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Abstract

Belief propagation is a remarkably effective tool
for inference, even when applied to networks
with cycles. It may be viewed as a way to seek
the minimum of the Bethe free energy, though
with no convergence guarantee in general. A
variational perspective shows that, compared to
exact inference, this minimization employs two
forms of approximation: (i) the true entropy is
approximated by the Bethe entropy, and (ii) the
minimization is performed over a relaxation of
the marginal polytope termed the local polytope.
Here we explore when and how the Bethe ap-
proximation can fail for binary pairwise models
by examining each aspect of the approximation,
deriving results both analytically and with new
experimental methods.

1 INTRODUCTION

Graphical models are a central tool in machine learning.
However, the task of inferring the marginal distribution of a
subset of variables, termed marginal inference, is NP-hard
(Cooper, 1990), even to approximate (Dagum and Luby,
1993), and the closely related problem of computing the
normalizing partition function is #P-hard (Valiant, 1979).
Hence, much work has focused on finding efficient approx-
imate methods. The sum-product message-passing algo-
rithm termed belief propagation is guaranteed to return ex-
act solutions if the underlying topology is a tree. Further,
when applied to models with cycles, known as loopy belief
propagation (LBP), the method is popular and often strik-
ingly accurate (McEliece et al., 1998; Murphy et al., 1999).

A variational perspective shows that the true partition func-
tion and marginal distributions may be obtained by mini-
mizing the true free energy over the marginal polytope. The
standard Bethe approximation instead minimizes the Bethe
free energy, which incorporates the Bethe pairwise approx-
imation to the true entropy, over a relaxed pseudo-marginal

set termed the local polytope. A fascinating link to LBP
was shown (Yedidia et al., 2001), in that fixed points of
LBP correspond to stationary points of the Bethe free en-
ergy F . Further, stable fixed points of LBP correspond to
minima of F (Heskes, 2003). Werner (2010) demonstrated
a further equivalence to stationary points of an alternate
function on the space of homogeneous reparameterizations.

In general, LBP may converge only to a local optimum or
not converge at all. Various sufficient conditions have been
derived for the uniqueness of stationary points (Mooij and
Kappen, 2007; Watanabe, 2011), though convergence is of-
ten still not guaranteed (Heskes, 2004). Convergent meth-
ods based on analyzing derivatives of the Bethe free energy
(Welling and Teh, 2001) and double-loop techniques (Hes-
kes et al., 2003) have been developed. Recently, algorithms
have been devised that are guaranteed to return an approx-
imately stationary point (Shin, 2012) or a point with value
�-close to the optimum (Weller and Jebara, 2013a).

However, there is still much to learn about when and why
the Bethe approximation performs well or badly. We shall
explore both aspects of the approximation in this paper. In-
terestingly, sometimes they have opposing effects such that
together, the result is better than with just one (see §4 for
an example). We shall examine minima of the Bethe free
energy over three different polytopes: marginal, local and
cycle (see §2 for definitions). For experiments, we explore
two methods, dual decomposition and Frank-Wolfe, which
may be of independent interest. To provide another bench-
mark and isolate the entropy component, we also exam-
ine the tree-reweighted (TRW) approximation (Wainwright
et al., 2005). Sometimes we shall focus on models where
all edges are attractive, that is neighboring variables are
pulled toward the same value; in this case it is known that
the Bethe approximation is a lower bound for the true par-
tition function (Ruozzi, 2012).

Questions we shall address include:

• In attractive models, why does the Bethe approxima-
tion perform well for the partition function but, when
local potentials are low and coupling high, poorly for



marginals?

• In models with both attractive and repulsive edges,
for low couplings, the Bethe approximation performs
much better than TRW, yet as coupling increases, this
advantage disappears. Can this be repaired by tight-
ening the relaxation of the marginal polytope?

• Does tightening the relaxation of the marginal poly-
tope always improve the Bethe approximation? In par-
ticular, is this true for attractive models?

This paper is organized as follows. Notation and prelimi-
nary results are presented in §2. In §3-4 we derive instruc-
tive analytic results, first focusing on the simplest topology
that is not a tree, i.e. a single cycle. Already we observe
interesting effects from both the entropy and polytope ap-
proximations. For example, even for attractive models, the
Bethe optimum may lie outside the marginal polytope and
tightening the relaxation leads to a worse approximation to
the partition function. In §5 we examine more densely con-
nected topologies, demonstrating a dramatic phase transi-
tion in attractive models as a consequence of the entropy
approximation that leads to poor singleton marginals. Ex-
periments are described in §6, where we examine test cases.
Conclusions are discussed in §7. Related work is discussed
throughout the text. An Appendix with technical details
and proofs is attached in the Supplement.

2 NOTATION AND PRELIMINARIES

Throughout this paper, we restrict attention to binary pair-
wise Markov random fields (MRFs). We consider a model
with n variables X1, . . . , Xn ∈ B = {0, 1} and graph
topology (V, E); that is V contains nodes {1, . . . , n} where
i corresponds to Xi, and E ⊆ V × V contains an edge for
each pairwise relationship. Let x = (x1, . . . , xn) be a con-
figuration of all the variables, and N(i) be the neighbors of
i. Primarily we focus on models with no ‘hard’ constraints,
i.e. p(x) > 0 ∀x, though many of our results extend to
this case. We may reparameterize the potential functions
(Wainwright and Jordan, 2008) and define the energy E

such that p(x) = e−E(x)

Z with

E = −
�

i∈V
θixi −

�

(i,j)∈E

Wij

2
[xixj + (1− xi)(1− xj)] .

(1)
This form allows edge coupling weights Wij to be varied
independently of the singleton potentials θi. If Wij > 0
then an edge is attractive, if Wij < 0 then it is repulsive.
If all edges are attractive, then the model is attractive. We
write µij for pairwise marginals and, collecting together
the θi and Wij potential terms into a vector θ, with a slight
abuse of notation, sometimes write (1) as E = −θ · µ.

2.1 FREE ENERGY, VARIATIONAL APPROACH

Given any joint probability distribution q(x) over all vari-
ables, the (Gibbs) free energy is defined as FG(q) =
Eq(E)− S(q), where S(q) is the (Shannon) entropy of the
distribution.

