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Abstract

A recent, promising approach to identifying a
configuration of a discrete graphical model with
highest probability (termed MAP inference) is to
reduce the problem to finding a maximum weight
stable set (MWSS) in a derived weighted graph,
which, if perfect, allows a solution to be found
in polynomial time. Weller and Jebara (2013)
investigated the class of binary pairwise mod-
els where this method may be applied. How-
ever, their analysis made a seemingly innocuous
assumption which simplifies analysis but led to
only a subset of possible reparameterizations be-
ing considered. Here we introduce novel tech-
niques and consider all cases, demonstrating that
this greatly expands the set of tractable models.
We provide a simple, exact characterization of
the new, enlarged set and show how such mod-
els may be efficiently identified, thus settling the
power of the approach on this class.

1 INTRODUCTION

Undirected graphical models, also called Markov random
fields (MRFs), are a powerful and compact way to repre-
sent dependencies among variables, with wide use in ma-
chine learning. A fundamental problem is to identify a
configuration of variables with highest probability, termed
maximum a posteriori (MAP) inference. However, this
is NP-hard (Shimony, 1994), leading to much interest in
finding methods and domains where the problem may be
solved exactly in polynomial time (we call such models
tractable), or approximate methods that perform well. Here
we focus on exact inference for binary pairwise models.
This problem is also referred to as energy minimization
(Kappes et al., 2013) or quadratic pseudo-Boolean opti-
mization (Boros and Hammer, 2002), and is a subset of
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valued constraint satisfaction problems (VCSP, see Schiex
et al., 1995). There is an extensive literature in this field,
see (Koller and Friedman, 2009, §13) or (Kappes et al.,
2013) for recent surveys.

A promising approach that leverages developments in
graph theory is to reduce the problem to finding a max-
imum weight stable set (MWSS) in a derived weighted
graph called a nand Markov random field (NMRF), see
§2-3 for definitions and background. This approach was
introduced by Jebara (2009) and Sanghavi et al. (2009),
then developed by Foulds et al. (2011), Weller and Jebara
(2013) and Jebara (2014). In cases where a reparameteri-
zation may be efficiently identified such that the resulting
pruned NMRF is perfect, this demonstrates a polynomial-
time algorithm for MAP inference. Earlier work showed
that the method may be applied to several classes of models
(including attractive binary pairwise MRFs and weighted
bipartite matching problems) where it was already known
that MAP inference is tractable with other methods. Since
few classes are known to be tractable, this was very en-
couraging and prompted a search to understand the limits
of how far the NMRF approach may be applied. Weller
and Jebara (2013) provided an exact characterization of the
subclass of binary pairwise models which may be solved
in this way provided that they made a restrictive assump-
tion about the types of reparameterizations permitted (es-
sentially not allowing singleton potentials to be absorbed
into incident edge potentials). By relaxing this assumption
and considering the full range of possible reparameteriza-
tions, we show that we may broaden the tractable subclass
dramatically.

Similarly to Weller and Jebara (2013), we demonstrate that
it is still possible to decompose the problem by considering
each block (maximal 2-connected subgraph) of the origi-
nal MRF topology. Our main result (Theorem 8) is that
a binary pairwise model is tractable via a perfect NMRF
iff each block is either balanced (no frustrated cycles) or
almost balanced (may be rendered balanced by deleting
a single vertex). Although these blocks may be handled
in isolation by other methods, to our knowledge, our new
NMRF approach is the first method proven to find a MAP
configuration for the entire MRF, even if there are very
many such blocks, in polynomial time (see §5).
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2 PRELIMINARIES

We consider a model (V,Ψ) with binary variables V =
{X1, . . . , Xn ∈ B = {0, 1}}, together with (log) potential
functions over subsets c of V , Ψ = {ψc : c ∈ C ⊆ P(V )},
where P(V ) is the powerset of V . Write x = (x1, . . . , xn)
for one particular complete configuration and xc for a con-
figuration just of the variables in c. A potential function ψc

maps each possible setting xc of its variables c to a finite
real number ψc(xc).

Identifying a configuration of variables that is most likely,
termed maximum a posteriori or MAP inference, is the
combinatorial problem of identifying

x∗ = arg max
x=(x1,...,xn)

∑
c∈C

ψc(xc). (1)

Here we restrict attention to pairwise models, that is |c| ≤
2 ∀c ∈ C, that are positive, i.e. each configuration x has
probability p(x) > 0 (when this is not the case, typically 0
may be replaced by a sufficiently small ε). If |c| = 1, ψc

is a singleton potential; if |c| = 2 then it is an edge poten-
tial. Binary pairwise models play a key role in computer
vision, both directly and as critical subroutines in solving
more complex problems (Boykov et al., 2001). Note that
it is possible to convert any positive discrete MRF into an
equivalent binary pairwise model (Eaton and Ghahramani,
2013),1 though this may lead to a much larger state space.

We describe the NMRF approach in §3, but first introduce
relevant concepts from graph theory.

