 0. Summing over all sub-rectangles

provides the result.

C.1 Bethe Bound Propagation (BBP)

In order to derive our approach of Bethe bound propagation (BBP), we extend the analysis of bounds

on ξij from Lemmas 6.4.1 and 6.4.3.

Lemma C.1.1 (Better lower bound for ξij). If αij > 0, then ξij ≥ qiqj + αijqiqj(1 − qi)(1 −

qj)/[1 + αij(qi + qj − 2qiqj)], equality only possible at an edge, i.e. one or both of qi, qj ∈ {0, 1}.

Proof. Write ξij = qiqj + y and substitute into (6.4),

αijy
2 − y[1 + αij(qi + qj − 2qiqj)] + αijqiqj(1− qi)(1− qj) = 0.
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We have a convex parabola which at y = 0 is above the abscissa (unless qi or qj ∈ {0, 1}) and has

negative gradient by Lemma C.0.3. Hence all roots are at y ≥ 0 and given convexity we can bound

below using the tangent at y = 0 which yields the result.

Bounds were already derived on stationary points in Theorems C.0.2 and 6.4.2. Here we show

for variables with only associative edges how we can iteratively improve these bounds, sometimes

with striking results. Note that a fully associative model is not required, and as in Section 6.3.2, any

model may be selectively flipped to yield local associativity around a particular node.

We first assume all αij ≥ 0 and adopt the approach of Theorem C.0.2, now using the better

bound from Lemma C.1.1 to obtain

qi − ξij ≤ qi − qiqj −
αijqiqj(1− qi)(1− qj)
1 + αij(qi + qj − 2qiqj)

= qi(1− qj)
[
1− αijqj(1− qi)

1 + αij(qi + qj − 2qiqj)

]
,

1 + ξij − qi − qj ≥ 1 + qiqj − qi − qj +
αijqiqj(1− qi)(1− qj)
1 + αij(qi + qj − 2qiqj)

= (1− qi)(1− qj)
[
1 +

αijqiqj
1 + αij(qi + qj − 2qiqj)

]
.

Hence Qi ≤ qi
1−qi

∏
j∈N (i)R

−1
ij where

Rij =
1 +

αijqiqj
1+αij(qi+qj−2qiqj)

1− αijqj(1−qi)
1+αij(qi+qj−2qiqj)

= 1 +
αijqj

1 + αijqi(1− qj)
,

monotonically increasing with qj and decreasing with qi. Hence

eWij = 1 + αij ≥ Rij ≥ Lij := 1 +
αijAj

1 + αij(1−Bi)(1−Aj)
(C.6)

Using Theorem C.0.2, we initialize Ai = σ(θi) and Bi = 1− σ(θi +Wi).

Using (6.9), at any stationary point we must have

qi ≥ 1/[1 + exp(−θi)/Li]

where Li =
∏
j∈N (i) Lij . Intuitively, in an associative model, if variable i has neighbors j which

are likely to be 1 (i.e. high Aj) then this pulls up the probability that i will be 1 (i.e. raises Ai).

Flipping all variables,

1− qi ≥ 1/[1 + exp(θi +Wi)/Ui]

where Ui =
∏
j∈N (i) Uij with

e−Wij ≥ Uij := 1 +
αijBj

1 + αij(1−Ai)(1−Bj)
.
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It is also possible to write this as

σ(θi + logLi) ≤ qi ≤ σ(θi +Wi − logUi).

This establishes a message passing type of algorithm for iteratively improving the bounds

{Ai, Bi}. Repeat until convergence:

new Ai ← (1 + exp(−θi)/Li)−1

new Bi ← (1 + exp(θi +Wi)/Ui)
−1

recompute Li, Ui using new Ai, Bi.

Lemma C.1.2. At every iteration, all of Ai, Bi, Lij , Uij monotonically increase.

Proof. All of the dependencies are monotonically increasing on all inputs. The first iteration yields

an increase since each Lij , Uij > 1.

Since Ai+Bi ≤ 1, each is bounded above and we achieve monotonic convergence. Combining

this with the main global optimization approach can dramatically reduce the range of values that

need be considered, leading to significant time savings. Convergence is rapid even for large, densely

connected graphs. Each iteration takesO(|E|) time; a good heuristic is to run for up to 50 iterations,

terminating early if all parameters improve by less than a threshold value. This adds negligible time

to the global optimization.

This procedure alone can produce impressive results. For example, running on a 100-node

graph with independent random edge probability 0.04 (hence average degree 4), each Wij and θi

drawn randomly from Uniform [0, 1] and then adjusting θi ← θi −
∑

j∈N (i)Wij/2 in order to be

unbiased, convergence takes about 11 iterations yielding final average bracket width of 0.05 after

starting with average bracket width of 0.40. Greater connectivity, higher edge strengths and smaller

individual node potentials make the problem more challenging and may widen the returned final

brackets significantly.

C.1.1 BBP for general models

A repulsive edge (i, j) may always be flipped to associative by flipping variable j, which flips its

Bethe bounds Aj ↔ Bj . Using Theorem 6.4.2 we can extend the analysis above to run BBP on
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any model, see Algorithm 2. Performance in terms of convergence speed and final bracket width is

similar for associative and non-associative models.

C.2 Extending curvMesh to a General Model

Here we extend the analysis of Section 6.7 by considering repulsive edges to show that for a general

binary pairwise model, we can still compute useful bounds (which turn out to be very similar to the

earlier bounds for attractive models) for a sufficient mesh width.

Our main tool for dealing with a repulsive edge is to flip the variable at one end (see Section 6.3)

to yield an attractive edge, then we can apply earlier results. We denote the flipped model parameters

with a ′. For example, if just variableXj is flipped, then q′j = q(X ′j = 1) = q(1−Xj = 1) = 1−qj .

Since αij = eWij − 1 and here W ′ij = −Wij , the following relationship holds if one end of an edge

is flipped,
α′ij

1 + α′ij
=
e−Wij − 1

e−Wij
= 1− eWij = −αij . (C.7)

Note that, for an attractive edge,
α′ij

1+α′ij
∈ (0, 1), as is −αij for a repulsive edge. Recall that when

we flip some set of variables, by construction F ′ = F + constant (see Section 6.3).

The Hessian terms from Theorem 6.5.3 still apply. Our goal is to bound the magnitude of each

entry Hij for a general binary pairwise model, then the earlier analysis will provide the result.

Whereas for a fully attractive model, we assumed a maximum edge weight W with 0 ≤Wij ≤W ,

now we assume |Wij | ≤W .

C.2.1 Edge terms

First consider Hij for an edge (i, j) ∈ E . If the edge is attractive, then the earlier analysis holds

(it makes no difference if other edges are attractive or repulsive). If it is repulsive, then Hij > 0.