It is easily shown (Wainwright and Jordan, 2008) that
− logZ(θ) = minq FG, with the optimum when q = p(θ),
the true distribution. This optimization is to be performed
over all valid probability distributions, that is over the
marginal polytope. However, this problem is intractable
due to the difficulty of both computing the exact entropy S,
and characterizing the polytope (Deza and Laurent, 2009).

2.2 BETHE APPROXIMATION

The standard approach of minimizing the Bethe free energy
F makes two approximations:

1. The entropy S is approximated by the Bethe entropy

SB(µ) =
�

(i,j)∈E

Sij(µij) +
�

i∈V
(1− di)Si(µi), (2)

where Sij is the entropy of µij , Si is the entropy of
the singleton distribution of Xi and di = |N(i)| is the
degree of i; and

2. The marginal polytope is relaxed to the local polytope,
where we require only local (pairwise) consistency,
that is we deal with a pseudo-marginal vector q, that
may not be globally consistent, which consists of
{qi = q(Xi = 1) ∀i ∈ V, µij = q(xi, xj) ∀(i, j) ∈
E} subject to the constraints qi =

�
j∈N(i) µij , qj =�

i∈N(j) µij ∀i, j ∈ V .

In general, the Bethe entropy SB is not concave and hence,
the Bethe free energy F = E − SB is not convex.

The global optimum of the Bethe free energy F = Eq(E)−
SB(q) is achieved by minimizing F over the local poly-
tope, with the Bethe partition function ZB defined such that
the global minimum obtained equals − logZB .

The local polytope constraints imply that, given qi and qj ,

µij =

�
1 + ξij − qi − qj qj − ξij

qi − ξij ξij

�
(3)

for some ξij ∈ [0,min(qi, qj)], where µij(a, b) = q(Xi =
a,Xj = b).

As in (Welling and Teh, 2001), one can solve for the Bethe
optimal ξij explicitly in terms of qi and qj by minimizing
F , leading to

ξ∗ij(qi, qj) =
1

2αij

�
Qij −

�
Q2

ij − 4αij(1 + αij)qiqj
�
,

(4)



where αij = eWij − 1, Qij = 1 + αij(qi + qj).

Thus, we may consider the Bethe approximation as min-
imizing F over q = (q1, . . . , qn) ∈ [0, 1]n. Further, the
derivatives are given by

∂F
∂qi

= −φi+log



 (1− qi)di−1

qdi−1
i

�

j∈N(i)

(qi − ξ∗ij)

(1 + ξ∗ij − qi − qj)



 ,

(5)
where φi = θi − 1

2

�
j∈N(i) Wij .

2.3 TREE-REWEIGHTED APPROXIMATION

Our primary focus in this paper is on the Bethe approxima-
tion but we shall find it helpful to compare results to an-
other form of approximate inference. The tree-reweighted
(TRW) approach may be regarded as a family of variational
methods, where first one selects a point from the spanning
tree polytope, that is the convex hull of all spanning trees
of the model, represented as a weighting for each edge.
Given this selection, the corresponding TRW entropy is the
weighted combination of entropies on each of the possible
trees. This is then combined with the energy and optimized
over the local polytope, similarly to the Bethe approxima-
tion. Hence it provides an interesting contrast to the Bethe
method, allowing us to focus on the difference in the en-
tropy approximation. An important feature of TRW is that
its entropy is concave and always upper bounds the true
entropy (neither property is true in general for the Bethe
entropy). Hence minimizing the TRW free energy is a con-
vex problem and yields an upper bound on the true partition
function. Sometimes we shall consider the optimal upper
bound, i.e. the lowest upper bound achievable over all pos-
sible selections from the spanning tree polytope.

2.4 CYCLE POLYTOPE

We shall consider an additional relaxation of the marginal
polytope termed the cycle polytope. This inherits all con-
straints of the local polytope, hence is at least as tight, and
in addition enforces consistency around any cycle. A poly-
hedral approach characterizes this by requiring the follow-
ing cycle inequalities to be satisfied (Barahona, 1993; Deza
and Laurent, 2009; Sontag, 2010) for all cycles C and every
subset of edges F ⊆ C with |F | odd:

�

(i,j)∈F

(µij(0, 0) + µij(1, 1))

+
�

(i,j)∈C\F

(µij(1, 0) + µij(0, 1)) ≥ 1. (6)

Each cycle inequality describes a facet of the marginal
polytope (Barahona and Mahjoub, 1986). It is typically
easier to optimize over the cycle polytope than the marginal
polytope, and earlier work has shown that results are often
similar (Sontag and Jaakkola, 2007).

2.5 SYMMETRIC AND HOMOGENEOUS MRFS

For analytic tractability, we shall often focus on particular
forms of MRFs. We say a MRF is homogeneous if all sin-
gleton potentials are equal, all edge potentials are equal,
and its graph has just one vertex and edge orbit.1

A MRF is symmetric if it has no singleton potentials, hence
flipping all variables 0 ↔ 1 leaves the energy unchanged,
and the true marginals for each variable are ( 12 ,

1
2 ). For

symmetric, planar binary pairwise MRFs, it is known that
the cycle polytope is equal to the marginal polytope (Bara-
hona and Mahjoub, 1986). Using (4) and (5), it is easy to
show the following result.
Lemma 1. The Bethe free energy of any symmetric MRF
has a stationary point at qi = 1

2 ∀i.

We remark that this is not always a minimum (see §5).

2.6 DERIVATIVES AND MARGINALS

It is known that the derivatives of logZ with respect to the
potentials are the marginals, and that this also holds for
any convex free energy, where pseudo-marginals replace
marginals if a polytope other than the marginal is used
(Wainwright, 2006). Using Danskin’s theorem (Bertsekas,
1995), this can be generalized as follows.
Lemma 2. Let F̂ = E − Ŝ(µ) be any free energy approx-
imation, X be a compact space, and Â = −minµ∈X F̂ be
the corresponding approximation to logZ.
If the argmin is unique at pseudo-marginals τ ,
then ∂Â

∂θi
= τi(1),

∂Â
∂Wij

= τij(0, 0) + τij(1, 1).
If the argmin is not unique then let Q(θ) be the set of
argmins; the directional derivative of Â in direction
θ ← θ + y is given by �yÂ = maxτ∈Q(θ) τ · y.

In the next Section we begin to apply these results to an-
alyze the locations and values of the minima of the Bethe
free energy.

