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Abstract

For undirected graphical models, belief propaga-
tion often performs remarkably well for approxi-
mate marginal inference, and may be viewed as a
heuristic to minimize the Bethe free energy. Fo-
cusing on binary pairwise models, we demon-
strate that several recent results on the Bethe ap-
proximation may be generalized to a broad fam-
ily of related pairwise free energy approxima-
tions with arbitrary counting numbers. We ex-
plore approximation error and shed light on the
empirical success of the Bethe approximation.

1 INTRODUCTION

Undirected graphical models, also called Markov random
fields (MRFs), have become a central tool in machine
learning, providing a powerful and compact way to de-
scribe relationships between variables. Fundamental prob-
lems are to compute the normalizing partition function, and
to solve for the marginal distribution of a subset of vari-
ables (marginal inference). Both tasks are computation-
ally intractable (Cooper, |1990), prompting great interest
in approximate algorithms that perform well. One popu-
lar approach is belief propagation (BP, Pearl, |1988). When
the underlying model topology is acyclic, this returns ex-
act values in linear time. If the method is applied to models
with cycles, termed loopy belief propagation (LBP), results
are often strikingly good but not always, and it may not
converge at all (McEliece et al., [1998)).

Yedidia et al.|(2001)) demonstrated that fixed points of LBP
correspond to stationary points of the Bethe free energy
F B (Bethe, [1935), see §Z]f0r definitions. Further, Heskes
(2002) showed that stable fixed points correspond to local
minima of the Bethe free energy. In this paper, we summa-
rize recent results on the Bethe approximation (Welling and!
Teh, 2001; /Weller and Jebara), 2013} 2014alb; [Weller et al.,
2014)), and in each case consider how the result may be

generalized by considering the broad class of pairwise en-
tropy approximations specified by arbitrary counting num-
bers, which includes the Bethe and tree-reweighted approx-
imations (TRW, Wainwright et al., 2005) as special cases.
We discuss consequences and related applications, includ-
ing in 45| minimizing the approximate free energy, which
‘Weller and Jebara) (2014a) recently showed, for the specific
case of the Bethe approximation on attractive models, can
be approximated to any e-accuracy with a fully polynomial-
time approximation scheme (FPTAS).

In §6] we compare this family of entropy approximations
to the frue entropy, and consider how differences interact
with the other form of approximation typically employed:
the marginal polytope, which enforces global variable con-
sistency, is relaxed to the local polytope, which enforces
only local (pairwise) consistency. We also provide fresh
insights on balanced and frustrated cycles by considering
the loop series approach of |Sudderth et al.| (2007)).

1.1 RELATED WORK

Related work is discussed throughout the text but here we
clarify the context and contributions of our results up to
that build to show how to approximate the global opti-
mum of the approximate free energy to arbitrary accuracy
for general counting numbers.

Context. All for attractive binary pairwise models: The
problem of identifying a most probable configuration
(MAP inference) is solvable in polynomial-time via graph
cuts (Greig et al.,|1989); this generalizes to multi-label pair-
wise models with submodular cost functions (Schlesinger
and Flachl 2006). However, aside from restricted cases
(e.g. low treewidth or the fully polynomial-time random-
ized approximation scheme (FPRAS) of Jerrum and Sin-
clair| (1993) for uniform external field), there is no way to
estimate the partition function Z accurately in polynomial-
time. LBP is a heuristic to find the Bethe partition func-
tion by minimizing the Bethe free energy, with log Zp =
—min Fp, and for these models we know that Zg is a
lower bound and usually a good estimate of Z (Sudderth



et al., [2007; Ruozzil, 2012; [Weller and Jebaral 2014b)), but
LBP may find only a local optimum or not converge at
all. Various methods (e.g. CCCEP, |Yuille, |2002) were in-
troduced which converge but only to a local minimum of
Fp with no time guarantee. |Shin| (2012) introduced the
first polynomial-time method but this returns an approx-
imately stationary point of the Bethe Fp (i.e. a point
where |derivative of Fp| < €, which is useful for loop se-
ries methods, but this point may have Fp value far from
the global optimum; attractive not required) subject to a
sparsity condition that max degree is O(logn). [Weller
and Jebaral (2013)) derived a PTAS for the global optimum
of Fp with the same sparsity condition. |Weller and Je-
baral (2014a) improved this, providing the first FPTAS for
log Zp for an attractive model with any topology. These
applied only for the Bethe approximation.

Contributions. Here we broaden analysis significantly to
consider any counting numbers, relying on our new Theo-
rems[2] B} [6] and [7] and Lemmas [3]and[d] All these extend
previous results that applied only to the Bethe approxima-
tion. It is somewhat remarkable that it emerges that an at-
tractive model admits a FPTAS for log Z 4 for any count-
ing numbers. This is significant theoretically and will al-
low the benefits of non-convex free energy approximations
to be explored further in future work. Theorems [2] [5] and
[ importantly apply to general (non-attractive models), as
does Algorithm[I] allowing log Z 4 with any counting num-
bers to be computed to arbitrary accuracy, though with no
polynomial-time guarantee if not attractive - still this will
be useful to learn insights from small models and to bench-
mark accuracy of faster methods.

2 PRELIMINARIES

We adopt notation consistent with (Welling and Teh} 2001}
Weller and Jebara, [2013 [2014a/b). Consider a binary pair-
wise model with n variables X;,...,X,, € B = {0,1}
and graph topology (V,€) with m = |£]| edges; that is
V contains nodes {1,...,n} where ¢ corresponds to X,
and £ C V x V contains an edge for each pairwise
score relationship. Let A/ (¢) be the neighbors of i. Let
z = (x1,...,x,) be one particular configuration, and de-
fine its energy F(x) via the relationships
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where the partition function Z = >~ e~ ¥ (#) is the normal-
izing constant, and {6;, W;;} specify the potentials of the
modelﬂ If W;; > 0, the edge (4, j) is artractive (tending to
pull its variables toward the same value); if W;; < 0 then it

't is easily shown (Wainwright and Jordan| [2008) that any
binary pairwise model may be reparameterized to the form in (IJ.
Eaton and Ghahramani| (2013) showed that any discrete model

is repulsive (tending to push apart its variables to different
values). A model is attractive iff all its edges are attractive.

2.1 VARIATIONAL INFERENCE AND
COUNTING NUMBERS

Given any joint probability distribution p(X7,...,X,)
over all variables, the Gibbs free energy is defined as
Fa(p) = Ep(E) — S(p), where S(p) is the (Shannon) en-
tropy of the distribution. By considering KL divergence, it
is easily shown (Wainwright and Jordan, 2008) that min-
imizing F¢ over the set of all globally valid marginals
(termed the marginal polytope) yields a value of exactly
—log Z at the true marginal distribution, given in (I)).