Consider a model where just Xj is flipped. Hij = ∂2F
∂qi∂qj

= − ∂2F ′
∂q′i∂q

′
j

= −H ′ij . Hence using (6.19)

and (C.7), in practice an upper bound may be computed from Lemma 6.7.1 using k = −αij and

A′j = Bj , B
′
j = Aj . The theoretical bound for an attractive edge from (6.20) becomes Hij ≤

−αij
η̄(1−α2

ij)
. As we should expect from the attractive case, the following result holds.

Lemma C.2.1. For a repulsive edge, 1
1−α2

ij
= O(e−Wij ).
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Algorithm 2 BBP for a general binary pairwise model

{Initialize}

for all i ∈ V do

Wi =
∑

j∈N (i):Wij>0Wij ,

Vi = −
∑

j∈N (i):Wij<0Wij ,

Ai = σ(θi − Vi), Bi = 1− σ(θi +Wi)

end for

for all (i, j) ∈ E do

αij = exp(|Wij |)− 1

end for

{Main loop}

repeat

for all i ∈ V do

Li = 1, Ui = 1 {Initialize for this pass}

for all j ∈ N (i) do

if Wij > 0 then

{Associative edge}

Li∗ = 1 +
αijAj

1+αij(1−Bi)(1−Aj)

Ui∗ = 1 +
αijBj

1+αij(1−Ai)(1−Bj)

else

{Repulsive edge}

Li∗ = 1 +
αijBj

1+αij(1−Bi)(1−Bj)

Ui∗ = 1 +
αijAj

1+αij(1−Ai)(1−Aj)

end if

end for

Ai = 1/(1 + exp(−θi + Vi)/Li)

Bi = 1/(1 + exp(θi +Wi)/Ui)

end for

until All Ai,Bi changed by < THRESH or run MAXITER times
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Proof. Let u = −Wij , then αij = e−u−1 and 1
1−α2

ij
= 1

(1−αij)(1+αij)
= 1

e−u(2−e−u)
= O(eu).

Hence, noting that we may flip any neighbors j of i which are adjacent via repulsive edges to

obtain 1
ηi(1−ηi) = O(eT+∆W/2) as before, where now W = max(i,j)∈E |Wij |, we see that for our

new second derivative method, just as in the fully attractive case, a = O(eW (1+∆/2)+T ).

We provide a further interesting result, deriving a lower bound for ξij for a repulsive edge.

Lemma C.2.2 (Lower bound for ξij for a repulsive edge, analogue of Lemma 6.4.3). For any

repulsive edge (i, j), qiqj − ξij ≤ −αijpij where pij = min{qiqj , (1− qi)(1− qj)}.

Proof. Consider a model where just variable Xj is flipped, and let all new quantities be designated

by the symbol ′. Consider the joint pseudo-marginal (6.2). In the new model the columns are

switched since µ′ij(a, b) = q(X ′i = a,X ′j = b) = q(Xi = a,Xj = 1− b) = µij(a, 1− b), hence

µ′ij =

1 + ξ′ij − q′i − q′j q′j − ξ′ij
q′i − ξ′ij ξ′ij

 =

qj − ξij 1 + ξij − qi − qj

ξij qi − ξij

 . (C.8)

Applying Lemma 6.4.3 to the new model, ξ′ij − q′iq′j ≤
α′ij

1+α′ij
m′(1 −M ′). Substituting in ξ′ij =

qi − ξij from (C.8) and using (C.7), we have (qi − ξij) − qi(1 − qj) ≤ −αijm′(1 −M ′). Since

m′ = min{qi, 1 − qj} and M ′ = max{qi, 1 − qj}, noting qi ≤ 1 − qj ⇔ qi + qj ≤ 1 ⇔ qiqj ≤

(1− qi)(1− qj), the result follows.

Hence for a repulsive edge (i, j), using (6.10), we have

Tij = qiqj(1− qi)(1− qj)− (ξij − qiqj)2 ≥ pijPij − α2
ijp

2
ij ,

where Pij = max{qiqj , (1− qi)(1− qj)}.

C.2.2 Diagonal terms

Consider theHii terms from Theorem 6.5.3, which is true for a general model. If all neighbors ofXi

are adjacent via attractive edges, then, as in Section 6.7.2,Hii ≤ 1
ηi(1−ηi)

1− di +
∑

j∈N (i)
1

1−
(

αij
1+αij

)2

.

If any neighbors are connected toXi by a repulsive edge, then consider a new model where those

neighbors are flipped, so now all edges incident to Xi are attractive, and designate the new model
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parameters with a ′. As before, observe F = F ′ + constant, hence Hii = ∂2F
∂q2i

= ∂2F ′
∂q′2i

= H ′ii.

Using (C.7) we obtain that for a general model,

Hii ≤
1

ηi(1− ηi)

1− di +
∑

j∈N (i):Wij>0

1

1−
(

αij
1+αij

)2 +
∑

j∈N (i):Wij<0

1

1− α2
ij

 . (C.9)

Similarly to the analysis in Section 6.7.3.1, using Lemma C.2.1 gives that for a general model,

b = maxi∈V Hii = O(∆eW (1+∆/2)+T ), just as for a fully attractive model, where now W =

max |Wij |.

C.3 Power Network

The simulated sub-network used in the experiment is shown in Figure C.1.
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Figure C.1: Sub-network used for the power experiment described in the main text, Section 6.9.2.
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C.4 Replacing W with GAP for Attractive Models

In this Section, we show how for an attractive model, the theoretical mesh size boundN = O(nmWε )

may be improved toN = O
(
nm
ε min

[
W, nG

])
, whereG is the GAP for the model, which we define

as the difference in energy between the lowest and next lowest energy states (i.e. it is the difference

in score between the MAP and the 2nd best configuration, where the score of a state is defined as

minus the energy), normalized to some level of potential strengths. For this, we scale all potentials

s.t. max(i,j)∈EWij = 1. Clearly GAP ≥ 0 and GAP= 0 is possible, for example in a symmetric

model. As far as we are aware, the only work relating the size of the expected GAP to the distribution

of weights in a model is in (Aldous, 2001; Wästlund, 2009), which addresses bipartite matching.