3 HOMOGENEOUS CYCLES

Since the Bethe approximation is exact for models with no
cycles, it is instructive first to consider the case of one cy-
cle on n variables, which we write as Cn. Earlier analysis
considered the perspective of belief updates (Weiss, 2000;
Aji, 2000). Here we examine the Bethe free energy, which
in this context is convex (Pakzad and Anantharam, 2002)
with a unique optimum.2 We consider symmetric models,
initially analyzing the homogeneous case.

1This means there is a graph isomorphism mapping any edge
to any other, and the same for any vertex.

2This follows by considering (2) and observing that Sij − Si

(conditional entropy) is concave over the local consistency con-
straints, hence by appropriate counting, the total Bethe entropy is
concave provided an MRF has at most one cycle.



With Lemma 1, we see that singleton marginals are 1
2

across all approximation methods. For pairwise marginals,
the following result holds due to convexity.
Lemma 3. For any symmetric MRF and a free energy that
is convex, the optimum occurs at uniform pseudo-marginals
across all pairs of variables, either where the derivative is
zero or at an extreme point of the range.

The uniformity of the optimal edge pseudo-marginals,
together with Lemma 1, shows that all are µij =�

x 1
2 − x

1
2 − x x

�
∀(i, j) ∈ E , where just x remains to

be identified. The optimum x with zero derivative is al-
ways contained within the local polytope but we shall see
that this is not always the case when we consider the cy-
cle relaxation. Using (4), it is straightforward to derive the
following result for the Bethe pairwise marginals.
Lemma 4. For a symmetric homogeneous cycle, the Bethe
optimum over the local polytope is at x = xB(W ) =
1
2σ(W/2), where we use standard sigmoid σ(y) := 1

1+e−y .
Observe that xB(−W ) = 1/2− xB(W ).

Further, we can derive the error of the Bethe pairwise
marginals by using the loop series result given in Lemma
5 of §4, taking log, differentiating and using Lemma 2, to
give the difference between true x and Bethe xB as

x− xB =
1

4

sech2 W
4 tanhn−1 W

4

1 + tanhn W
4

. (7)

Remarks: Observe that at W = 0, x − xB = 0; as
W → ±∞, x − xB → 0. For W �= 0, x − xB is al-
ways > 0 unless n is even and W < 0, in which case it is
negative. Differentiating (7) and solving for where x and
xB are most apart gives empirically W ≈ 2 log n + 0.9
with corresponding max value of x−xB ≈ 1

5n for large n.

See Figure 1 for plots, where, for TRW, values were com-
puted using optimal edge weights, as derived in the Ap-
pendix. Observe that at W = 0, all methods are exact.
As W increases, the Bethe approximations to both logZ
and the marginal x rise more slowly than the true values,
though once W is high enough that x is large and can-
not rise much further, then the Bethe xB begins to catch
up until they are both close to 1

2 for large W . We remark
that since the Bethe approximation is always a lower bound
on the partition function for an attractive model (Ruozzi,
2012), and both the partition functions and marginals are
equal at W = 0, we know from Lemma 2 that xB must
rise more slowly than x, as seen.

For W > 0, tightening the polytope makes no difference.
The picture is different for negative W if n is odd, in which
case we have a frustrated cycle, that is a cycle with an
odd number of repulsive edges, which often causes diffi-
culties with inference methods (Weller and Jebara, 2013b).

0
10

20−20 −15 −10 −5 0 5 10 15 20

−1

0

1

2

3

4

5

6

7

8

9

TRW
Bethe
TRW+cycle
Bethe+cycle

W
n odd

D
iff

er
en

ce
 in

 lo
g 

pa
rti

tio
n 

fu
nc

tio
n 

fro
m

 tr
ue

 v
al

ue

(a) Errors of logZ approximations

0
10

20−20 −15 −10 −5 0 5 10 15 20

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

TRW+cycle
Bethe+cycle
Bethe
TRW

W
n odd

D
iff

er
en

ce
 in

 p
ai

rw
is

e 
m

ar
gi

na
l x

 fr
om

 tr
ue

 v
al

ue

(b) Errors of pairwise marginal x

Figure 1: Homogeneous cycle Cn, n odd, edge weights W . By
Lemma 2, the slope of the error of logZ wrt W is twice the error
of x. For W > 0, local and cycle polytopes have the same values.

In this case, (6) is binding for W < −2 log(n − 1) and
prevents the Bethe+cycle marginal xBC from falling below
1
2n . As W → −∞, the true x also does not fall below 1

2n .3
Thus, as W → −∞, the score (negative energy) and hence
logZ → −∞ for the true distribution. This also holds for
Bethe or TRW on the cycle polytope, but on the local poly-
tope, their energy and logZ → 0. Observe that for W < 0,
Bethe generally outperforms TRW over both polytopes.

Tables 1 and 2 summarize results as W → ±∞, again
using optimal edge weights for TRW.

Model W → −∞ W → ∞
logZ � x log Z�

Z x
Bethe 0 0 − log 2 1/2
Bethe+cycle 0 0 − log 2 1/2
TRW log 2 0 0 1/2
TRW+cycle log 2 0 0 1/2
True distribution log 2 0 0 1/2

Table 1: Analytic results for homogenous cycle Cn, n even. As
W → ∞, logZ� and logZ → ∞ so the difference is shown.

3To see this, note there are 2n configurations whose probabil-
ities dominate as W → −∞: 01 . . . 0, its inverse flipping 0 ↔ 1,
and all n rotations; of these, just one has 00 and one has 11 for a
specific edge.



Model W → −∞ W → ∞
logZ � x log Z�

Z x
Bethe 0 0 − log 2 1/2
Bethe+cycle −∞ 1/(2n) − log 2 1/2
TRW log 2 0 0 1/2
TRW+cycle −∞ 1/(2n) 0 1/2
True distribution −∞ 1/(2n) 0 1/2

Table 2: Analytic results for homogeneous cycle Cn, n odd. As
W → ∞, logZ� and logZ → ∞ so the difference is shown.

4 NONHOMOGENEOUS CYCLES

The loop series method (Chertkov and Chernyak, 2006;
Sudderth et al., 2007) provides a powerful tool to analyze
the ratio of the true partition function to its Bethe approx-
imation. In symmetric models with at most one cycle, by
Lemma 3, we know that the unique Bethe optimum is at
uniform marginals qi = 1

2 . Using this and (4), and substi-
tuting into the loop series result yields the following.
Lemma 5. For a symmetric MRF which includes ex-
actly one cycle Cn, with edge weights W1, . . . ,Wn, then
Z/ZB = 1 +

�n
i=1 tanh

Wi
4 .

