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Introduction

•Belief propagation (BP) performs remarkably well for approximate marginal
inference and estimating the partition function

•May be viewed as an algorithm to try to minimize the Bethe free energy
− log ZB = minFB(q) = minEq(E )− SB(q) over q ∈ L, the local polytope

•While exact inference may be viewed as minimizing the true free energy
− log Z = minFT(q) = minEq(E )− S(q) over q ∈M, the marginal polytope
•We focus on binary pairwise models, here E is the energy, defined by

p(x) =
e−E (x)

Z
, E = −

∑
i∈V

θixi −
∑

(i ,j)∈E

Wij

2
[xixj + (1− xi)(1− xj)], xi ∈ {0, 1}

•Thus the Bethe approximation has 2 aspects:

(1) The true entropy S is approximated by the Bethe (pairwise) entropy SB
(2) Optimization is performed over a relaxation of the marginal polytope (global

consistency) called the local polytope (pairwise consistency)

•We examine each aspect, improve understanding of the effect of each: analytic
and experimental results using new methods

•Also consider the cycle polytope, lies between marginal and local

marginal polytope
global consistency

cycle polytope
cycle consistency

local polytope
local consistency

•And examine the tree-reweighted approximation (TRW) over the same polytopes

Tightening the polytope relaxation - does it always help?

No
Consider symmetric
nonhomogeneous
cycle, ABC triangle

A

B C

WAB = WAC = 10,
strongly attractive;
θA = θB = θC = 0;

vary WBC edge weight
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• Lemma: ∂ log ZB

∂WBC
= µBC(0, 0) + µBC(1, 1), all singleton marginals 1

2

•For weakly attractive edge BC, cycle improves pairwise marginal (similar slopes
near 0) but worsens partition function (gap between curves near 0)

Threshold result for attractive models due to SB entropy

When singleton potentials are low and coupling high, this can lead
to poor Bethe singleton marginals pulled toward 0 or 1

• Lemma: For a symmetric homogeneous d-regular MRF,
q = (1

2, . . . ,
1
2) is a stationary point of FB but not a minimum for

W > 2 log d
d−2

•Recall
∑

i di = 2m (handshake lemma), hence
SB = mSij + (n − 2m)Si . For large W , all probabillity mass pulled
onto main diagonal, hence Sij ≈ Si . For m > n, to avoid negative

SB, each entropy term → 0 by tending to pairwise
(

1 0
0 0

)
or

symmetrically
(

0 0
0 1

)
.

Example of 5-node complete graph:
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K5 : W = 1
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W = 1.38
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Also a polytope effect for frustrated cycles

A frustrated cycle has an odd number of repulsive edges, this pulls
singleton marginals the other way, toward 1

2
Optimum energy on local polytope for a symmetric frustrated cycle
is at (1

2, . . . ,
1
2)

Example of 5-node cycle θi ∼ [0,Tmax], all edges W :
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Tmax = 1
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Tmax = 2

For W > 0 (attractive), Bethe and Bethe+cycle pulled toward 1 ⇒ entropy effect

For W < 0 (frustrated cycle), only Bethe pulled toward 1
2 ⇒ polytope effect
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Experiment results, average errors vs. true values
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log partition error, local polytope removed
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General Models, θi ∼ U[−2, 2]

Complete graph with 10 variables,
random potentials: Wij ∼ U [−y , y ] for
general or ∼ U [0, y ] for attractive models
(where polytopes give similar results).
Frank-Wolfe used for all runs, after
validating against smaller test set using
dual decomposition with guaranteed
ε-approx mesh method (Weller and
Jebara, 2014).
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Attractive Models, θi ∼ U[−0.1, 0.1]

Conclusions for general models

•Big gains from cycle polytope (suggest Frank-Wolfe)

•Not much additional gain from marginal polytope (computationally harder)

•Bethe performs remarkably well

Better than TRW for log Z , pairwise marginals
TRW better for singleton marginals when coupling is strong

• Still much to learn about why Bethe performs so well