The idea is as follows: In the mesh approach, we seek a point with maximum score plus Bethe

entropy. The Bethe entropy is SB =
∑

i∈V Si−
∑

(i,j)∈E Iij , i.e. the sum of the singleton entropies

minus the sum of the edge mutual informations, where Iij ≥ 0. Hence, SB ≤ S∗ = n log 2, which

is independent of the potential functions. Indeed, a better upper bound may be available but this is

sufficient for our needs.3 We shall show that the maximum score obtainable at a particular value of

qi is upper bounded by the linear interpolation of the maximum values at qi = 0 and qi = 1. The

difference in these two score values scales proportionately with the overall potential strengths (or

equivalently, it scales inversely with the temperature). For sufficiently high potential strengths, we

will not need to check more than a certain distance away from whichever end (0 or 1) has higher

score. This distance declines inversely to the potential strengths, and this gives the result.

We begin with results on how the score varies if it is maximized over n− 1 variables while the

other one variable is varied.

Notation. Define the score of a point in marginal distribution space given by q = {qi : i ∈ V; qij :

(i, j) ∈ E} to be f(q) =
∑

i∈V θiqi +
∑

(i,j)∈EWijqij , i.e. the negative of the energy. For an

attractive model, we have Wij > 0 ∀(i, j) ∈ E .

Let Mi(x) = maxq∈L:qi=x f(q), i.e. the maximum score over the local polytope subject to

qi = x.

3Indeed, when edge weights are strongly positive, this can lower dramatically the maximum entropy at the optimum

of the Bethe free energy, as described in Section 7.5. Hence, it may be possible to improve our result.
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Lemma C.4.1. For any x ∈ [0, 1],Mi(x) is achieved by a configuration with qj ∈ {0, x, 1} ∀j ∈ V .

Proof. The problem is an LP with variables {qj : j ∈ V \ i} and {qjk : (j, k) ∈ E}. The constraints

of the local polytope may be written:

(i) qj ≥ 0 ∀j ∈ V \ i

(ii) qj ≤ 1 ∀j ∈ V \ i

(iii) qjk ≥ 0 ∀(j, k) ∈ E

(iv) qjk ≤ qj ∀(j, k) ∈ E

(v) qjk ≤ qk ∀(j, k) ∈ E

(vi) 1 + qjk − qj − qk ≥ 0 ∀(j, k) ∈ E

Observe that if all Wjk > 0 then qjk = min(qj , qk) and (vi) will never be binding. Hence the

same solution will be obtained by considering the modified LP’ without it. The optimum of LP’

is achieved at a vertex. We have qi = x and it is easily seen that a vertex must satisfy qj ∈

{0, x, 1} ∀j ∈ V .

Lemma C.4.2. Mi(y) is a convex function of y.

Proof. For any x ∈ [0, 1], take an arg max of Mi(x) as in Lemma C.4.1. Divide the variables j 6= i

into 3 sets: Ax = {j ∈ V \ i : qj = 0}, Bx = {j ∈ V \ i : qj = x} and Cx = {j ∈ V \ i : qj = 1}.

Define the function fx : [0, 1]→ R given by fx(y) = f(q(y;x)) where q(y;x) is defined by:

∀j ∈ V, qj(y;x) =


0 j ∈ Ax

y j ∈ Bx ∪ {i}

1 j ∈ Cx

; ∀(j, k) ∈ E , qjk(y;x) = min(qj(y;x), qk(y;x)).

Note that fx(y) is linear. Observe that Mi(y) = supx∈[0,1] fx(y), i.e. is the pointwise sup of a set

of linear functions, hence is convex.

With these results, we turn to mesh construction and consider the points required in dimension

i. Since the model is attractive, Mi(0) and Mi(1) may be computed efficiently (and will have

arg max at an integer vertex). Let the higher be achieved at qi = Hi ∈ {0, 1}, and the lower at

qi = Li = 1−Hi, with difference Di = Mi(Hi)−Mi(Li).
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In the mesh approach, we are seeking a point with maximum score plus Bethe entropy. By

Lemma C.4.2, as we move in dimension i from Hi to Li, the maximum possible score declines at

least as quickly as the linear interpolation. Hence there is no need to check more than t∗i from Hi

where t∗iDi = S∗. If all potentials are scaled by a factor k, then so too will all the Di terms. Hence

Di = Gi maxWij where Gi is the gap in dimension i when the model is scaled s.t. maxWij = 1.

Note that GAP as defined above, i.e. the difference in score between the MAP and second best

configuration when the model is normalized, satisfies that the GAP, G = mini∈V Gi.

Combining this with the earlier result means that the total number of pointsN = O
(
nmW
ε

S∗

GW

)
=

O
(
n2m
Gε

)
.

C.4.1 Holding singleton potentials fixed while edge potentials scale

In the analysis above, we assumed that all potentials scale together, in order to conclude that the

differences Di = Mi(Hi) −Mi(Li) would scale with them. An interesting question is to ask how

the Di vary if the distribution of singleton potentials is held fixed, while only the edge potentials

scale. We studied this empirically by considering an attractive model with 10 variables, all pairwise

adjacent. We generated 200 models, each with θi ∼ [−Tmax, Tmax] and Wij ∼ [0,W ], then

observed the empirical difference in scores between the MAP configuration and the second best

configuration as Tmax and W were varied. See Figure C.2 for results.

Observe that the average difference in scores between MAP and 2nd best seems to asymptote

to a constant value (approximately 3
2Tmax). Hence, it appears that if just edge weights are varied,

while singleton potentials are kept fixed, then the benefit described above will not be seen.
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Figure C.2: Difference in score between MAP and 2nd best for various values of Tmax. Average

over 200 runs, complete graph on 10 variables, θi ∼ [−Tmax, Tmax] and Wij ∼ [0,W ]. Each curve

is for a different value of Tmax as it was varied from 0 to 3 in steps of 0.2.
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Appendix D

Appendix for Understanding the Bethe

Approximation

Here we provide further details and derivations of several of the results in Chapter 7.

7.3 Homogeneous Cycles

Tree-Reweighted Approximation

The tree-reweighted approximation (TRW) of Wainwright et al. (2005) provides a family of upper

bounds on the true entropy and partition function, based on selecting a convex combination of

spanning trees of the MRF graph.

Lemma D.0.3. In the homogeneous case for n connected variables with topology G(V, E) (e.g. Cn

or Kn) with edge weights W and no singleton potentials, the minimum TRW partition function ZT
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is achieved with uniform edge appearance probability r and marginals satisfying

µij =

 xT
1
2 − xT

1
2 − xT xT

 = µT ∀(i, j) ∈ E

logZT = −ET + ST

= mWxT + (n− 1)S(µT ) + (2− n) log 2

where xT =
eW/2r

2(1 + eW/2r)
=

1

2
σ(W/2r),

r =
n− 1

m
,m = |E|

In particular, if G = Cn then r = n−1
n , or if G = Kn then r = 2

n .

Further, if the TRW optimization is performed over the cycle polytope, then the same result applies

except (similar to the Bethe case) xTC = max(xT , 1/2g), where g is the size of the smallest odd

chordless cycle in G (if none exists then xTC = xT ).