Remarks: In this setting, the ratio Z/ZB is always ≤ 2 and
≈ 1 if even one cycle edge is weak, as might be expected
since then the model is almost a tree. The ratio has no
dependence on edges not in the cycle and those pairwise
marginals will be exact. Further, since the Bethe entropy is
concave, by Lemma 1, all singleton marginals are exact at
1
2 . Errors of pairwise pseudo-marginals on the cycle can be
derived by using the expression for Z/ZB from Lemma 5,
taking log then differentiating and using Lemma 2.

Several principles are illustrated by considering 3 variables,
A, B and C, connected in a triangle. Suppose AB and AC
have strongly attractive edges with weight W = 10. We
examine the effect of varying the weight of the third edge
BC, see Figure 2.

It was recently proved (Ruozzi, 2012) that ZB ≤ Z for at-
tractive models. A natural conjecture is that the Bethe opti-
mum pseudo-marginal in the local polytope must lie inside
the marginal polytope. However, our example, when BC
is weakly attractive, proves this conjecture to be false. As a
consequence, tightening the local polytope to the marginal
polytope for the Bethe free energy in this case worsens the
approximation of the log-partition function (though it im-
proves the marginals), see Figure 2 near 0 BC edge weight.
For this model, the two aspects of the Bethe approximation
to logZ act in opposing directions - the result is more accu-
rate with both than with either one alone. For intuition, note
that via the path B−A−C, in the globally consistent prob-
ability distribution, B and C are overwhelmingly likely to
take the same value. Given that singleton marginals are 1

2 ,
the Bethe approximation, however, decomposes into a sep-
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Figure 2: Log partition function and approximations for ABC
triangle, see §4. Edge weights for AB and AC are 10 (strongly
attractive) while BC is varied as shown. Near 0: Bethe is a bet-
ter approximation to logZ but Bethe+cycle has better derivative,
hence better marginals by Lemma 2; since Bethe+cycle is below
Bethe in this region, its optimum does not lie in the local polytope.

arate optimization for each edge, which for the weak edge
BC, yields that B and C are almost independent, leading
to a conflict with the true marginal. This causes the Bethe
optimum over the local polytope to lie outside the marginal
polytope. The same conclusion may be drawn rigorously
by considering the cycle inequality (6), taking the edge set
F = {BC} and observing that the terms are approximately
1
4 + 1

4 + 2(0 + 0) ≈ 1
2 < 1. Recall that here the cycle

and marginal polytopes are the same (see §2.5). The same
phenomenon can also be shown to occur for the TRW ap-
proximation with uniform edge appearance probabilities.

Notice in Figure 2 that as the BC edge strength rises above
0, the Bethe marginals (given by the derivative) improve
while the logZ approximation deteriorates. We remark that
the exactness of the Bethe approximation on a tree can be
very fragile in the sense that adding a very weak edge be-
tween variables to complete a cycle may expose that pair-
wise marginal as being (perhaps highly) inaccurate.

5 GENERAL HOMOGENEOUS GRAPHS

We discuss how the Bethe entropy approximation leads to
a ‘phase shift’ in behavior for graphs with more than one
cycle when W is above a positive threshold.

The true entropy is always maximized at qi = 1
2 for

all variables. This also holds for the TRW approxima-
tion. However, in densely connected attractive models, the
Bethe approximation pulls singleton marginals towards 0
or 1. This behavior has been discussed previously (Heskes,
2004; Mooij and Kappen, 2005) and described in terms of
algorithmic stability (Wainwright and Jordan, 2008, §7.4),
or heuristically as a result of LBP over-counting informa-
tion when going around cycles (Ihler, 2007), but here we



explain it as a consequence of the Bethe entropy approxi-
mation.

We focus on symmetric homogeneous models which are d-
regular, i.e. each node has the same degree d. One example
is the complete graph on n variables, Kn. For this model,
d = n− 1. The following result is proved in the Appendix,
using properties of the Hessian from (Weller and Jebara,
2013a).

Lemma 6. Consider a symmetric homogeneous MRF on n
vertices with d−regular topology and edge weights W . q =
( 12 , . . . ,

1
2 ) is a stationary point of the Bethe free energy

but for W above a critical value, this is not a minimum.
Specifically, let H be the Hessian of the Bethe free energy
at q, xB be the value from Lemma 4 and 1 be the vector of
length n with 1 in each dimension; then 1TH1 = n[d −
4xB(d− 1)]/xB < 0 if xB > 1

4
d

d−1 ⇔ W > 2 log d
d−2 .

To help understand this result, consider (2) for the Bethe
entropy SB , and recall that

�
i di = 2m (m is the number

of edges, handshake lemma), hence SB = mSij − (2m −
n)Si. For large W , all the probability mass for each edge is
pulled onto the main diagonal, thus Sij ≈ Si. For m > n,
which interestingly is exactly the case of more than one cy-
cle, in order to achieve the optimum SB , each entropy term

→ 0 by tending to pairwise marginal
�
1 0
0 0

�
or symmetri-

cally
�
0 0
0 1

�
. See the second row of Figure 3 for an illus-

tration of how the Bethe entropy surface changes dramati-
cally as W rises, even sometimes going negative, and the
top row to see how the Bethe free energy surfaces changes
rapidly as W moves through the critical threshold.

Reinforcing this pull of singleton marginals away from 1
2

is the shape of the energy surface, when optimized for free
energy subject to given singleton marginals. In the Bethe
approximation, this is achieved by computing ξij terms ac-
cording to (4), as illustrated in the bottom row of Figure 3,
but for any reasonable entropy term (including TRW), al-
ways ξij < min(qi, qj), hence the energy is lower towards
the extreme values 0 or 1.

