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SUMMARY

We examine the effect of clamping variables for approximate inference in
undirected graphical models with pairwise relationships and discrete variables.

•For any number of variable labels, we demonstrate that clamping and
summing approximate sub-partition functions can lead only to a
decrease in the partition function estimate for TRW, and an increase
for the naive mean field method, in each case guaranteeing an
improvement in the approximation and bound.

• In contrast, Weller and Jebara (2014) showed that clamping with the Bethe
approximation for attractive binary pairwise models always improves the global
optimum, but for mixed models it can sometimes lead to a worse approximation.

•We introduce new ways to select variables to clamp, including:
stripping to the core, identifying highly frustrated cycles, and
checking singleton entropies.

BACKGROUND: VARIATIONAL INFERENCE

Computing the partition function may be formulated as an optimization problem,

log Z = max
µ∈M

θ · µ + H(µ).

We consider three approximations:

•Naive mean field, restricts to fully factorized µ ∈M′ where µ(x) =
∏

i µi(xi)

log Z̃M = max
µ∈M′

θ · µ + H(µ).

•Bethe, relaxes M to the local polytope L and uses Bethe entropy H̃B ≈ H

log Z̃B = max
µ∈L

θ · µ + H̃B(µ).

•Tree-reweighted (TRW) also relaxes to L but uses TRW entropy H̃T ≥ H

log Z̃T = max
µ∈L

θ · µ + H̃T(µ).

The following inequalities hold, hence improving Z̃M and Z̃T gives useful bounds:

Z̃M ≤ Z ≤ Z̃T and Z̃M ≤ Z̃B ≤ Z̃T .

CLAMPING TO ESTIMATE THE PARTITION FUNCTION Z
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x1x2 . . . x10 score exp(score)

0 0 . . . 0 1 2.7

0 0 . . . 1 2 7.4

. . . . . . . . .

0 1 . . . 1 1.3 3.7 27.5

1 0 . . . 0 -1 0.4

1 0 . . . 1 0.2 1.2

. . . . . . . . .

1 1 . . . 1 1.8 6.0 19.6

Total Z = 47.1

We consider an example for binary variables.

Z can be split into two parts: clamp variable X1 to each of
its values {0, 1}, then add the two sub-partition functions:

Z = Z |X1=0 + Z |X1=1

After we clamp a variable Xi , it may be removed

• If the remaining sub-models are acyclic then we can
find the sub-partition functions efficiently

• If not,

(a) Can repeat until acyclic, or
(b) Settle for approximate inference on sub-models

Z̃ (i) = Z̃ |Xi=0 + Z̃ |Xi=1 (a new approx)

Theorems: ∀Xi , Z̃M ≤ Z̃
(i)
M ≤ Z ≤ Z̃

(i)
T ≤ Z̃T

SELECTING A VARIABLE TO CLAMP, SINGLETON ENTROPY

We explore various methods to select a good variable, or sequence of variables, to
clamp. See the paper for details.

• If the singleton entropy of a variable is already low, then it is already ‘almost’
clamped and we should avoid picking that variable for actual clamping.

•We use the TRW singleton entropy approximation to scale our heuristics when
selecting a variable. We call this TRE (for TRw Entropy).
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Example of a model where the earlier maxW and Mpower heuristics of Weller and Jebara (2014)

perform poorly to select variables to clamp but our new methods perform well. Solid blue (dashed

red) edges are strongly attractive (repulsive). maxW and Mpower both repeatedly select variables

in X1, . . . ,X5: the first clamp is good but less so than picking from the frustrated cycle X6,X7,X8;

then repeat clampings in X1, . . . ,X5 reap little benefit. It is best to pick X6 then X1.
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STRIPPING TO THE CORE

On the left is our example model. On the right is the core
of the same model, obtained by iteratively removing
variables with degree 1. Methods to select a variable to
clamp might pick X10 (which has highest degree) in the
original model, whereas any of X1, . . . ,X4 would be better,
and will be selected if the model is first stripped to its core.
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FRUSTRATED CYCLES

In a binary pairwise model, each edge may be
characterized as attractive (pulls variables toward the
same value; shown in blue) or repulsive (pushes variables
apart to different values; shown in red). A frustrated cycle
contains an odd number of repulsive edges. These are
challenging for many methods of inference.
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a frustrated cycle

Error in log Z vs number of clamps: grids
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Error in log Z vs number of clamps: complete graphs
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greedy: Try clamping all nodes (to depth 3), take the node which in hindsight
gave the best improvement.

Other legends indicate results using a basket of 10 different selection heuristics:
best: The best single heuristic among the 10 in our basket.
worst: The worst single heuristic among the 10 in our basket.
pseudo: Pseudo-greedy, which means try all 10 heuristics in our basket, each
time take the node which gave the best improvement.

GUIDANCE FOR PRACTITIONERS

Based on our empirical results, we suggest:

•Typically Bethe performs best, provided convergence difficulties do not arise.

•However, for densely connected mixed models with strong edges, mean field can
be much more accurate (optimizes within the marginal polytope, handles
frustrated cycles much better).

•Clamping can be very helpful, more so for denser models with stronger edge
weights, a setting where inference on the original model is hard.

• In some settings, the combined time to run inference on both clamped
sub-models was faster than for the original model.

•No one clamping selection method dominated. The best was maxW+core+TRE.

•Guaranteed bounds from TRW and mean field can be very helpful.
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