2.1 Terms from Graph Theory

We follow standard definitions and omit some familiar
terms, see (Diestel, 2010).

A graph G(V,E) is a set of vertices V , and edges E ⊆
V ×V . Throughout this paper, all graphs are finite and sim-
ple, that is a vertex may not be adjacent to itself (no loops)
and each pair of vertices may have at most one edge (no
multiple edges). The complete graph on n vertices, written
Kn, has all

(
n
2

)
edges.

A signed graph (Heider, 1946; Harary, 1953) is a graph
(V,E) together with one of two possible signs for each
edge. This is a natural structure when considering binary
pairwise models, where we characterize edges as either at-
tractive or repulsive, see §3.1.1. A frustrated cycle in a
signed graph is a cycle with an odd number of repulsive
edges. A signed graph is balanced if it contains no frus-
trated cycles. We say a signed graph is almost balanced if
it contains a vertex such that deleting it renders the remain-

1The same paper shows that if the MRF has configurations
with 0 probability, it may still be approximated arbitrarily closely.

ing graph balanced.2 Observe that, with our definition, a
balanced graph is also almost balanced.

A graph is connected if there is a path connecting any two
vertices. A cut vertex of a connected graph G is a vertex
v ∈ V such that deleting v disconnects G. A graph is 2-
connected (or biconnected) if it is connected and contains
no cut vertex. A block is a maximal 2-connected subgraph.
Every block is eitherK2 (two vertices joined by an edge) or
contains a cycle. Different blocks of G overlap on at most
one vertex, which must be a cut vertex. Hence G can be
written as the union of its blocks with every edge in exactly
one block. These blocks are connected without cycles in
the block tree for each connected component of G.

A stable set in a graph is a set of vertices, no two of which
are adjacent. A weighted graph (V,E,w) is a graph with
a nonnegative real value for each vertex, called its weight
w(v). Of all stable sets in a weighted graph, a maximum
weight stable set (MWSS) is one with maximum weight. A
maximal maximum weight stable set (MMWSS) is a MWSS
of maximum cardinality (this is useful in our context since,
after reparameterization, we may have many nodes with 0
weight, see §3 and §3.1).

A clique in a graph is a set of vertices, of which every pair
is adjacent. The clique number of a graphG, written ω(G),
is the maximum size of a clique in G.

The complement of a graph G(V,E) is the graph Ḡ(V, F )
on the same vertices with an edge in F iff it is not in E.
For example, a clique is the complement of a stable set and
vice versa.

A coloring of a graph is a map from its vertices to the
integers (considered the colors of the vertices) such that
no two adjacent vertices share the same color. The chro-
matic number of a graph G, written χ(G), is the minimum
number of colors required to color it. Observe that clearly
χ(G) ≥ ω(G) for any graph G.

An induced subgraph H(U,F ) of a graph G(V,E) is a
graph on a subset of the vertices U ⊆ V , inheriting all
edges with both ends in U , so F = {(v, w) ∈ E : v, w ∈
U}.

A graph G is perfect iff χ(H) = ω(H) for all induced sub-
graphs H of G. Examples include any bipartite or chordal
graph. Related concepts (see Theorem 1): a hole in a graph
G is an induced subgraph which is a cycle of length ≥ 4
(note this means the cycle must be chordless); an antihole
is an induced subgraph whose complement is a hole. A
hole or antihole is odd if it has an odd number of vertices.
Note that, as a special case, a hole with 5 vertices is isomor-
phic to an antihole of the same size. It is easily shown that
a graph containing an odd hole or antihole is not perfect.
Remarkably, the converse holds, see Theorem 1.

2Harary (1959) described such signed graphs as having point
index ≤ 1.
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2.2 Properties of Perfect Graphs

There is a rich literature on perfect graphs. We highlight a
key result used in this paper, which confirmed a conjecture
by Claude Berge that had been open for several decades.
Theorem 1 (Strong Perfect Graph Theorem, Chudnovsky
et al., 2006). A graph is perfect iff it contains no odd hole
or antihole (equivalently, iff neither the graph nor its com-
plement contains an odd hole).

The NMRF approach to MAP inference is to reduce the
problem to finding a maximum weight stable set in a de-
rived weighted NMRF graph, as described in §3. By using
Theorem 1, we can check if the NMRF contains odd holes
or antiholes to see if it is perfect, and if it is, then a key
property is that a MWSS may be found in time polynomial
in n, the number of nodes in the NMRF, via the ellipsoid
method (Grötschel et al., 1984).

Yildirim and Fan-Orzechowski (2006) derived a faster ex-
act approach in O(n6) time based on semidefinite pro-
gramming. This may be improved using primal-dual meth-
ods (Chan et al., 2009). Alternatively, linear program-
ming may be used for the MWSS problem but this re-
quires O(n3

√
nK) time, where nK is the number of max-

imal cliques in the graph (Jebara, 2009, 2014). When nK
is small, this can be more efficient than semidefinite pro-
gramming. However, in the worst case, nK may be expo-
nentially large in n, thus linear programming is useful only
in some settings. Another possibility is to use message-
passing methods (Foulds et al., 2011; Jebara, 2014), though
these also become inefficient for graphs with many cliques.