Remarks: (i) This effect is specifically due to the Bethe
entropy approximation, and is not affected by tightening
the polytope relaxation, as we shall see in §6. (ii) To
help appreciate the consequences of Lemma 6, observe that
log d

d−2 is positive, monotonically decreasing to 0 as d in-
creases. Thus, for larger, more densely connected topolo-
gies, the threshold for this effect is at lower positive edge
weights. Above the threshold, qi = 1

2 is no longer a min-
imum but becomes a saddle point.4 (iii) This explains the
observation made after (Heinemann and Globerson, 2011,

4The Hessian at qi = 1
2 is neither positive nor negative def-

inite. Moving away from the valley where all qi are equal, the
Bethe free energy rises quickly.
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Figure 3: Bethe free energy E − SB with stationary points
highlighted (top), then entropy SB (middle) and energy E (bot-
tom) vs qi = q ∀i for symmetric homogeneous complete graph
K5. All quantities are evaluated at the optimum over pair-
wise marginals, i.e. {ξij} are computed as in (4). These figures
are described in Lemma 6 and the text thereafter. W ≈ 1.38 is
the critical threshold, above which Bethe singleton marginals are
rapidly pulled toward 0 or 1. W = 4.5 is sufficiently high that the
Bethe entropy becomes negative at q = 1

2 (middle row).

Lemma 3), where it is pointed out that for an attractive
model as n → ∞, if n/m → 0, a marginal distribution
(other than the extreme of all 0 or all 1) is unlearnable by
the Bethe approximation (because the effect we have de-
scribed pushes all singleton marginals to 0 or 1). (iv) As W
rises, although the Bethe singleton marginals can be poor,
the Bethe partition function does not perform badly: For
a symmetric model, as W → ∞, there are 2 dominating
MAP states (all 0 or all 1) with equal probability. The true
marginals are at qi = 1

2 which picks up the benefit of log 2
entropy, whereas the Bethe approximation converges to one
or other of the MAP states with 0 entropy, hence has log 2
error.

To see why a similar effect does not occur as W → −∞,
note that for W < 0 around a frustrated cycle, the mini-
mum energy solution on the local polytope is at qi = 1

2 .
Indeed, this can pull singleton Bethe marginals toward 1

2
in this case. See §5.1 in the Appendix for further analysis.

6 EXPERIMENTS

We are interested in the empirical performance of the op-
timum Bethe marginals and partition function, as the re-
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Figure 4: Histogram of differences observed in optimum re-
turned Bethe free energy, FW-mesh primal, over the 20 models
in the validation set (mesh using � = 0.1, less than � is insignifi-
cant). Negative numbers indicate FW outperformed mesh.

laxation of the marginal polytope is tightened. Many
methods have been developed to attempt the optimiza-
tion over the local polytope, primarily addressing its non-
convexity, though none is guaranteed to return the global
optimum. Recently, an algorithm was derived to return
an �-approximation to the optimum logZB based on con-
structing a discretized mesh of pseudo-marginals (Weller
and Jebara, 2013a, 2014). One method for optimizing over
tighter relaxations is to use this algorithm as an inner solver
in an iterative dual decomposition approach with subgradi-
ent updates (Sontag, 2010; Sontag et al., 2011), where it
can be shown that, when minimizing the Bethe free energy,
the dual returned less � lower bounds − logZB over the
tighter polytope. This would be our preferred approach, but
for the models on which we would like to run experiments,
the runtime is prohibitive.

Hence we explored two other methods: (i) We replaced the
inner solver with a faster, convergent double-loop method,
the HAK-BETHE option in libDAI (Heskes et al., 2003;
Mooij, 2010), though this is guaranteed only to return a
local optimum at each iteration, hence we have no guar-
antee on the quality of the final result; (ii) We applied
the Frank-Wolfe algorithm (FW) (Frank and Wolfe, 1956;
Jaggi, 2013; Belanger et al., 2013). At each iteration, a
tangent hyperplane is computed at the current point, then
a move is made to the best computed point along the line
to the vertex (of the appropriate polytope) with the opti-
mum score on the hyperplane. This proceeds monotoni-
cally, even on a non-convex surface such as the Bethe free
energy, hence will converge (since it is bounded), though
runtime is guaranteed only for a convex surface as in TRW.

FW can be applied directly to optimize over marginal, cy-
cle or local polytopes, and performed much better than
HAK: runtime was orders of magnitude faster, and the en-
ergy found was in line with HAK.5 To further justify using
FW, which may only reach a local optimum, on our main
test cases, we compared its performance on a small valida-
tion set against the benchmark of dual decomposition using
the guaranteed �-approximate mesh method (Weller and Je-
bara, 2014) as an inner solver.

5The average difference between energies found was < 0.1.

6.1 IMPLEMENTATION AND VALIDATION

To validate FW for the Bethe approximations on each poly-
tope, we compared log partition functions and pairwise
marginals across 20 MRFs, each on a complete graph with
5 variables. Each edge potential was drawn Wij ∼ [−8, 8]
and each singleton potential θi ∼ [−2, 2]. To handle the
tighter polytope relaxations using the mesh method, we
used a dual decomposition approach as follows. For the
cycle polytope, one Lagrangian variable was introduced
for each cycle constraint (6) with projected subgradient de-
scent updates. For the marginal polytope, rather than im-
posing each facet constraint, which would quickly become
unmanageable6, instead a lift-and-project method was em-
ployed (Sontag, 2010). These algorithms may be of inde-
pendent interest and are provided in the Supplement.

For all mesh runs, we used � = 0.1. Note that strong du-
ality is not guaranteed for Bethe since the objective is non-
convex, hence we are guaranteed only an upper bound on
logZB ; yet we were able to monitor the duality gap by
using rounded primals and observed that the realized gaps
were typically within �, see Figure 6.

For FW, we always initialized at the uniform distribution,

i.e. µij =

�
1
4

1
4

1
4

1
4

�
∀(i, j) ∈ E , note this is always within

the marginal polytope. At each iteration, to determine how
far to go along the line to the optimum vertex, we used Mat-
lab’s fminbnd function. This induces a minimum move of
10−6 along the line to the optimum vertex, which was help-
ful in escaping from local minima. When we tried allowing
zero step size, performance became worse. Our stopping
criterion was to run for 10, 000 iterations (which did not
take long) or until the objective value changed by < 10−6,
at which point we output the best value found so far, and
the corresponding pseudo-marginals.