Since this minimization is often computationally in-
tractable, two pairwise approximations are typically made:

1. The marginal polytope is relaxed to the local polytope
L, where only local consistency is required - that is we deal
with a pseudomarginal vector ¢, which in our context may
be considered {¢; = ¢(X; = 1) Vi € V, pij(zi,zj) =
q(zs,z;) VY(i,j) € &}, subject to constraints ¢; =
Z;cje]B N’ij(la zj)a a; = inEB :U‘ij(xi, 1) V(Z,]) €&

The local polytope constraints imply that, given ¢; and g;,

(1t &g %&j)
Hig ( qi — &ij &ij @

for some &;; € [max(0,q; + ¢; — 1), min(g;, g;)].

Thus we may adopt a minimal representation with pseu-
domarginals specified by {g; Vi € V} singleton and
{&; V(i,j) € E} pairwise terms.

2. The entropy S is replaced by an approximation S 4
that incorporates singleton and pairwise entropy terms via
counting numbers {c; ¥i € V, p;; V(3,5) € E}:

Salq) = ZCiSi - Z pijlij. 3)

i€V (i,5)€€&

Here S;(g;) is the entropy of the singleton distribution of
X, and I;;(;;) is the mutual information of edge (i, 7)
given by I;; = S;+.5; — S,;, where S;; (11;;) is the entropy
of the pairwise distribution 11;;. Note that always I;; > 0

In this paper, we shall consider the approximate partition
function Z 4 obtained by minimizing the corresponding ap-
proximate free energy F 4, defined as follows,

—logZs = I;leiffA(Q), Falq) =Eq(E) — Salg). 4

We shall also be interested in the approximate marginals
given by the arg min of (@).
may be arbitrarily well approximated by a binary pairwise model,
though the state space may be large.

*Some instead define Sa = Y, ., ¢iSi + > (igyee CiiSids

. . . . / /
which is equivalent via ¢;; = pij,c; = ¢i — Zje./\/(i) Pij-



2.2 CHOICE OF COUNTING NUMBERS

In the standard Bethe entropy approximation Sz, all count-
ing numbers ¢; and p;; are set to 1. This often performs
very well, yet leads to a non-convex approximate free en-
ergy Fp that can be hard to optimize.

Another choice yields the well-known tree-reweighted ap-
proximation (TRW, Wainwright et al) 2005) S7. Here
again all ¢; = 1 but now the edge weights p;; are selected
from the spanning tree polytope, resulting in all p;; < 1.
Since I;; > 0, this immediately implies that Sp > Sp, and
hence Z7r > Zpg. It is also known that TRW values are
bounded by true values in that S > S, hence Zp > Z
(whereas for many counting numbers, S 4 may be above or
below S, similarly Z4 may be above or below Z; indeed,
in some cases including Bethe, S4 may even be negative).
We note also that St is concave leading to the correspond-
ing free energy approximation Fr being convex, allowing
easier optimization.

Other choices of counting numbers yield a rich family
of approximations, which has been studied previously.
Yedidia et al| (2005) discuss counting numbers for the
broader concept of regions which may contain any num-
ber of variables (in particular more than two). This nat-
urally relates to generalized belief propagation (GBP) and
associated Kikuchi free energy approximations. Pakzad and
Anantharam| (2005) and Heskes| (2006) derived sufficient
conditions for such free energy approximations to be con-
vex. In this paper, we consider only pairwise counting
numbers. In this context, Meshi et al| (2009) explored a
wide range of pairwise counting numbers to try to find a
convex free energy approximation with performance com-
petitive to Bethe. For a subrange of models, they observed
that this was possible yet still overall, Bethe performed very
well. This is one of the motivations for this work, to under-
stand better why Bethe performs so well.

Following Yedidia et al.|(2005) and|Meshi et al.|(2009)), we
say that an approximation is variable valid if c; = 1Vi €
V, and is edge valid if p;; = 1 V(i,j) € &. Their earlier
work showed that variable valid approximations typically
perform well compared to others, and we shall focus more
attention on these models, though many of our results apply
more generally to arbitrary counting numbers. Note that if
all variables are independent, then variable validity is re-
quired to return the true entropy. If variables are connected
in a tree, then edge validity is necessary to be exact. Bethe
is unique in always being both variable and edge valid.

On a related theme, Weller et al.| (2014) teased apart the
two aspects of the Bethe approximation, i.e. the polytope
and entropy as described in Their results indicate
that even if the optimization of (@) is performed over the
marginal polytope, still the Bethe entropy approximation
typically performs better than TRW. We consider polytope

effects in

2.3 SUBMODULARITY

A (set) function f : 2X — R is submodular if VS, T C
X, f(SNT)+ f(SUT) < f(S) + f(T). For finite X,
this is equivalent to diminishing returns, i.e. VS C T,z €

XAT, ((Tu{z}) - A(T) < F(SU{z}) - f(9).

Submodular functions have been studied extensively (Ed-
monds, [1970; Lovasz, |1983; [Bach, 2013). In some ways,
they are a discrete analogue of convex functions and can
be minimized efficiently. The concept can be generalized
to consider any lattice, i.e. a partially ordered set (L, <)
such that Vx,y € L, 3 a greatest lowest bound (glb or
meet) © Ny € L and a least upper bound (lub or join)
xVy € L. A (lattice) function f : L — R is submodular

ifVe,ye L, f(x Ay) + fxVy) < fz) + f(y).

For a pairwise function f over binary variables, f is sub-
modular iff £(0,0)+f(1,1) < f(0,1)+f(1,0). Itis easily
shown that the energy (or cost) of an edge (4, ) is submod-
ular iff it is attractive, i.e. iff W;; > 0. Further, the set of
vectors in R™ with < y if z; < y; for all components ¢,
is a lattice. Here « A y has ith component of min(x;, y;)
and z V y has ith component of max(z;, y;).

2.4 FLIPPING VARIABLES

The method of flipping (sometimes called switching) binary
variables will be useful for our analysis in Given a
model on variables {X;}, consider a new model on {X/}
where we flip a subset R of the variables, i.e. X{ =1-X;
for variables i € R C V, and X] = X, fori € V\ R.
We identify new model parameters {0;, W, } as in (Weller
and Jebara, 2013, §3) in order to preserve energies of all
states up to a constant, hence the probability distribution
over states is unchanged. If all variables are flipped (i.e.

R = V), new parameters are given by

W =W, 0 =—0;— > Wi (5)
JEN(3)
If the original model was attractive, so too is the new

model. In general, if a subset R C V is flipped, let
& = {edges with exactly ¢ ends in R} fort = 0,1,2,

then we obtain
W — W, (’L,]) GSOUEQ,
" ~Wi;  (i,7) € &1,

0; = {61’ + Z(@j)E& Wi i€VAR, (6)
—0; — Z(i,j)Efg Wi i €R.

The proof of the following result for general counting num-

bers follows the argument used by Weller and Jebara) (2013)

for the specific case of the Bethe approximation.