Proof. Let L be the local polytope and R the spanning tree polytope. For the optimal TRW bound,

we seek

logZT = min
ρ∈R

max
µ∈L

(
−E(µ) +

∑
t∈S

ρtS(µt)

)
(D.1)

where here

−E(µ) =
W

2

∑
(i,j)∈E

µij(0, 0) + µij(1, 1)

and µt is the projection of the global µ distribution onto the spanning tree t ∈ S, hence, as is

standard,

S(µt) =
∑
i∈V

S(µi) +
∑

(i,j)∈E(t)

S(µij)− S(µi)− S(µj).

Considering (D.1), the outer optimization is minimizing with respect to ρ a pointwise max

of a linear function of ρ, hence is minimizing a convex function of ρ. Given the symmetry of

the problem, this implies that the best TRW bound is achieved when each edge has equal weight

r = n−1
m , and

logZT = max
µ∈L

∑
(i,j)∈E

[
W

2
(µij(0, 0) + µij(1, 1)) + rS(µij)

]
+
∑
i∈V

S(µi)(1− r · degree(i)).

Observe that if r = 1 (a tree) then this is exactly the Bethe optimization problem.
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It is easy to check that µi = 1
2 ∀i is a stationary point. The remaining results follow from

Lemma 7.3.1 and differentiating what must be maximized with respect to xT to obtain a maximum

at xT = eW/2r

2(1+eW/2r)
, cf Lemma 7.3.2.

7.5 General Homogeneous Graphs

7.5 Threshold result for attractive models

Lemma 7.5.1. Consider a symmetric homogeneous MRF on n vertices with d−regular topology

and edge weights W . q = (1
2 , . . . ,

1
2) is a stationary point of the Bethe free energy but for W above

a critical value, this is not a minimum. Specifically, let H be the Hessian of the Bethe free energy

at q, xB be the value from Lemma 7.3.2 and 1 be the vector of length n with 1 in each dimension;

then 1TH1 = n[d− 4xB(d− 1)]/xB < 0 if xB > 1
4

d
d−1 ⇔W > 2 log d

d−2 .

Proof. We use Lemma 7.3.2 and the following expressions for the Hessian Hjk = ∂2F
∂qj∂qk

from

(Weller and Jebara, 2013a):

Hjk =


qjqk−ξjk
Tjk

if (j, k) ∈ E

0 if (j, k) /∈ E
, Hjj = − dj − 1

qj(1− qj)
+

∑
k∈N (j)

qk(1− qk)
Tjk

,

where dj = |N (j)| is the degree of j, and Tjk = qjqk(1−qj)(1−qk)− (ξjk−qjqk)2. Taking these

together with (7.4), and using symmetry, we have xB = 1
2σ(W/2), Tjk = T = xB(1

2 − xB) and

1TH1 = n

[
−4(d− 1) +

d

4T
+
d

T

(
1

4
− xB

)]
= n [d− 4xB(d− 1)] /xB.

7.5.1 Further results on entropy and polytope

We have shown that in an attractive model, the Bethe entropy approximation can lead to singleton

marginals being pulled toward the extreme values of 0 or 1. When repulsive edges are present

and we have a frustrated cycle, there is also an effect that can go the other way, pushing singleton
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(c) Tmax = 3

Figure D.1: Average singleton marginal vs. uniform edge weight W for true, Bethe, Bethe+cycle.

C5 topology with θi ∼ [0, Tmax], all edge weights set to W . Bethe and Bethe+cycle overlap for

positive W . Average shown over 20 runs for each set of parameters.

marginals toward 1
2 . This effect is due to the polytope relaxation. One way to see this is to observe

that the minimum energy configuration on the local polytope for a symmetric frustrated cycle has all

singleton marginals of 1
2 , whereas on the marginal polytope it is integral (Wainwright and Jordan,

2008, §8.4.1).

To examine these effects, we ran experiments on a model with 5 nodes arranged in a cycle. Each

θi ∼ [0, Tmax] and all edge weights were set to uniform W . Tmax and W were varied to observe

their effect. Singleton marginals were computed using Bethe (on local), Bethe+cycle (which in this

context is the same as Bethe+marginal) and with the true distribution. See Figure D.1 for results.

Observe that for strongly positive W , the Bethe entropy approximation pulls the marginals

toward 1. This behavior is the same for Bethe and Bethe+cycle, demonstrating that it is an effect

due to the entropy approximation. Note we are observing this effect on a model which clearly has

just one cycle. As singleton potential strengths are raised, the relative effect diminishes. On the

other hand, for strongly negative W (which causes a highly frustrated cycle since the cycle is odd),

the curve for Bethe is pulled toward 0.5, but the Bethe+cycle curve is not, indicating that this is a

polytope effect.
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7.6 Experiments

7.6.1 Implementation and validation

7.6.1.1 Optimizing over the cycle polytope

We provide details of our dual decomposition algorithm to optimize over the cycle polytope, see

Algorithm 3. This relies on the ε-approximation mesh method of Weller and Jebara (2013a), as

improved in (Weller and Jebara, 2014a) to handle general (non-attractive) binary pairwise models.

Even if the initial model is attractive, as the dual variables update, the modified potential parameters

may become repulsive. Note that a lower bound on the Bethe free energy F is equivalent to a lower

bound on − logZB or an upper bound on logZB , the Bethe log partition function, see §7.2.2.

Our goal is to minimize F subject to the cycle constraints (7.6) to yield what we define as

− logZBC . Introduce Lagrangian multipliers λ = {λC,F } for each such constraint on C and F ,

and consider

L(µ, λ) = Eµ(E)− SB(µ) +
∑
C,F

λC,F

1−
∑

(i,j)∈F

(µij(0, 0) + µij(1, 1))−
∑

(i,j)∈C\F

(µij(1, 0) + µij(0, 1))


(D.2)

= F(µ) + λ⊥g(µ) defining g appropriately from the line above.

Let G be the dual function, i.e. G(λ) := infµ L(µ, λ). For any λ < 0, this is a lower bound for

F(µ∗) where µ∗ is the optimum feasible (i.e. in the cycle polytope) primal point. For any feasible

µ, F(µ) provides an upper bound on F(µ∗).

We shall identify supλ G(λ) = supλ infµ L(µ, λ) subject to λ < 0, which is be the best lower

bound we can obtain. We do this as follows: given λ, absorb the constraint terms from (D.2) into

the energy, reparameterize appropriately and minimize using the approach of Weller and Jebara

(2014a). Then update λ using projected sub-gradient descent with g and repeat to convergence.