Results on the validation set are shown in Figure 4, indi-
cating that FW performed well compared to mesh + dual
decomposition (the best standard we have for the Bethe op-
timum). Note, however, that good performance on logZB

estimation does not necessarily imply that the Bethe op-
timal marginals were being returned for either method.
There may be several local optima where the Bethe free
energy has value close to the global optimum, and meth-
ods may return different locations. This is a feature of the
non-convex surface which should be borne in mind when
considering later results, hence we should not be surprised
that in the validation set, although 17/20 of the runs had
�1 error in singleton marginals under 0.05, there were 3
runs with larger differences, in one case as high as 0.7 (not
shown).7

6The number of facets of the marginal polytope grows ex-
tremely rapidly (Deza and Laurent, 2009).

7Recall the example from §5, where a symmetric homoge-
neous MRF with complete graph Kn topology and high edge



Given this performance, we used FW for all Bethe opti-
mizations on the test cases. FW was also used for all TRW
runs, where edge appearance probabilities were obtained
using the matrix-tree theorem with weights proportional to
each edge’s coupling strength |Wij |, as was used in (Sontag
and Jaakkola, 2007).

6.2 TEST SETS

Models with 10 variables connected in a complete graph
were drawn with random potentials. This allows compari-
son to earlier work such as (Sontag and Jaakkola, 2007) and
(Meshi et al., 2009, Appendix). In addition to examining
error in log partition functions and singleton marginals as
was done in earlier work, given our theoretical observations
in §3-5, we also explored the error in pairwise marginals.
To do this, we report the �1 error in the estimated probabil-
ity that a pair of variables is equal, averaged over all edges,
i.e. we report average �1 error of µij(0, 0) + µij(1, 1). We
used FW to minimize the Bethe and TRW free energies
over each of the local, cycle and marginal polytopes. For
each maximum coupling value used, 100 models were gen-
erated and results averaged for plotting. Given the theoreti-
cal observations of §3-5, we are interested in behavior both
for attractive and general (non-attractive) models.

For general models, potentials were drawn for single vari-
ables θi ∼ U [−2, 2] and edges Wij ∼ U [−y, y] where
y was varied to observe the impact of coupling strength.8
Results are shown in Figure 5. Tightening the relaxation
of the polytope from local to cycle or marginal, dramat-
ically improves both Bethe and TRW approximations on
all measures, with little difference between the cycle or
marginal polytopes. This confirms observations in (Sontag
and Jaakkola, 2007).

The relative performance of Bethe compared to TRW de-
pends on the criteria used. Looking at the error of sin-
gleton marginals, Bethe is better than TRW for low cou-
pling strengths, but for high coupling strengths the meth-
ods perform equally well on the local polytope, whereas on
the cycle or marginal polytopes, TRW outperforms Bethe
(though Bethe is still competitive). Thus, tightening the
relaxation of the local polytope at high coupling does not
lead to Bethe being superior on all measures. However, in
terms of partition function and pairwise marginals, which
are important in many applications, Bethe does consistently
outperform TRW in all settings, and over all polytopes.

For attractive models, in order to explore our observations
in §5, much lower singleton potentials were used. We drew

weights was shown to have 2 locations at the global minimum,
with average �1 distance between them approaching 1.

8These settings were chosen to facilitate comparison with the
results of (Sontag and Jaakkola, 2007), though in that paper, vari-
ables take values in {−1, 1} so the equivalent singleton potential
ranges coincide. To compare couplings, our y values should be
divided by 4.

θi ∼ U [−0.1, 0.1] and Wij ∼ U [0, y] where y is varied.
This is consistent with parameters used by Meshi et al.
(2009). Results are shown in Figure 7. When coupling
is high, the Bethe entropy approximation pushes single-
ton marginals away from 1

2 . This effect quickly becomes
strong above a threshold. Hence, when singleton potentials
are very low, i.e. true marginals are close to 1

2 , the Bethe
approximation will perform poorly irrespective of poly-
tope, as observed in our attractive experiments. We note,
however, that this effect rarely causes singleton marginals
to cross over to the other side of 1

2 . Further, as discussed in
§5, the partition function approximation is not observed to
deviate by more than log 2 on average.

7 CONCLUSIONS

We have used analytic and empirical methods to explore
the two aspects of the Bethe approximation: the poly-
tope relaxation and the entropy approximation. We found
Frank-Wolfe to be an effective method for optimization,
and note that for the cycle polytope, the runtime of each
iteration scales polynomially with the number of variables
(see §6.1.3 in the Appendix for further details).

For general models with both attractive and repulsive
edges, tightening the relaxation of the polytope from lo-
cal to cycle or marginal, dramatically improves both Bethe
and TRW approximations on all measures, with little dif-
ference between the cycle or marginal polytopes. For sin-
gleton marginals, except when coupling is low, there does
not appear to be a significant advantage to solving the non-
convex Bethe free energy formulation compared to convex
variational approaches such as TRW. However, for log-
partition function estimation, Bethe does provide signif-
icant benefits. Empirically, in both attractive and mixed
models, Bethe pairwise marginals appear consistently bet-
ter than TRW.

In our experiments with attractive models, the polytope ap-
proximation appears to makes little difference. However,
we have shown theoretically that in some cases it can cause
a significant effect. In particular, our discussion of non-
homogeneous attractive cycles in §4 shows that even in
the attractive setting, tightening the polytope can affect the
Bethe approximation - improving marginals but worsening
the partition function. It is possible that to observe this
phenomenon empirically, one needs a different distribution
over models.
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APPENDIX - SUPPLEMENTARY MATERIAL FOR UNDERSTANDING THE BETHE
APPROXIMATION

Here we provide further details and derivations of several of the results in the main paper, using the original numbering.

3 HOMOGENEOUS CYCLES

TREE-REWEIGHTED APPROXIMATION

The tree-reweighted approximation (TRW) of Wainwright et al. (2005) provides a family of upper bounds on the true
entropy and partition function, based on selecting a convex combination of spanning trees of the MRF graph.
Lemma 7. In the homogeneous case for n connected variables with topology G(V, E) (e.g. Cn or Kn) with edge weights
W and no singleton potentials, the minimum TRW partition function ZT is achieved with uniform edge appearance prob-
ability r and marginals satisfying

µij =

�
xT

1
2 − xT

1
2 − xT xT

�
= µT ∀(i, j) ∈ E

logZT = −ET + ST

= mWxT + (n− 1)S(µT ) + (2− n) log 2

where xT =
eW/2r

2(1 + eW/2r)
=

1

2
σ(W/2r),

r =
n− 1

m
,m = |E|

In particular, if G = Cn then r = n−1
n , or if G = Kn then r = 2

n .
Further, if the TRW optimization is performed over the cycle polytope, then the same result applies except (similar to
the Bethe case) xTC = max(xT , 1/2g), where g is the size of the smallest odd chordless cycle in G (if none exists then
xTC = xT ).