Lemma 1. Flipping variables changes affected pseudo-
marginal matrix entries’ locations but not values. For



any counting numbers, F 5 is unchanged up to a constant,
hence the locations of stationary points are unaffected.

2.5 ATTRACTIVE AND BALANCED MODELS

A model is attractive iff all its edges are attractive, i.e.
iff W;; > 0 V(i,j) € €. As suggested by attrac-
tive models have desirable properties, e.g. a MAP assign-
ment may be found in polynomial time (Greig et al.,|1989),
and as shown in @ we can construct a FPTAS for Z 4 for
any counting numbers. We remark that, as observed by
Harary| (1953), a general model (which may contain repul-
sive edges) can be mapped to an attractive model by flip-
ping a subset of variables iff the initial model is balanced,
that is iff it contains no frustrated cycles, i.e. a cycle with
an odd number of repulsive edges. Hence, results that apply
to attractive models may readily be extended to the wider
class of balanced models.

3 FIRST DERIVATIVES OF F4

Combining (@) with (1), @) and (3), yields

== i~ Y Wi&;

i€V (i,5)€€
— ZciSi + Z Pij(Si + Sj — Slj) (7)
% (i,9)€€

3.1 OPTIMUM PAIRWISE PSEUDOMARGINALS

Differentiating (7) with respect to &;;, we obtain
5‘.7: A 8 S’L]

= fW i
afij — i 8§Zj

id 1+ i — Qi — Qi
_—Wij—F,Oileg gj( 5] 4 qj):l.

(@ — &ij)(qj — &ij)

Note that this is independent of the singleton counting num-
bers {c;}. Welling and Teh! (2001) considered the specific
case of the Bethe approximation, where p;; = 1. Solving

the general case for 6{; 4 = () leads to a quadratic equation,

+ (1 + ai5)qi9; =0, (8)

where we define a;; = eWii/Pii — 1. Observe that here
Wi;/pij plays the ‘edge count modified’ role typically per-
formed by W;; in the standard Bethe approximation. It is
easily shown that (8) has just one feasible solution (Welling
and Teh| 2001; Weller and Jebaral 2013), as given in the
following result.

i€l — (14 cuj(qi + 45)165

Theorem 2. For general counting numbers, given single-
ton pseudomarginals, optimum pairwise terms (Which min-
imize the approximate free energy) are given by

1 2
205 (“"Z‘J‘ - \/ ij

fgkj <Qia Qj) = — 40@7‘(1 + aij)Qin) s

*Note Qij =

where o;; = eWiilpii — 1, zi; =1+ i5(q + gj).

Henceforth we shall often consider F 4 as a function of just
the singleton pseudomarginals {g;}, with all pairwise &;;
terms being implicitly specified by their optimum values as
given by Theorem

As noted by [Weller and Jebaral (2013)), may be rewrit-
ten as §;; — ¢iq; = ij(qi — &ij)(q; — &ij)- The terms in
parentheses are elements of the pairwise marginal (2), con-
strained to be > 0. By its definition, o; takes the same
sign as W;; /p;;, hence the following result holds.

Lemma 3.
qiq;j-

Wi Wi
JJ >0 = & > qiq, i]? <0=¢; <

We remark that, given singleton marginals {¢;}, a lower
edge counting number |p;;| implies a more extreme pair-
wise marginal term in the sense of greater |§;; — g;q;|. This
is true, for example, of TRW compared to Bethe.

3.2 FIRST DERIVATIVES WRT ¢;, ASSUMING
OPTIMUM PAIRWISE PSEUDOMARGINALS

We follow the approach of |Welling and Teh|(2001)), noting
that at the optimum pairwise pseudomarginals, g? 4 =0
for all edges, hence, holding ¢; fixed Vj # i,

dFa
dg;

~ 0Fa
{a;}

O0F 4 0&i;
08 0q;

{Qjéij} jeN(')

—0; — cio + Zpu

4 JEN(2)

S Sij)

:79i+cl-10g1 g

— 4
¢ —&ij
+ > i ( log 7—— +log )
JEN(D) — q; 1+ 52] qi q;
=—0; +¢ log 1 + Z Pij IOg ng» )]

b N

where as in (Weller and Jebaral 2014b), we deﬁneE]

o ¢ —&ij )(1—%‘) 10
Qs <1+§ij—qz‘—qg‘ qi ) (10)

Considering and Lemma 3] yields the following.

Lemma 4. If edge (i, j) is attractive, i.e. Wi > 0, then
pijlog Qi; < 0.

Gradient descent methods may be used to try to minimize
F 4 but note these may find only a local optimum.

X;=0|X;=1
aiqi(si — Sj) = PRE0NED by )

p(X;=0[X;=0)



3.3 BOUNDS ON FIRST DERIVATIVES WRT ¢;

We generalize the approach of Weller and Jebara (2014a) to
bound the range of first derivatives (9) for free energy ap-
proximations with arbitrary counting numbers. An impor-
tant application is the construction of an e-sufficient mesh
to estimate log Z 4, see 5

Initially assume a model that is locally attractive around
X, ie. le >0VjeN(@ ) From (©) and Lemma4] we
obtain A < —f; + c;log 4

1—

Now ﬂ1p all variables, see §2.4] to consider a model with
{X!=1-X; VieV}, keeping the same counting num-
bers. We obtain W/ ; = Wi; and can apply the result above
to yield

_OF.
A <0+ W —¢ log (see §2.4),
4qi — Y4
wl.lere. we deﬁne. W = Zjﬁ N(i):W,-jzo_Wij- Corr.lbine
this with the earlier result to yield a sandwich inequality,
q OF 4 4di
—0;+¢; 1 —— < —0;+¢l .
ites Ogl—qi T dq it Ogl—%‘
Now generalize to consider the case that X; has some
neighbors X; € ‘R to which it is adjacent by repulsive
edges, i.e. where W;; < 0. First flip just the variables
in R, see and then apply the above sandwich result to
yield the following Theorem, where we define the nonneg-
ative value W™ = 3. \ii).w, <0 —Wis-
Theorem S. For arbitrary counting numbers, assuming
optimum pairwise pseudomarginals, first derivatives of F o
are sandwiched in the range
OF

~W; < —=<—0;i+cilog ——
—q; 8‘]2 ]- q;

Wt <

—0;+c; log —— 1

?
Note that both upper and lower bounds are monotonic in g;
(increasing with g; if ¢; > 0, else nonincreasing), ranging
from —oo to oo, separated by the constant value W, +
wit = > jeniiy IWijl. See Flgurelfor an example.
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4 SECOND DERIVATIVES OF F,

We extend the analysis of |Weller and Jebaral (2013)) to de-
rive all terms of the Hessian H for free energy approxima-
tions F 4 with arbitrary counting numbers.

Theorem 6 (H;; = 074

0qi0q;
Falqi,--.,qn) at optimum pairwise marginals &;;).
995 —&ij
pijTi;
0

ifi#j,(i,j) €E
ifi # j, (i,5) ¢6’
q(1—qj Pij
H;; = + < >7
1_qz gf:( pZ]Ej Qz(l—%)

second derivatives of

H,

)

+W..