Note that for a complete graph Kn, the set of all chordless cycles is the set of all
(
n
3

)
triplets.

This provides a polynomial upper bound on the number of chordless cycles for a graph on n vertices,

since for any graph that is not complete, adding a missing edge can only increase the number.

Following the methods of (Boyd and Mutapcic, 2007, §3.2) with a typical step size schedule, it

is easy to see that we converge in the dual, and that as a consequence of the ε-approximate inner



APPENDIX D. APPENDIX FOR UNDERSTANDING THE BETHE APPROXIMATION 168

Algorithm 3 Dual decomposition algorithm to compute lower bound for − logZB on the cycle

polytope

{Initialize. Take inputs ε, n, {θi, θij =
Wij

2
I} with all |Wij | ≤W , |θi| ≤ T ;λ0, {sk} step sizes}

Econst ← 0 {keeps track of Energy constant through reparameterizations}

for all i ∈ V do

θi ← θi −
∑
j∈N (i)Wij/2

Econst+ =
∑
j∈N (i)−Wij/2

end for

save all base {θi,Wij}, Econst parameters

{λC,F } ← some initial values λ0, all ≥ 0; typically initialize all to 0

t← 0 {iteration number}

{Main loop}

repeat

{First absorb the constraint terms into the energy parameters}

load all base {θi,Wij}, Econst parameters

for all chordless cycles C do

for all odd F ⊆ C do

for all edge (i, j) ∈ F do

Wij ←Wij + 2λtC,F

θi ← θi − λtC,F , θj ← θj − λtC,F
end for

for all edge (i, j) ∈ C \ F do

Wij ←Wij − 2λtC,F

θi ← θi + λtC,F , θj ← θj + λtC,F

Econst+ = λtC,F

end for

end for

end for

{Now solve the ε-approx logZB problem on the local polytope}

run the algorithm from Weller and Jebara (2014a) using ε, {θi,Wij} to return − logZt at µt = {q∗i , ξ∗ij} using (Welling and

Teh, 2001) ξ∗ij(q
∗
i , q
∗
j ,Wij)

G(λt)← − logZt + Econst

{Update the {λC,F } with subgradient g; Increment t}

for all (i, j) ∈ E do

mainDiagij ← 1 + 2ξ∗ij − q∗i − q∗j , offDiagij ← q∗i + q∗j − 2ξ∗ij

end for

for all chordless cycles C do

for all odd F ⊆ C do

gC,F = 1−
∑

(i,j)∈F mainDiagij −
∑

(i,j)∈C\F offDiagij
end for

end for

λt+1 ← max(λt + stg, 0) {This projects onto the feasible set, i.e. projected subgradient descent}

t← t+ 1

until convergence

output final G(λt−1) as best lower bound on − logZBC
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solver, the final dual solution is also accurate to within the same ε, i.e. the final dual value less ε

provides a lower bound on − logZB for the cycle polytope.

Rounding to yield a primal feasible solution was achieved by taking a minimum convex combi-

nation with the uniform distribution, which has pairwise marginal of

1
4

1
4

1
4

1
4

 for each edge, so as

just to satisfy all cycle inequalities.

In practice, solving over the cycle polytope was often faster than solving over the standard local

polytope due to the following approach. We employed a schedule of declining ε values (typically

1, 0.5, 0.25, 0.1). For each ε value, we would run the dual decomposition method using an LP

relaxation for the multi-label discrete problem. We would then move to the next, smaller ε value,

warm starting with the last set of dual λ values. At the very end, if an integer solution was not

returned, then we would restart with the final ε value at the latest λ values, henceforth using an

integer solver (we used gurobi for both the LP and ILP solvers). Computationally difficult problems

tend to have strongly negative edge weights. The approach described tends to lead to dual variables

λ s.t. in the inner solver, models with significantly less strongly negative edge weights are being

used. Since the inner solver takes much more time for higher |Wij | values, this was often very

helpful.

7.6.1.2 Optimizing over the marginal polytope

We present our dual decomposition approach to optimize over the marginal polytope. We impose

4
(
n
2

)
constraints: each δij(xi, xj) dual variable enforces consistency for an edge (i, j) at settings

Xi = xi, Xj = xj (singleton consistency and summing to 1 follow from constraints of the local

polytope).
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min
µ∈M

Fθ(µ) = min
µK∈M

min
µ∈L

max
δ
Fθ(µ) +

∑
(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)
[
µKij (xi, xj)− µij(xi, xj)

]
≥ max

δ
min
µK∈M

min
µ∈L
Fθ(µ) +

∑
(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)
[
µKij (xi, xj)− µij(xi, xj)

]
= max

δ
min
µK∈M

min
µ∈L
Fθ′(µ) +

∑
(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)µ
K
ij (xi, xj)

= max
δ

min
µ∈L
Fθ′(µ) + min

µK∈M

∑
(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)µ
K
ij (xi, xj)

 (D.3)

θ′ is given by θ′ij(xi, xj) = θij(xi, xj) + δij(xi, xj) ∀(i, j) ∈ E ;xi, xj ∈ {0, 1} [since

F = E − S,E = −θ · µ].

We use subgradient descent (as before with the cycle polytope) to attain a lower bound. Each

iteration, we use the new µK when computing the subgradient. When minimizing over µK ∈ M,

the optimum will be achieved at a vertex so we solve by enumeration over all 2n vertices.

The term in square brackets in (D.3) is concave in δ, hence if ε = 0 we converge to the optimum

lower bound. Note strong duality is not guaranteed.

Rounding to achieve a primal feasible solution was achieved by solving an LP to find the closest

point in the marginal polytope.

7.6.1.3 Further details on Frank-Wolfe

FW provides no runtime guarantee when applied to a non-convex surface such as the Bethe free

energy. In Figure D.2 we show the empirical average number of iterations required to reach within

0.01 of the returned best value, comparing Bethe and TRW across local, cycle and marginal poly-

topes, for different parameter settings. Note that different convergence criteria were used for Bethe

and TRW, with the duality gap examined for TRW, which is why we report this number of iterations,

which provides a better basis for comparison than the total number of iterations.

At each iteration, to compute the optimal vertex of the appropriate polytope to move toward: for

local and cycle polytopes, we solve the respective LP; for the marginal polytope, this is impractical,

so we enumerate over all 2n configurations, which clearly scales poorly. For the LP for the cycle
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Figure D.2: Average number of iterations of FW required to reach within 0.01 of the returned best value

polytope, the number of chordless cycles in a graph with n vertices is upper bounded by the number

in a complete graph with n vertices, hence is O(n3), though it is typically not efficient to identify

them.
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Appendix E

Appendix for Clamping Variables and

Approximate Inference

Here we provide the following additional information relating to Chapter 8 on Clamping Variables

and Approximate Inference:

• Figure E.1 showing examples of the fc(x) function introduced in Lemma 8.4.2;

• In Section E.1, theoretical results on the Hessian leading to proofs of Theorem 8.4.4 and (a

stronger version of) Theorem 8.4.5 from §8.4.1, and Lemma 8.6.1 from §8.6; and

• In Section E.2, additional illustrative experimental results with details on the Mpower selec-

tion heuristic.