Proof. Let L be the local polytope and R the spanning tree polytope. For the optimal TRW bound, we seek

logZT = min
ρ∈R

max
µ∈L

�
−E(µ) +

�

t∈S

ρtS(µt)

�
(8)

where here
−E(µ) =

W

2

�

(i,j)∈E

µij(0, 0) + µij(1, 1)

and µt is the projection of the global µ distribution onto the spanning tree t ∈ S, hence, as is standard,

S(µt) =
�

i∈V
S(µi) +

�

(i,j)∈E(t)

S(µij)− S(µi)− S(µj).

Considering (8), the outer optimization is minimizing with respect to ρ a pointwise max of a linear function of ρ, hence is
minimizing a convex function of ρ. Given the symmetry of the problem, this implies that the best TRW bound is achieved
when each edge has equal weight r = n−1

m , and

logZT = max
µ∈L

�

(i,j)∈E

�
W

2
(µij(0, 0) + µij(1, 1)) + rS(µij)

�
+
�

i∈V
S(µi)(1− r · degree(i)).

Observe that if r = 1 (a tree) then this is exactly the Bethe optimization problem.

It is easy to check that µi =
1
2 ∀i is a stationary point. The remaining results follow from Lemma 3 and differentiating

what must be maximized with respect to xT to obtain a maximum at xT = eW/2r

2(1+eW/2r)
, cf Lemma 4.
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Figure 8: Average singleton marginal vs. uniform edge weight W for true, Bethe, Bethe+cycle. C5 topology with θi ∼
[0, Tmax], all edge weights set to W . Bethe and Bethe+cycle overlap for positive W . Average shown over 20 runs for each
set of parameters.

5 GENERAL HOMOGENEOUS GRAPHS

5 THRESHOLD RESULT FOR ATTRACTIVE MODELS

Lemma 6. Consider a symmetric homogeneous MRF on n vertices with d−regular topology and edge weights W .
q = ( 12 , . . . ,

1
2 ) is a stationary point of the Bethe free energy but for W above a critical value, this is not a minimum.

Specifically, let H be the Hessian of the Bethe free energy at q, xB be the value from Lemma 4 and 1 be the vector of
length n with 1 in each dimension; then 1TH1 = n[d− 4xB(d− 1)]/xB < 0 if xB > 1

4
d

d−1 ⇔ W > 2 log d
d−2 .

Proof. We use Lemma 4 and the following expressions for the Hessian Hjk = ∂2F
∂qj∂qk

from (Weller and Jebara, 2013a):

Hjk =

�
qjqk−ξjk

Tjk
if (j, k) ∈ E

0 if (j, k) /∈ E
, Hjj = − dj − 1

qj(1− qj)
+

�

k∈N(j)

qk(1− qk)

Tjk
,

where dj = |N(j)| is the degree of j, and Tjk = qjqk(1 − qj)(1 − qk) − (ξjk − qjqk)2. Taking these together with (4),
and using symmetry, we have xB = 1

2σ(W/2), Tjk = T = xB(
1
2 − xB) and

1TH1 = n

�
−4(d− 1) +

d

4T
+

d

T

�
1

4
− xB

��

= n [d− 4xB(d− 1)] /xB .

5.1 FURTHER RESULTS ON ENTROPY AND POLYTOPE

We have shown that in an attractive model, the Bethe entropy approximation can lead to singleton marginals being pulled
toward the extreme values of 0 or 1. When repulsive edges are present and we have a frustrated cycle, there is also an effect
that can go the other way, pushing singleton marginals toward 1

2 . This effect is due to the polytope relaxation. One way to
see this is to observe that the minimum energy configuration on the local polytope for a symmetric frustrated cycle has all
singleton marginals of 1

2 , whereas on the marginal polytope it is integral (Wainwright and Jordan, 2008, §8.4.1).

To examine these effects, we ran experiments on a model with 5 nodes arranged in a cycle. Each θi ∼ [0, Tmax] and all
edge weights were set to uniform W . Tmax and W were varied to observe their effect. Singleton marginals were computed
using Bethe (on local), Bethe+cycle (which in this context is the same as Bethe+marginal) and with the true distribution.
See Figure 8 for results.

Observe that for strongly positive W , the Bethe entropy approximation pulls the marginals toward 1. This behavior is
the same for Bethe and Bethe+cycle, demonstrating that it is an effect due to the entropy approximation. Note we are
observing this effect on a model which clearly has just one cycle. As singleton potential strengths are raised, the relative
effect diminishes. On the other hand, for strongly negative W (which causes a highly frustrated cycle since the cycle is
odd), the curve for Bethe is pulled toward 0.5, but the Bethe+cycle curve is not, indicating that this is a polytope effect.



6 EXPERIMENTS

6.1 IMPLEMENTATION AND VALIDATION

6.1.1 Optimizing over the cycle polytope

We provide details of our dual decomposition algorithm to optimize over the cycle polytope, see Algorithm 1. This relies
on the �-approximation mesh method of Weller and Jebara (2013a), as improved in (Weller and Jebara, 2014) to handle
general (non-attractive) binary pairwise models. Even if the initial model is attractive, as the dual variables update, the
modified potential parameters may become repulsive. Note that a lower bound on the Bethe free energy F is equivalent to
a lower bound on − logZB or an upper bound on logZB , the Bethe log partition function, see §2.2.

Our goal is to minimize F subject to the cycle constraints (6) to yield what we define as − logZBC . Introduce Lagrangian
multipliers λ = {λC,F } for each such constraint on C and F , and consider

L(µ,λ) = Eµ(E)− SB(µ) +
�

C,F

λC,F



1−
�

(i,j)∈F

(µij(0, 0) + µij(1, 1))−
�

(i,j)∈C\F

(µij(1, 0) + µij(0, 1))



 (9)

= F(µ) + λ⊥g(µ) defining g appropriately from the line above.