=
)]

:qi S.t.
(a;)=0 .

=
o

IF A
Jdi

[&)]

o

Partial derivative
&

\
[
\
\
\
\
-10 1 Parameters used in thlsexample: [
¢=1, 6=1 W;=2, W'=1.9 |
-15 L l L L L
0 0.2 0.4 0.6 0.8 1

Pseudomarginal q i

Figure 1: An example of upper and lower bounds for %Lq:‘. Blue

curves show monotonic upper fU (g;) and lower f{(g:) bound
curves from Theorem |5| separated by constant W~ + W;L. In
preprocessing, the search space is shrunk to within the dashed red
lines, within which | &4 < W™ + W;H = 3. ) [Wisl.

where &;; takes its optimum value from Theorem E] and
Tij = aiq;(1 — @)1 — q5) = (&5 — @igz)® = 0. with
equality iff ¢; or q; € {0,1}. Proof in Appendix.

These second derivatives may be combined with the earlier
gradients (9) for more efficient local minimization of F 4.

4.1 SUBMODULARITY OF F4

Considering the expression for H;; from Theorem @ to-
gether with Lemma [3] observe that provided p;; # 0 and
¢.¢; ¢ {0,1}, W;; >0 & g{;g{z < 0 (whatever the sign
of p;;). Since third derivatives exist and are finite in this
range, this yields the following result.

Theorem 7. For any counting numbers with
pi; # 0 Y(i,j) € & and any discretization, an at-
tractive model yields a submodular discrete optimization
problem to estimate log Z 4. Proof in Appendix.

This means that considering F4(q1, . .., g,) with pairwise
marginals given by Theorem[2] for any discrete mesh M =
[T, M;, where M,; is a finite set of points for g; in [0, 1],
and for any counting numbers, then the discrete optimiza-
tion to find the point in M with lowest F 4 is submodular
for any attractive model (hence can be solved efficiently).

S OPTIMIZING THE APPROXIMATE
FREE ENERGY F,

True marginal inference is NP-hard (Cooper,|1990), even to
approximate (Dagum and Luby, (1993). However, Weller
and Jebara (2014a) derived an algorithm to approximate
the Bethe log-partition function, log Zp, to within any €
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Figure 2: Stylized example for optimizing the approximate free
energy over two variables. The search space is first shrunk to ex-
clude the outer red region, then the inner blue region is discretized
using an e-sufficient mesh. The red dot indicates the (continuous)
global minimum. On the mesh: the purple dot has the closest lo-
cation, guaranteed to have value within €, while the green dot is
the lowest point, hence is the discretized optimum returned.

by constructing an e-sufficient mesh M(e), i.e. a discrete
mesh over the space of singleton marginals [0, 1]™ such that
the mesh point ¢* with minge r¢() F5(¢) is guaranteed to
have Fp(q*) within € of the global optimum of — log Z .
In the case of an attractive model, the discrete optimization
problem was shown to be submodular, leading to a FPTAS
for log Z. Using Theorems [5] and [7, we extend their ap-
proach to obtain similar results for any counting numbers.

The overall mesh method is outlined in Algorithm |1 and
illustrated in Figure Note that we need search only
over the space of singleton marginals [0, 1]”, since pair-
wise terms may be computed with Theorem [2] First the
search space is shrunk using the bounds of Theorem [5}

since we need check only where % can be 0. Within

this range, 83%| < W7 + W = > jen) IWijls see
Figure [T} Next, discrete mesh points for each variable’s
singleton marginal ¢; may be selected in its range such
that the step size J; satisfies J; max aa%’ ~ <. This
ensures that, wherever the global minimum is within the
space, J4 cannot rise by more than n.- = e at the clos-
est mesh point. This leads to a number of mesh points in
dimension i of N; = O(3:) = O(2 X, cniy IWijl)- I
an upper bound W on edge strengths is known such that
[Wi;| < W VY(i,5) € &, then the sum of mesh points
in each dimension, N = Y, ., N; = O(“™%), where

m = ||

If the model is attractive, we obtain a FPTAS since by The-
orem [/} the resulting submodular multilabel optimization
problem may be solved in time O(N?) = O ((M)?’)

€

using earlier graph cut results (Schlesinger and Flach,
20006; (Greig et al., |1989; (Goldberg and Tarjan, [1988). If
the model is balanced, then a subset of variables may be ef-
ficiently identified such that flipping them yields an attrac-

Algorithm 1 Mesh method to return e-approximate global
optimum log Z 4 for any counting numbers.

Input: €, model parameters {6;, W;;} and counting num-
bers {Ci, pij}
Output: Estimate of global optimum log Z4 guaranteed in
[log Z4 — €,log Z 4], with corresponding pseudomarginals
as arg for the discrete optimum
1: For each X;: Compute upper and lower bound curves
for 86% from Theorem use these to shrink the search
space to a range wherein |%% | < W, + Wi‘*‘ =
D ieniy |Wisl, see Figure
2: Construct an e-sufficient mesh as described in §5

3: Solve the resulting discrete optimization problem (ef-
ficient by Theorem [7]if the model is attractive), see

tive model (see §2.4), hence the FPTAS extends to balanced
models. If the model is not balanced, there is an exten-
sive range of methods available, see (Koller and Friedman,
2009, §13) or (Kappes et al.,2013) for recent surveys.

Various refinements to improve efficiency are discussed by
Weller and Jebaral (20144l for the Bethe case. All those
techniques may also be applied here, and can help signifi-
cantly in practice, though they do not improve the theoreti-
cal worst case.

Other approaches to attempt to minimize the Bethe free en-
ergy have been developed (Welling and Tehl 2001} |Yuille,
2002; Heskes et al., |2003; |Shin, [2012)), and some general-
ize to other counting numbers, including the message pass-
ing methods of |Hazan and Shashual (2008) (guaranteed to
converge for a convex free energy), Wiegerinck and Hes-
kes| (2003)) or Meshi et al.|(2009), but unless F 4 is convex,
none guarantees a solution close to the global optimum.

6 UNDERSTANDING APPROXIMATION
ERROR

We examine how the entropy approximation S 4 may lead
to error in the marginals, then consider other factors affect-
ing error in the estimate of the partition function.

6.1 EFFECT OF APPROXIMATE ENTROPY ON
MARGINALS

It has previously been observed that in cyclic graphs, there
are situations where the Bethe entropy tends to pull approx-
imate singleton marginals toward extreme values near 0 or
1, and that this tends to occur as a ‘phase transition’ in be-
havior when edge weights rise above some threshold (Hes-
kes, |2004; Mooij and Kappen, ZOOS)E] One perspective on

“Note that we describe a transition in the accuracy of approx-
imate singleton marginals. A quite different symmetry-breaking
effect is the ‘ferromagnetic-paramagnetic’ transition that relates



this is algorithmic stability (Wainwright and Jordan} 2008,
§7.4). A different heuristic interpretation is that it occurs
as a result of LBP overcounting information when going
around cycles (lhler, 2007). Here we extend the explana-
tory approach of|Weller et al.|(2014) by considering the en-
tropy approximation and examining the effect of different
counting numbers.