0 0.5 1
0

2

4

6

8

x

f c(x
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Figure E.1: Plots of upper bound fc(x) against x for various values of c
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E.1 The Hessian and Proofs of Earlier Results

In this Section, we first discuss properties of the Hessian in §E.1.1, then use these in §E.1.2 to

prove Theorems 8.4.4 and 8.4.5, and Lemma 8.6.1. Define the interior to be all points q ∈ (0, 1)n.

Recall that r∗(x) = (r∗1(qi), . . . , r
∗
i−1(qi), r

∗
i+1(qi), . . . , r

∗
n(qi)) with corresponding pairwise terms

{ξ∗ij}, is an arg max of G(q) = −F(q) where qi is held fixed at a particular value. For notational

convenience, define r∗i = qi.

E.1.1 Properties of the Hessian

From (Weller and Jebara, 2013a), we have all terms of the Hessian matrix Hjk = ∂2F
∂qj∂qk

:

Hjk =


qjqk−ξjk
Tjk

if (j, k) ∈ E

0 if (j, k) /∈ E
, Hjj = − dj − 1

qj(1− qj)
+

∑
k∈N (j)

qk(1− qk)
Tjk

, (E.1)

where dj = |N (j)| is the degree of j, and Tjk = qjqk(1 − qj)(1 − qk) − (ξjk − qjqk)
2 ≥ 0,

with equality only at an edge (i.e. qj or qk ∈ {0, 1}). For an attractive edge (j, k), in the interior, as

shown in (Weller and Jebara, 2013a, Lemma 14 in Supplement), ξjk−qjqk > 0 and henceHjk < 0.

Now write

Hjj =
1

qj(1− qj)
+

∑
k∈N (j)

(
qk(1− qk)

Tjk
− 1

qj(1− qj)

)
. (E.2)

Consider the term in large parentheses for some k ∈ N (j). First observe that the term is ≥ 0,

strictly > 0 in the interior, whether the edge is attractive or repulsive. Since Hjj > 0, on the surface
∂F
∂qj

∣∣∣
r∗

= 0, we have
∂r∗j
∂r∗k

= −
Hjk

Hjj

∣∣∣
r∗
, (E.3)

which also holds for k = i where we define r∗i = qi.

Further, we may incorporate the term for k to obtain

Hjj ≥
1

qj(1− qj)
+
qk(1− qk)

Tjk
− 1

qj(1− qj)
=
qk(1− qk)

Tjk
,

with equality iff j has no neighbor other than k (again allowing k = i), in which case,

∂r∗j
∂r∗k

=
ξ∗jk − r∗j r∗k
r∗k(1− r∗k)

. (E.4)
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We also show the following results, though the remainder of this Section §E.1.1 is not used until

later when we prove Theorem 8.4.5 in §E.1.2.1.

Considering the term in large parentheses from (E.2), using the definition of Tjk, we may write(
qk(1− qk)

Tjk
− 1

qj(1− qj)

)
=

(
ξjk − qjqk

Tjk

)(
ξjk − qjqk
qj(1− qj)

)
= −Hjkβj→k, (E.5)

where we define βj→k =
ξjk−qjqk
qj(1−qj) , which as mentioned in the main paper after Theorem 8.4.4, is

equal to Covq(Xj ,Xk)
Varq(Xj)

, called in finance the beta of Xk with respect to Xj . This is clearly positive for

an attractive edge. We next show that the range of βj→k is bounded, as would be expected for beta.

Lemma E.1.1. In the interior, for an edge (j, k): if attractive, 0 < βj→k ≤
αjk
αjk+1 = 1− e−Wjk <

1; if repulsive, −1 < eWjk − 1 = αjk ≤ βj→k < 0. In either case, |βj→k| =
∣∣∣ ξjk−qjqkqj(1−qj)

∣∣∣ ≤
1− e−|Wjk| < 1.

Proof. This follows from (Weller and Jebara, 2013a, Lemma 6) and the corresponding flipped result

(Weller and Jebara, 2014a, Lemma 10 in Supplement; consider each of the 2 cases for pjk therein).

Define β∗j→k = βj→k
∣∣
r∗

. Regarding (E.4), note that β∗j→k ≥
∂r∗k
∂r∗j

with equality iffN (k) = {j}.

This notation will become clear when we use it in §E.1.2.1 to prove Theorem 8.4.5.

E.1.2 Derivation of earlier results

Using the results of §E.1.1, we first provide a general Theorem from which Lemma 8.6.1 follows as

an immediate corollary.

Theorem E.1.2. For any binary pairwise MRF where the Bethe free energy is convex, adding further

variables to the model and holding them at fixed singleton marginal values (optimum pairwise

marginals are computed using the formula of Welling and Teh, 2001), leaves the Bethe free energy

over the original variables convex.

Proof. The Bethe free energy is convex⇔ the Hessian is everywhere positive semi-definite. When

new variables are added to the system, considering (E.1) and (E.2), the only effect on the sub-

Hessian restricted to the original variables is potentially to increase the diagonal terms Hjj for any

original variable j which is adjacent to a new variable. By Weyl’s inequality, this can only increase

the minimum eigenvalue of the sub-Hessian, and the result follows.
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Since the Bethe free energy is convex for any model whose entire topology contains at most one

cycle (Pakzad and Anantharam, 2002), Lemma 8.6.1 follows.

We next turn to Theorem 8.4.4, then use this to prove a stronger version of Theorem 8.4.5. Keep

in mind that, as shown in (Weller and Jebara, 2013a), each stationary point lies in an open region

in the interior q ∈ (0, 1)n. Further, as discussed in §8.4.1, we assume that at any arg max point

r∗(qi), the reduced Hessian H\i is non-singular. Hence, writing ∇n−1F
∣∣
qi

for the (n − 1)-vector

of partial derivatives ∂F(q)
∂qj

∣∣∣
qi
∀j 6= i, there is an open region around any (qi, r

∗(qi)) where the

function ∇n−1F
∣∣
qi

= 0 may be well approximated by an invertible linear function, allowing us to

solve (as in the implicit function theorem) for the total derivatives
dr∗j
dqi

as the unique solutions to the

linear system
dr∗j
dqi

=
∂r∗j
∂qi

+
∑

k/∈{i,j}
∂r∗j
∂r∗k

dr∗k
dqi
∀j 6= i, where here

∂r∗j
∂r∗k

always means on the surface

∇n−1F
∣∣
qi

= 0. In addition, since H\i is real, symmetric, positive definite, with all main diagonal

≥ 0 and all off-diagonal ≤ 0, it is an M-matrix (indeed a Stieltjes matrix), which we shall use in

§E.1.2.1. We assume these points for the rest of this Section.