Let G be the dual function, i.e. G(λ) := infµ L(µ,λ). For any λ � 0, this is a lower bound for F(µ∗) where µ∗ is the
optimum feasible (i.e. in the cycle polytope) primal point. For any feasible µ, F(µ) provides an upper bound on F(µ∗).

We shall identify supλ G(λ) = supλ infµ L(µ,λ) subject to λ � 0, which is be the best lower bound we can obtain. We do
this as follows: given λ, absorb the constraint terms from (9) into the energy, reparameterize appropriately and minimize
using the approach of Weller and Jebara (2014). Then update λ using projected sub-gradient descent with g and repeat to
convergence.

Note that for a complete graph Kn, the set of all chordless cycles is the set of all
�n
3

�
triplets. This provides a polynomial

upper bound on the number of chordless cycles for a graph on n vertices, since for any graph that is not complete, adding
a missing edge can only increase the number.

Following the methods of (Boyd and Mutapcic, 2007, §3.2) with a typical step size schedule, it is easy to see that we
converge in the dual, and that as a consequence of the �-approximate inner solver, the final dual solution is also accurate to
within the same �, i.e. the final dual value less � provides a lower bound on − logZB for the cycle polytope.

Rounding to yield a primal feasible solution was achieved by taking a minimum convex combination with the uniform

distribution, which has pairwise marginal of
�

1
4

1
4

1
4

1
4

�
for each edge, so as just to satisfy all cycle inequalities.

6.1.2 Optimizing over the marginal polytope

We present our dual decomposition approach to optimize over the marginal polytope. We impose 4
�n
2

�
constraints: each

δij(xi, xj) dual variable enforces consistency for an edge (i, j) at settings Xi = xi, Xj = xj (singleton consistency and
summing to 1 follow from constraints of the local polytope).

min
µ∈M

Fθ(µ) = min
µK∈M

min
µ∈L

max
δ

Fθ(µ) +
�

(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)
�
µK
ij (xi, xj)− µij(xi, xj)

�

≥ max
δ

min
µK∈M

min
µ∈L

Fθ(µ) +
�

(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)
�
µK
ij (xi, xj)− µij(xi, xj)

�

= max
δ

min
µK∈M

min
µ∈L

Fθ�(µ) +
�

(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)µ
K
ij (xi, xj)

= max
δ



min
µ∈L

Fθ�(µ) + min
µK∈M

�

(i,j)∈E;xi,xj∈{0,1}

δij(xi, xj)µ
K
ij (xi, xj)



 (10)



Algorithm 1 Dual decomposition algorithm to compute lower bound for − logZB on the cycle or marginal polytope

{Initialize. Take inputs �, n, {θi, θij = Wij

2 I} with all |Wij | ≤ W , |θi| ≤ T ;λ0, {sk} step sizes}
Econst ← 0 {keeps track of Energy constant through reparameterizations}
for all i ∈ V do
θi ← θi −

�
j∈N(i) Wij/2

Econst+ =
�

j∈N(i) −Wij/2
end for
save all base {θi,Wij}, Econst parameters
{λC,F } ← some initial values λ0, all ≥ 0; typically initialize all to 0
t ← 0 {iteration number}
{Main loop}
repeat

{First absorb the constraint terms into the energy parameters}
load all base {θi,Wij}, Econst parameters
for all chordless cycles C do

for all odd F ⊆ C do
for all edge (i, j) ∈ F do

Wij ← Wij + 2λt
C,F

θi ← θi − λt
C,F , θj ← θj − λt

C,F
end for
for all edge (i, j) ∈ C \ F do

Wij ← Wij − 2λt
C,F

θi ← θi + λt
C,F , θj ← θj + λt

C,F

Econst+ = λt
C,F

end for
end for

end for

{Now solve the �-approx logZB problem on the local polytope}
run the algorithm from Weller and Jebara (2014) using �, {θi,Wij} to return − logZt at µt = {q∗i , ξ∗ij} using (Welling
and Teh, 2001) ξ∗ij(q∗i , q∗j ,Wij)
G(λt) ← − logZt + Econst

{Update the {λC,F } with subgradient g; Increment t}
for all (i, j) ∈ E do

mainDiagij ← 1 + 2ξ∗ij − q∗i − q∗j , offDiagij ← q∗i + q∗j − 2ξ∗ij
end for
for all chordless cycles C do

for all odd F ⊆ C do
gC,F = 1−

�
(i,j)∈F mainDiagij −

�
(i,j)∈C\F offDiagij

end for
end for
λt+1 ← max(λt + stg, 0) {This projects onto the feasible set, i.e. projected subgradient descent}
t ← t+ 1

until convergence
output final G(λt−1) as best lower bound on − logZBC
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(b) Attractive models

Figure 9: Average number of iterations of FW required to reach within 0.01 of the returned best value

θ� is given by θ�ij(xi, xj) = θij(xi, xj) + δij(xi, xj) ∀(i, j) ∈ E ;xi, xj ∈ {0, 1} [since F = E − S,E = −θ · µ].

We use subgradient descent (as before with the cycle polytope) to attain a lower bound. Each iteration, we use the new µK

when computing the subgradient. When minimizing over µK ∈ M, the optimum will be achieved at a vertex so we solve
by enumeration over all 2n vertices.

The term in square brackets in (10) is concave in δ, hence if � = 0 we converge to the optimum lower bound. Note strong
duality is not guaranteed.

Rounding to achieve a primal feasible solution was achieved by solving an LP to find the closest point in the marginal
polytope.

6.1.3 Further details on Frank-Wolfe

FW provides no runtime guarantee when applied to a non-convex surface such as the Bethe free energy. In Figure 9 we
show the empirical average number of iterations required to reach within 0.01 of the returned best value, comparing Bethe
and TRW across local, cycle and marginal polytopes, for different parameter settings. Note that different convergence
criteria were used for Bethe and TRW, with the duality gap examined for TRW, which is why we report this number of
iterations, which provides a better basis for comparison than the total number of iterations.

At each iteration, to compute the optimal vertex of the appropriate polytope to move toward: for local and cycle polytopes,
we solve the respective LP; for the marginal polytope, this is impractical, so we enumerate over all 2n configurations,
which clearly scales poorly. For the LP for the cycle polytope, the number of chordless cycles in a graph with n vertices
is upper bounded by the number in a complete graph with n vertices, hence is O(n3), though it is typically not efficient to
identify them.