To illustrate the principles, we analyze a simple model with
n vertices connected such that each vertex has exactly d
neighbors (such models are called d-regular), with all edge
potentials symmetric of weight W and no singleton poten-
tials (we call these models symmetric and homogeneous).
Using (), it is easily shown that, for any counting num-
bers, there is a stationary point of F4 at a location with
4G = % Vi € V, which by symmetry clearly also give
the true singleton marginals. However, for certain count-
ing numbers, including the Bethe parameters, when W is
above a critical threshold, this stationary point is no longer
a minimum, and new minima emerge that pull singleton
marginals away to extreme values. The following result
considers an approximation with uniform counting num-
bers (i.e. all ¢; = ¢, p;; = p), and demonstrates conditions
for when ¢; = % Vi € V is not a minimum, by explicitly
providing a direction showing that the Hessian H is not
positive semidefinite.

Lemma 8. For a symmetric homogeneous d-regular model
on n vertices, let H be the Hessian of the approximate
free energy at q; = % Vi € V), using uniform counting
numbers ¢; = ¢ Vi € V,pi; = p V(i,j) € &, then

T — _ a —1s();
1"Hl=n [4(6 dp) + o |, where § = 50 (2p) is the
uniform optimum edge marginal term, and o(u) =
is the standard sigmoid function. Proof in Appendix.

_1
Tte—u

Hence, ¢; = % Vi is not a minimum if
w=4(c—dp)+ p% < 0. First, note that for the
Bethe approximation ¢ = p = 1, and this condition

reduces to § > -4 < W > 2log 2% . Indeed, when W
rises above this critical threshold, singleton marginals will
move away from % (Weller et al., 2014).

In general, higher singleton counting numbers ¢ and lower
edge counting numbers p raise w, making it harder to sat-
isfy the condition. The effect of the density of connectivity
d is less clear, and depends on the other parameters. For
example, consider the TRW approximation with ¢ = 1 and
uniform edge weights p = % < 1, declining with
d, which are optimum in this setting (Weller et al., 2014}
Lemma 7), then w is positive and increases rapidly with
d (whereas Bethe suffers in this regard by keeping p = 1

fixed).

To understand this behavior, recall the definition of S4
in (). As singleton counting numbers ¢; rise, we add
more S; which are concave, thereby increasing convexity

to the true global distribution of states (mostly aligned or not).
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Figure 3: Average over 20 runs of singleton marginal vs. uniform
symmetric edge weight W for: exact inference, Bethe approxima-
tion, Bethe+marginal polytope, and TRW (all p;; = 2/3). Trian-
gle topology with random singleton potentials 0; ~ [0, Traz]-
For W > 0: Bethe and Bethe+marginal overlap, exact and TRW
almost overlap. For W < 0 (frustrated cycle): Bethe and TRW
almost overlap, as do exact and Bethe+marginal.

of F,4 around % and making it more likely to be a mini-
mum. On the other hand, increasing edge terms p;; leads
to more mutual information I;; being subtracted, thereby
increasing concavity of F 4 around % and potentially push-
ing marginals away from % This perspective helps to un-
derstand why a convex free energy approximation leads to
algorithmic stability (Wainwright and Jordan, 2008, §7.4).

The severity of this problem for estimating singleton
marginals is high when true marginals are near %, which
typically occurs for small singleton potentials, but it is less
problematic when true marginals are themselves near 0 or
1. The effect is illustrated in Figure [3] Note how, for pos-
itive W, the Bethe marginals are pulled toward 1 whereas
TRW is almost exactly correct. The effect for W < 0 is
dominated instead by a polytope effect, which we discuss
in the next Section.

We remark that although the entropy approximation may
have a dramatic effect on the accuracy of singleton
marginals, particularly for low singleton potentials (where
true marginals are near %), the effect on estimating pair-
wise marginals and the partition function is less clear. In-
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Figure 4: Illustration of the polytope effect on edge marginals.
A-B and A-C are strongly coupled, B-C is very weakly coupled
with all edges symmetric and attractive, and no singleton poten-
tials. Edge marginals are shown. For B-C, above the edge (red) is
the optimum in the marginal polytope (global consistency), below
the edge (blue) is the optimum for the local polytope. See

deed, Bethe typically outperforms TRW on these measures
(Weller et al., 2014).

6.2 EFFECT OF LOCAL POLYTOPE

We revisit and expand on an example from [Weller et al.
(2014) to show that the impact of each of the two aspects
(i.e. polytope and entropy, see §2.1)) of an approximation
to the partition function can pull in opposite directions.
Hence, improving just the entropy approximation could
lead to a worse approximation.

Consider the model in Figure 4, where 3 variables are con-
nected in a triangle. Two edges are strongly attractive, and
the third is very weakly attractive. The strong edge A — B
ensures that A and B take the same value, similarly for
B—C'" Hence, in the globally consistent marginal polytope,
B and C must take the same value. The global states 000
and 111 each have probability of almost %, and the pairwise
marginals are shown along the edges of Figure[d Since the
model is almost a tree, we know that Zg ~ Z. We shall
examine how this arises by starting with exact inference,
then switch to use the Bethe entropy approximation on the
marginal polytope, and then relax the constraint set to the
local polytope. We shall ignore the energy terms since they
are equal here for true or approximate inference.

As noted, there are 2 states that dominate the global prob-
ability distribution, hence true S ~ log2. Computing
the Bethe entropy on the marginal polytope, we obtain
Sp ~ 3log2 — 3log2 = 0, which is too low by log 2.
However, when the polytope is relaxed, a better optimum
is found by maximizing the edge entropy of B — C' as
shown under the edge in Figure 4, Since only local con-
sistency is required, there is no longer any need for B to be
equal to C' and we gain the difference in edge entropy of
2log2 — log2 = log 2, thus exactly offsetting the deficit
due to Bethe entropy on the marginal polytope.

This example demonstrates that focusing exclusively on the
entropy approximation, without also considering the poly-

tope approximation, may lead to difficulties. We highlight
another aspect of the polytope approximation, in that it
introduces half-integral vertices (Wainwright and Jordan,
2008). In a balanced cycle (even number of repulsive
edges), this is of little consequence since the optimum en-
ergy (MAP solution) is always at an integral vertex, but in a
frustrated cycle (odd number of repulsive edges, see §2.5),
the energy can cause singleton marginals to be pulled to-
wards % Hence, although the Bethe entropy pulls these
marginals away from % on balanced cycles, the polytope
effect pushes the other way on frustrated cycles, which in
some cases may provide a helpful ‘balance’. Since many
optimization techniques (including message passing meth-
ods) exploit the efficiencies possible with the local polytope
approximation, it may in fact be desirable overall to have
an entropy approximation such as Bethe, for this offsetting
effect. See Figure[3]in the region W < 0 for an illustration,
where the Bethe+marginal optimization was performed us-
ing the Frank-Wolfe algorithm (Frank and Wolfe, [1956).