Notation: Let Dj =
dr∗j
dqi

, and ∂jk =
∂r∗j
∂r∗k

, so Dj =
∑

k/∈{i,j} ∂jkDk + ∂ji ∀j 6= i. For notational

convenience, define r∗i = qi and take Di = 1. Let [n] = {1, . . . , n} and [n] \ i = {1, . . . , n} \ {i}.

Note that ∂jk =
∂r∗j
∂r∗k
≤ β∗k→j (equality iff j has no neighbor other than k), as defined above. We

shall write Hessian terms such as Hjk to mean Hjk

∣∣
r∗

where this is implied by the context.

We first need the following Lemma.

Lemma E.1.3. Consider a MRF with n variables, where then one more variable Xn+1 is added

with singleton marginal r∗n+1, adjacent to exactly one of the original n variables, say Xa with

a ∈ [n] (note we allow a = i), then: D1, . . . , Dn are unaffected, and Dn+1 =
ξ∗a,n+1−r∗ar∗n+1

r∗a(1−r∗a) Da.

Proof. We have the linear system Dj =
∑

k/∈{i,j} ∂jkDk + ∂ji ∀j ∈ [n] \ i. When Xn+1 is added,

this yields a new equation for Dn+1, which as shown in (E.4), is Dn+1 =
ξ∗a,n+1−r∗ar∗n+1

r∗a(1−r∗a) Da, and

the only other equation that changes is the one for Da, where we write ∂′ak and ∂′ai for the new

coefficients. Hence, it is sufficient to show that the earlier solutions for D1, . . . , Dn satisfy the new

equation for Da, i.e. if Da =
∑

k∈[n+1]\{i,a} ∂
′
akDk + ∂′ai.

Observe from (E.3) that ∂′ak = ∂akHaa/H
′
aa ∀k ∈ [n], where H ′aa incorporates the new Xn+1
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variable. Hence,

∑
k∈[n+1]\{i,a}

∂′akDk + ∂′ai =
Haa

H ′aa

 ∑
k/∈{i,j}

∂akDk + ∂ai

+ ∂′a,n+1Dn+1

=
Haa

H ′aa
Da +

ξ∗a,n+1 − r∗ar∗n+1

Ta,n+1H ′aa

ξ∗a,n+1 − r∗ar∗n+1

r∗a(1− r∗a)
Da by (E.3), (E.1) and just above

=
Da

H ′aa

[
Haa +

(
ξ∗a,n+1 − r∗ar∗n+1

)2
Ta,n+1r∗a(1− r∗a)

]

=
Da

H ′aa

[
Haa +

(
r∗n+1(1− r∗n+1)

Ta,n+1
− 1

r∗a(1− r∗a)

)]
(definition of Ta,n+1)

=
Da

H ′aa

[
Haa + (H ′aa −Haa)

]
= Da

Theorem 8.4.4 may now be proved by induction on |Ck|. The base case |Ck| = 1 follows from

(E.4). The inductive step follows from Lemma E.1.3 by considering a leaf.

E.1.2.1 Proof of (stronger version of) Theorem 8.4.5:

As above, we have the linear system given by the following equations:

Dj =
∑

k/∈{i,j}

∂jkDk + ∂ji ∀j 6= i ⇔ −∂ji =
∑
k 6=i

[∂jk − δjk]Dk (E.6)

with ∂jk =
∂r∗j
∂rk∗

= −
Hjk

Hjj
k /∈ {i, j}, ∂jj := 0, ∂ji =

∂r∗j
∂qi

= −Hji

Hjj
, δjk =


1 j = k

0 j 6= k

.

Hence we may rewrite (E.6), multiplying by −Hjj , to give the equivalent system

∑
k 6=i

HjkDk = −Hji ∀j 6= i (E.7)

Note equation (E.7) makes intuitive sense: for each variable Xj , we have Fj = 0 at a stationary

point, then taking the total derivative with respect to qi gives Hji +
∑

k 6=iHjkDk = 0.

By Theorem 8.4.4, we have the complete solution vector Dk ∀k 6= i provided the topology is

acyclic. In this setting, we rewrite the result of Theorem 8.4.4 using the β∗ notation from above:

Dk =
∏

(s→t)∈P (i k) β
∗
s→t, where here P (i k) is the unique path from i to k.

For a general graph, there may be many paths from i to k. Let Π(i  k) be the set of all such

directed paths. For any r∗, for any particular path P (i  k) ∈ Π(i  k), define its weight to be
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W [P (i k)] =
∏

(s→t)∈P (i k) β
∗
s→t. We shall prove the following result:

Dk ≥ max
P (i k)∈Π(i k)

W [P (i k)]. (E.8)

Note this is clearly stronger than Theorem 8.4.5 since ∀j ∈ N (i), the path going directly i→ j

is one member of Π(i j), though in general there may be many others.

For any particular r∗, let G′ be the weighted directed graph formed from the topology of the

MRF by replacing each undirected edge s − t by two directed edges: s → t with weight β∗s→t and

t→ s with weight β∗t→s. Note that in an attractive model, all β∗s→t ∈ (0, 1), see Lemma E.1.1.

It is a simple application of Dijkstra’s algorithm to construct from G′ a tree of all maximum

weight directed paths from i to each vertex j 6= i, which we call T .1 (For our purpose we just need

to know that such a tree T exists.)

We want to solve (E.7), which we write as H\iD = −Hi, where we want to solve for D, which

is the vector of Dk ∀k 6= i, and Hi is the ith column of H without its ith element. Let HT\i be the

reduced Hessian for the model on T (which is missing some edges), and HTi be the ith column of

the Hessian for the model on T without its ith element. In the sub-model with only the edges of T ,

by construction and Theorem 8.4.4,DTk = maxP (i k)∈Π(i k)W [P (i k)]. Hence, it is sufficient

to show that adding the extra edges from T to G cannot decrease any Dk. This forms the remainder

of the proof, where we shall require the following nonsingular M-matrix property ofH\i: its inverse

is elementwise non-negative (Fan, 1958, Theorem 5’).