6.3 BOUNDS ON Z4

While the TRW approximation has Z7 > Z by construc-
tion, until recently there were no guarantees on the per-
formance of the Bethe approximation, though it typically
yields very good results. Sudderth et al.|(2007) proved that
Zp < Z for a range of attractive binary pairwise mod-
els, and conjectured that this bound holds for all attractive
models. This was proved true by Ruozzi| (2012) using the
method of graph covers, and then also by Weller and Jebara
(2014b) by combining the idea of clamping variables with
analyzing properties of the derivatives of Fp.

In this Section, we use the loop series method (Sudderth
et al., 2007} Chertkov and Chernyakl [2006) to show that for
certain other models, we can prove that Zg > Z. For such
models, this immediately implies that the Bethe approx-
imation is better for estimating Z than any approximation
with ¢; = 1 Vi € V (variable valid) and p;; < 1V(4,5) € €

(from the definition of Sy, see §2.1}2.2)). In particular, for
these models, Z < Zg < Zr.

Sudderth et al|(2007) showed that Z/Zp = 1 + a series of
terms, one term for each generalized loop, which is a sub-
graph such that no vertex has degree 1, and demonstrated
that each of the terms in the series is > 0 for certain mod-
els, and hence Zp < Z for these cases. See Appendix for
background on this approach. In particular, if there is ex-
actly one cycle in the model, then there is only one term in
the series and if the cycle is attractive, then this term is pos-
itive. We note that this immediately generalizes to a cycle
that is balanced (see §2.3|for definitions).

Here we apply similar analysis (Sudderth et al., 2007} §3-4,
or see Appendix), and observe that if there is exactly one

3This can lead the Bethe optimum of a strongly frustrated cy-
cle to occur at a location where Sp < 0.



cycle and it is frustrated, then the term is negative, thus
proving that for such models, Zp > Z.

Interestingly, [Weller and Jebara (2014b) have shown that
for the case of a model with one balanced cycle, %Z <
Zp < Z, so although Zp is lower than Z, it cannot be by
much even for very strong edge weights; whereas for a sin-
gle frustrated cycle, there is no limit to how large Z5/Z can
rise. This suggests that for a general model, the accuracy of
Z p will depend on the blend of balanced and frustrated cy-
cles, where in a sense frustrated cycles cause greater trou-
ble than balanced cycles, though to understand how the ef-
fects combine in a model with multiple cycles will require
further analysis. Since Zp performs well even for attrac-
tive models (Sudderth et al., [2007)), this indicates that, for
estimating the partition function, practitioners should use
approximations with p;; < 1 (such as TRW) with caution.

The loop series method extends to models with more than
one cycle but the analysis becomes more complicated.
Again using the approach of Sudderth et al.| (2007)), we can
conclude more generally that Zp > Z for any model such
that every generalized loop contains an odd number of re-
pulsive edges (this is a sort of generalized frustrated cycle),
and the Bethe optimum marginals for every variable that
has an odd degree > 3 in any generalized loop, are either
all < % or all > % (see Appendix).

6.4 DERIVATIVES WRT COUNTING NUMBERS

We are interested in exploring which counting numbers
lead to accurate inference as measured by errors in the esti-
mates of the partition function and marginals. Considering
and using the envelope theorem (Milgrom,|1999, Theo-
rem 1), we have right derivatives:

810gZA+_

T —aneggc&(qz),

dlog Z, ™t

T.A = max [Si; (pi) = Silar) = Si(gp)), A
ij

where X is the set of all arg min F, AE] The left derivatives
correspondingly take the min rather than the max of the
same expressions. If the minimum of F4 is unique, as is
the case for any convex F 4, then the right and left deriva-
tives are equal.

For tractable models, where the exact partition function
Z may be computed, this will allow exploration over the
range of counting numbers that yield accurate partition
functions. It will be interesting to investigate robustness

SThis generalizes an earlier result for convex free energies
(Meshi et al., 2009} Prop 5.2), which itself generalized a result of
Wainwright et al.[(2005). The envelope theorem is similar to Dan-
skin’s theorem (Bertsekas), [1995). Recall log Z4 = — min Fa4.
Intuitively, for multiple arg min locations, each may vary at a
different rate, thus for the right derivative, we must take the max
of the derivative over all the locations.

of the quality of the partition function estimate to changes
in model potentials, and accuracy of marginals, though this
is outside the scope of the current work.

Others have investigated ways to optimize counting num-
bers. [Wiegerinck and Heskes| (2003) proposed a method
using linear response theory. They also discussed alpha-
divergence measures, an idea developed further by [Minkal
(2005), who fascinatingly frames (fractional) BP and
(power) EP under a general framework of iterative mini-
mization of alpha-divergence, yielding insight into which
measures may be expected to perform well for different ob-
jectives, though concluding that this is difficult to predict.

7 CONCLUSION

We have shown how recent results for the Bethe approxi-
mation may be extended to handle the broad range of pair-
wise approximations using any counting numbers. Our
analysis builds on earlier work (Welling and Tehl 2001}
Yedidia et al.| [2005; Meshi et al.l 2009; |Sudderth et al.,
2007; [Weller and Jebaral, 2013| 2014a), providing new in-
sights and deepening our understanding of how best to per-
form inference in practice. This is important given the pop-
ularity of LBP and TRW approximations. Further, it pro-
vides a valuable toolbox for further exploration.

Areas for future investigation include trying to understand
better how to predict which approach will work well for
a given model, and analyzing the performance of message
passing algorithms with different counting numbers (where
our e-accurate approach provides a valuable benchmark).
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APPENDIX: SUPPLEMENTARY MATERIAL
Bethe and Related Pairwise Entropy Approximations

In this Appendix, we provide:

e Proofs of Theorems [6]and[7, and Lemmal 8] from the main text.
e Background on the loop series method (Chertkov and Chernyakl [2006; |Sudderth et al., [2007)).

Second Derivatives of F 4

Theorem@ (H;j = 8‘9;’;% second derivatives of F4(q1, ..., ¢,), assuming optimum pairwise marginals ¢;;)
99 —&j i (s ) (1 — . .
Hij _ piJjTij] lf(l7]) ES’ H,, :L+ Z <QJ(1 QJ) . Pij ) :
0 if (i,5) ¢ € (1 — i) Py pij Tij ai(1—a)

where &;; takes its optimum value from Theorem and T;; = ¢;q;(1 — ¢;)(1 — q;) — (&5 — @iqj)* > 0, with equality iff
qi Or q; € {0, 1}.

Proof. The proof of this result for arbitrary counting numbers extends the earlier approaches of |Weller and Jebara| (2013))
and [Korc et al.[(2012)), which examined only the restricted case of the Bethe approximation. Consider the equation for the
free energy approximation F4 (7). Note that we shall always assume optimum pairwise marginal &;; terms to be given
implicitly by Theorem [2] We first consider pairwise terms of F4, then singleton terms, which will be added together to
give the result. 7;; > 0 unless ¢; or g; € {0, 1} follows from (Weller and Jebara, [2013 Lemma 12).

Pairwise terms. Consider an edge (7, j) € £ and collect its pairwise terms together from F,4 (7)), defining
f(@i,45) = —Wis&ii(ai, a5) — pijSij (4, 5)- (12)

Lety = (y1, Y2, y3) be one of four possible vectors with components y; = a, y» = band y3 = 1, where a,b € B = {0, 1}.
Note that a third ‘dimension’ restricted to the value 1 has been added for notational convenience. Let 7(y) = y;;(a, b), that
is the (a, b) element from the p;; matrix (), given the values of ¢; and g;. Let ¢(y) = W;; ify = (1,1,1), or ¢(y) =0
otherwise. Let r = (g;, g, 1). Define function h used in entropy calculations as h(z) = —zlog z.

Consider (I2) and instead of solving for &;; (or equivalently for 7) explicitly, express f as an optimization problem, min-
imizing the approximate free energy subject to local consistency and normalization constraints in order to use techniques
from convex optimization. We have f(¢;, ¢;) = g(r) where

9(r) =min Y [=o)m(y) = pish(x(y))]

st. Y wy)=r k=123 (13)
yiyr=1

Introducing dual variables A, the Lagrangian can be written as

Le(m, A) = Y _[(=0(y) = (v, M) (y) = pigh(m(y))] + (5, A),

y
with derivative
AT ) (y) — b3 2 + pig(1 + o),
which yields a minimum at
TA(y) = exp (¢<y> 2 1) . (14)
i



Since the minimization problem in (T3) is convex and satisfies the weak Slater’s condition (the constraints are affine),
strong duality applies and g(r) = maxy G(r,A) = G(r, \*(r)) where the dual is

G(r, A) = min Ly = —pij Zm (15)

o . .. . 2 ON:
Hence, 29 _ 0G = A}. Our aim is to obtain second derivatives of f via 09 _ 9 , which we shall derive in terms
Orr ~— OTk |y« k or;0ry, ory

of a 3 x 3 matrix C, where we define

892G Dy
= Tk p=1,2
Cri ONONe  ON 2,3
with 8G /\
Dy(r, ) == (r, Z ki (y) + rx,  using (T3). (16)

Now Dg(r, A\*) = 0 for k = 1,2, 3. Differentiating this with respect to r;,

dDy,(r, \*) aD, OD; OX;
0= LA ) k=123
d’l“l 67”1 Z 8)\ 677 ’
0?
- O+ Z Chp 81"16'97* using (T6) and definition of C.
Hence, % = —[C~Yy;. Using its definition and (T6)), we have
0%’G
C =
T anoN: N ( 2 T + T’“)
]' *
=—— Zykym > mw)-
p yyr=y1=1
Thus, using shorthand giqp = p5(a, b),
1 [P0+ p pi1 Hio + 11
C=-— 11 o1 + g1 Hor + pn | - a7
Pis \po + 1 po1 + pas 1

Recall constraints p1o0 + po1r + piio + p11 = 1, po1 + 11 = ¢, pio + g1 = g;-

Applying the result above and Cramer’s rule,

02 02 1 1
f_o9_ ————= (to1 + p11) (poo + 10) = M

a2~ or2 p” det C —p;;det C
aZf _ 82f _ 629 _ (N01M10 - MooMu)
8(]1‘8%‘ 8qj8qi 87”137'2 7/)” det C'
’f 9y 1 ai(1 —q;)
87%2 = 87'% = pw detC(M1o+M11)(uoo+Mo1) W

From (L7), after simplifying, —p;jdet C = poopiop11 + paopa1por + Hi1piopoo + Hoipootio = 0 (all products
of three terms of the pairwise pseudomarginal matrix (Z)). Substituting in terms from (2) and simplifying establishes
—pijdet C' = Tj; from the statement of the theorem, and 1101110 — ftooft11 = ¢iq5 — &ij-

Hence,
Pf (1 —gy) f _we—&; 0*f _ a(l- Qz)

= ; = Y B (18)
9q; pij Ti 9q;0q; pij Lij 9q; pij Ti




Singleton terms. Let f;(g;) be the singleton terms from (7)) for X;. The only non-zero derivatives are with respect to g;.

fi(gi) :*eiqurSi(Qi)(*CiJr Z Pij)a

JEN(9)
Ofi
00 —0; — [log ¢; — log(1 — qz‘)](— Gt Yy Pz‘j)a
’ JEN (i)
O2f;  Ci— 2ijen) Pis
9q; a(1—a)
Adding pairwise and singleton terms gives the result. O
Submodularity of F 4
Here we consider F4(q1,--.,q,) with pairwise marginals given by Theorem [2} and show that for any discrete mesh

M = H?:l M;, where M; is a finite set of points for ¢; in [0, 1], and for any counting numbers (provided all p;; # 0),
then the discrete optimization to find the point in M with lowest F 4 is submodular for any attractive model (hence can be
solved efficiently). We follow the same reasoning used by |Weller and Jebara) (2013)) for the Bethe approximation.
Regarding the expression for H;; from Theorem @ together with Lemma observe that provided p;; # 0 and
¢,q; € (0,1),W;; >0« % < 0 (whatever the sign of p;;).

We first show that third derivatives of F4 exist and are finite. Recall that by definition, c;; = exp(W;;/pi;) —1 > —1,

with the same sign as W;;/p;;.

Lemma 9 (Finite 3rd derivatives). If ¢;,q; € (0,1) and p;; # 0V(i,7) € &, then all third derivatives exist and are finite.

Proof. Using Theorem@and noting T;; > 0 strictly given our conditions, it is sufficient to show that any %ik] is finite. We

may assume k € {i, j} else the derivative is 0 and by symmetry need only check aaif?' . Differentiating (8,

9ij _ aij(q; — &ij) +q;
0¢i 1+ oui(qi — &j + a5 — &j)

Recalling @2)), ¢; — &; and ¢; — &;; are elements of the edge pseudomarginal and hence are nonnegative. For a;; > 0,
it is clear that the denominator is positive. If a;; < 0 then note that a;; € (—1,0), hence it is sufficient to show that
(¢; — &i+a—& j) < 1. This follows immediately from other constraints ensuring that elements of the pseudomarginal
are valid, i.e. {; > 0and 1+ &;; —¢; —q; > 0. O

Next we show a stronger version of Lemma/[3] This will simplify the subsequent proof of Theorem 7}

Lemma 10 (Better lower bound for §;;, Lemma 14 in|Weller and Jebara, 2013). If o;; > 0, then &;; > q;q; + aijqiqj(l —
¢i)(1 —q;)/[1 + aij(q + g — 2¢:iq,)], equality only possible at an edge, i.e. one or both of ¢;, q; € {0,1}.