Let ∆ = H\i −HT\i (this accounts for edges in E(G) \ E(T ) not incident to i), η = Hi −HTi
(this accounts for edges in E(G) \E(T ) incident to i) and δ = D−DT . We must show that δ ≥ 0

elementwise. We have HT\iD
T = −HTi and H\iD = −Hi, hence HT\iD

T − η = −HTi − η =

−Hi = H\iD = (HT\i + ∆)(DT + δ), hence −η = (HT\i + ∆)δ + ∆DT ⇔ δ = (H\i)
−1(−η −

∆DT ). Thus, it is sufficient to show that the (n−1) vector−η−∆DT is elementwise non-negative.

Recall (E.1) and (E.5). −η − ∆DT may be written as the sum of −ηe − ∆eD
T , with one ηe

and ∆e for each edge e = (s, t) in E(G) \ E(T ). For each such edge e, we have 2 cases:

Case 1, i /∈ {s, t}: ηe = 0; ∆e has only 4 non-zero elements, at locations (s, s), (s, t), (t, s), (t, t).

1We want the max of the prod of edge weights⇔ max of the log of the prod of edge weights⇔ max of the sum of

the log of edge weights (all negative)⇔ min of the sum of - log of the edge weights (all positive); so really we construct

the usual shortest directed paths tree using - log of the edge weights, which are all positive.



APPENDIX E. APPENDIX FOR CLAMPING VARIABLES 178

Showing only these elements,

∆e =


s t

s −Hstβ
∗
s→t Hst

t Hst −Hstβ
∗
t→s

 = −Hst


s t

s β∗s→t −1

t −1 β∗t→s

,where −Hst > 0 for an attractive edge.

Hence,−ηe−∆eD
T is 0 everwhere except element s which is−Hst(D

T
t −DTs β∗s→t), and element

t which is −Hst(D
T
s −DTt β∗t→s). Observe that both expressions are ≥ 0 by construction of T (for

example, considering the first bracketed term, observe that DTt is the maximum weight of a path

from i to t, whereas DTs β
∗
s→t is the weight of a path to t going through s).

Case 2, i ∈ {s, t}: WLOG suppose the edge is (i, s). −ηe is zero everywhere except element s

which is −His (positive). ∆e has just one non-zero element at (s, s) which is −Hisβ
∗
s→i. Hence,

−ηe −∆eD
T is 0 everwhere except element s which is −His(1−DTs β∗s→i) > 0 by Lemma E.1.1.

This completes the proof.

E.2 Additional Experiments

All of the experiments reported in §8.5 were also run at other settings. In particular, the earlier results

show the poor performance of the standard Bethe approximation in estimating singleton marginals

for attractive models with low singleton potentials, and indicate how clamping repairs this. Here,

in Figures E.2-E.4, we show results for the same topologies using the higher singleton potentials

Tmax = 2 for attractive models, and also show results with low singleton potentials Tmax = 0.1 for

general (non-attractive) models.

Note that in some examples of attractive models, when the ‘worst clamp’ variable was clamped,

the resulting Bethe approximation to logZ appears to worsen (see Figure E.4a), which seems to

conflict with Theorem 8.4.1. The explanation is that in these examples, Frank-Wolfe is failing to

find the global Bethe optimum, as was confirmed by spot checking.

Next we show results for a particular fixed topology we call a ‘lamp’, see Figure E.5, which

illustrates how maxW can sometimes select a poor variable to clamp. We explain the Mpower

selection heuristic and demonstrate that it performs much better on this topology.
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(d) general margs, Tmax = 0.1

Figure E.2: Average errors vs true, complete graph on n = 10. Consistent legend throughout.
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Figure E.3: Average errors vs true, random graph on n = 10, p = 0.5. Consistent legend throughout.
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Figure E.4: Average errors vs true, random graph on n = 50, p = 0.1. Consistent legend throughout.
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maxW is likely to choose x6 since it has the

highest degree, but x4 is typically a better

choice since it lies on cycles. Mpower can

recognize this and make a better choice.
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E.2.1 Mpower heuristic

We would like an efficient way to select a variable to clamp which lies on many heavy simple cycles.

One problem is how to define heavy. Even with a good definition, it is still NP-hard to search over

all simple cycles. The idea for Mpower is as follows: assign each edge (i, j) a weight based on

|Wij | and create a matrix M of these weights. If M is raised to the kth power, then the ith diagonal

element in Mk is the sum over all paths of length k from i to i of the product of the edge weights

along the path. Ideally, we might consider the sum
∑∞

k=1M
k and use the diagonal elements to rank

the vertices, choosing the one with highest total score. Recalling (E.8), it is sensible to assign edge

weights Mij based on possible β∗i→j values. Given Lemma E.1.1, a first idea is to use 1− e−|Wij |.

However, we’d like to be sure that the matrix series
∑∞

k=1M
k is convergent, allowing it to be

computed as (I−M)−1− I (since we shall be interested only in ranking the diagonal terms, in fact

there is no need to subtract I at the end). Thus, we need the spectral radius ρ(M) < 1. A sufficient

condition is that all row sums are < 1. Since each term 1 − e−|Wij | < 1 and there at most n − 1

such elements in any row, our first heuristic was to set Mij = 1
n−1(1− e−|Wij |). We then made two

adjustments.

First, note that the series
∑∞

k=1M
k overcounts all cycles, though at an exponentially decaying

rate. It is hard to repair this. However, it also includes relatively high value terms coming from

paths from i to any neighbor j and straight back again, along with all powers of these. We should

like to discard all of these, hence from each ith diagonal term of (I−M)−1, we subtract si/(1−si),

where si is the ith diagonal term of M2. This is very similar to the final version we used, and gives

only very marginally worse results on the examples we considered.

For our final version, we observe that 1 − e−|Wij | decays rapidly, and ≈ tanh
|Wij |

2 . Given

the form of the loop series expansion for a single cycle, which contains tanh
Wij

4 terms (Weller

et al., 2014, Lemma 5), we tried instead using Mij = 1
n−1 tanh

|Wij |
4 , and it is for this heuristic

that results are shown in Figures E.6 (for Tmax = 2) and E.7 (for Tmax = 0.1). Observe that for

this topology, Mpower performs close to optimally (almost the same results as for best Clamp),

significantly outperforming maxW in most settings. Note, however, that in the experiments on

random graphs reported in §8.5, Mpower did not outperform the simpler maxW heuristic. In future

work, we hope to improve the selection methods.
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Figure E.6: Average errors vs true, ‘lamp’ topology Tmax = 2. Consistent legend throughout. Mpower performs

well, significantly better than maxW.
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Figure E.7: Average errors vs true, ‘lamp’ topology Tmax = 0.1. Consistent legend throughout. Mpower performs

well, significantly better than maxW for logZ.
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