Proof. Write &;; = ¢;q; + y and substitute into (8) to give
aiy? =yl + i (4 + a5 — 2645)] + ijqiq;(1 — ¢;)(1 — q;) = 0.

This is a convex parabola which at y = 0 is above the abscissa (unless g; or ¢; € {0,1}), with negative gradientﬂ Hence,
all roots are at y > 0, and given convexity we can bound below using the tangent at y = 0, which yields the result. O

Now we prove the main result of this Section.

Theorem For any counting numbers with p;; # 0 V(i,j) € £, and any discretization, an attractive model yields a
submodular discrete optimization problem to estimate log Z 4.

"Observe that ¢; + q; — 2¢iq; = 3 — 2(¢; — 3)(g; — ), hence € (0, 1) for gi, ¢; € (0,1).



Proof. For any edge (i, j), let f be the pairwise terms from F 4 given in (I2)), and note the submodularity requirement from
2.3 Let 2 = (w1, 72), y = (y1, y2) be any points in [0, 1]2. Define s(z,y) = (s1,52) = (min(z1, y1), min(zz, y2)), and
t(x,y) = (t1,t2) = (max(x1,y1), max(xs,ys2)). Let g(x,y) = f(s1,82) + f(t1,t2) — f(s1,t2) — f(s2,t1), and call this
the submodularity of the rectangle defined by z, 7. We must show g(z,) < 0. Note f is continuous in [0, 1], hence so
also is g. We shall show that V(x, %) € (0,1)2, g(x,y) < 0 then the result follows by continuity.

Assume z,y € (0,1)2. Consider derivatives of f in the compact set R = [s1,%1] X [s2,t2]. Using (@) and bounded
pseudomarginal entries (see |Weller and Jebara, |2013| for details), first derivatives exist and are bounded. By Theorem E]

and Lemma [9] the same holds for second and third derivatives. Further, Theorem@ and Lemma show that °f

) 0qi0q;
9 f
34, 04; < 0.

If a rectangle is sliced fully along each dimension so as to be subdivided into sub-rectangles then summing the submodu-
larities of all the sub-rectangles, internal terms cancel and we obtain the submodularity of the original rectangle.

Hence there exists an € such that if we subdivide the rectangle defined by x, y into sufficiently small sub-rectangles with
sides < € and apply Taylor’s theorem up to second order with the remainder expressed in terms of the third derivative
evaluated in the interval, then the second order terms dominate and the submodularity of each small sub-rectangle < 0.
Summing over all sub-rectangles yields the result. O

Effect of Approximate Entropy on Marginals

Lemma([8l For a symmetric homogeneous d-regular model on n vertices, let H be the Hessian of the approximate free
energy at ; = 3 Vi € V, using uniform counting numbers ¢; = ¢ Vi € V,p;; = p V(i,j) € &, then 1TH1 =

n [ (c—dp) + } where £ = 1o (y) is the uniform optimum edge marginal term, and o (u) = is the standard

1+e w
sigmoid functlon

Proof. Using (), it is straightforward to show that there is a stationary point at ¢; = 1 Vi. By Theorem z all optimum
pairwise marginal terms are flj =¢ = 70 (2‘:}/ ) where o(u) = = + — is the standard sigmoid function. Now using

Theorem@ al Ty =T = 15 — (f— f) =¢ (* —f), and

[ 1

Background on the Loop Series Method

The loop series expansion of (Chertkov and Chernyak| (2006) provides an expression for the ratio of the true partition
function Z to the Bethe approximation Zp. Here we provide brief background, following the presentation in [Sudderth
et al.|(2007)).

At any stationary point /i of the Bethe free energy Fp, specified by our usual singleton {g; : ¢ € V} and edge {&;, : (i,7) €

£} marginal terms,
di(F)
Z y=1+ > fe J] B (- 0™, (19)
0AFCE i€V

where B = H Bij>  Bij = §ij — 445 , and d;(F) is the degree of 4 in the subgraph induced by F.
(i.j)eF ¢i(1 —q)g;(1 — g )

We write Zp(jt) to mean exp [—Fpg(j1)]. Note that Zp = max; Zp(jt) and that both Z, Z > 0.



Observe that (T9) is a sum over (the potentially large set of) all non-empty edge subsets. However, for any subset F' such
that d;(F) = 1 for any i € V, then Ey, [(X; — ¢;)%")] = 0, hence the term for this subset is zero and all such subsets
may be ignored. This leaves all subsets F' such that d;(F') # 1 Vi € V. These remaining subsets are called generalized
loops. Examples include a single cycle, two disjoint cycles, or two cycles connected by a path between them.

A related concept is the core of a graph, which is defined as the (unique) graph which remains after repeatedly removing
any nodes with degree 1. It is easy to see that no generalized loop can exist outside the core.

Regarding (19), [Sudderth et al| (2007) sought sufficient conditions such that all terms in the sum were nonnegative, in
which case clearly Zp < Z. One case is if (i) all Bp > 0, and (ii) all E, [(Xl — qi)di(F)} > 0. The first condition holds
for an attractive model since by Lemma each 3;; takes the sign of W;; (all p;; = 1 for the Bethe approximation). The
second condition clearly holds for any @ with d;(F’) even (since then we have the expectation of a non-negative quantity), or
d;(F) =1 (in which case it is 0 as noted above). Hence, we must worry only about generalized loops containing variables
with odd degree > 1.

Using a standard result for moments of Bernoulli random variables,
By, [(Xi = 0)] = a1 —a) [(1 = 0)"™ + (-1)"¢ "]

For d odd, this is nonnegative provided (1 — ¢;) > ¢; < ¢; < % Hence, if this is true for all variables in the core with
degree > 3, then this is sufficient to show that Zg < Z. Using a slight variant of the same argument, Sudderth et al.|(2007)
show that it is also sufficient if instead all such variables have ¢; > %

Our new observations. For our first result in we apply the same analysis and observe that if a model contains
exactly one cycle with edge set C and it is frustrated, then there is only one generalized loop F' = C": this has fr < 0 and
all d;(F) = 2, hence by (19), Z/Zg(z) < 1 Vi, and thus in particular, Zg > Zﬂ

Similarly, we can conclude more generally that Zp > Z for any model such that every generalized loop contains an
odd number of repulsive edges (this is a sort of generalized frustrated cycle), and the Bethe optimum marginals for every
variable that has an odd degree > 3 in any generalized loop, are either all < % or all > %

81n fact, for models with exactly one cycle, it is known that the Bethe free energy is convex (Pakzad and Anantharam, 2002), hence
there is only one stationary point.
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