Where other methods exist for solving exact MAP infer-
ence, the reduction to MWSS is typically not the fastest
method, yet there is hope for improvement since the field is
advancing rapidly, with significant breakthroughs in recent
years (Chudnovsky et al., 2006; Faenza et al., 2011).

3 THE NMRF APPROACH TO MAP
INFERENCE

We describe the reduction of MAP inference to MWSS on
an NMRF. Given an MRF model, construct a nand Markov
random field (NMRF, Jebara, 2009) N , defined as follows:

• A weighted graph N(VN , EN , w) with vertices VN ,
edges EN and a weight function w : VN → R≥0.

• Each c ∈ C of the original model maps to a clique in
N , which we call a clique group. This contains one
node for each possible configuration xc, with all these
nodes pairwise adjacent in N .

• Nodes inN are adjacent iff they have inconsistent set-
tings for any variable Xi.

• Nonnegative weights of each node in N are set as
ψc(xc) − minxc

ψc(xc), see §3.1 for an explanation
of the subtraction.

We differentiate between two types of nodes in an NMRF:

An snode relates to a setting of a single variable from its
MRF. Equivalently, it is a node from a clique group deriv-
ing from a singleton potential with c = {Xi} for some i.

An enode is a node from a clique group deriving from some
c ∈ C with |c| = 2, that is an enode derives from an edge
potential of the MRF. See Figure 1 for an example of a
MRF mapping to an NMRF containing only enodes.

x1 x2 x3

x4

v0021
v0121

v1021
v1121

v0023

v0123

v1023

v1123

v0024 v0124

v1024 v1124

(a) Input MRF (b) Derived NMRF

Figure 1: An example of mapping a binary MRF with edge po-
tentials (shown as a factor graph) to its NMRF. Subscripts denote
the edge variables c, superscripts denote the configuration xc.

Jebara (2014) proved that a maximal cardinality set of
consistent nodes in N with greatest total weight, i.e. a
MMWSS of N (see §2.1), will identify a globally consis-
tent configuration of all variables of the original MRF that
solves the MAP inference problem (1).

Sketch proof: (Slightly different to Jebara (2014), this al-
lows the result to be extended after discussing pruning in
§3.1.) A MMWSS S is consistent by construction and
clearly contains at most one node from each clique group.
It remains to show it has at least one node from each clique
group. Suppose a clique group has no representative. Iden-
tify a member of this group which could be added to S, es-
tablishing a contradiction since S is maximal, as follows:
the group overlaps with some variables of S, copy the set-
tings of these; for all other variables in the group, pick any
setting. Note that if we do not insist on a maximal MWSS,
it is possible that we do not get a representative for some
clique groups and hence do not obtain a complete MAP
configuration for the initial MRF.

3.1 Reparameterizations, Pruning and Efficiency

A reparameterization is a transformation

{ψc} → {ψ′c} s.t. ∀x,
∑
c∈C

ψc(xc)=
∑
c∈C

ψ′c(xc) + constant.

This clearly does not modify a MAP solution (1) but can be
helpful to make the problem easier.



Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs

One simple reparameterization is just to add a constant to
any ψc function, since any consistent configuration has ex-
actly one setting for each group of variables c. Hence we
may subtract the minimum ψc(xc) and assume that in each
clique group ofN , the minimum weight of a node is exactly
zero. The reduction result above holds provided we insist
on a maximal MWSS (MMWSS). This is helpful since to
find a MMWSS, it is sufficient first to remove or prune
the zero weight nodes, find a MWSS on the remaining,
smaller graph, then reintroduce a maximal number of the
zero weight nodes while maintaining stability of the set.

Different reparameterizations will yield different pruned
NMRFs. By the earlier argument: MWSS will find one
member from each of some of the clique groups, then we
can always find one of the zero weight nodes to add from
each of the remaining groups using any greedy method.
Hence the following result holds (Weller and Jebara, 2013,
Lemma 6), where efficient means in polynomial time.

Lemma 2. MAP inference on an MRF is tractable pro-
vided ∃ an efficiently identifiable efficient reparameteriza-
tion such that the MRF maps to a perfect pruned NMRF.

3.1.1 Singleton Transformations and Associativity

Another useful form of reparameterization is a singleton
transformation, which is a change in one or more ψ func-
tions for a single variable, with corresponding changes to a
higher order term which brings it to a convenient form.

For binary pairwise models, it is easily shown that
a reparameterization of an edge via singleton trans-

formations,
(
ψ00 ψ01

ψ10 ψ11

)
→

(
ψ′00 ψ′01
ψ′10 ψ′11

)
, is valid

iff ψ00 + ψ11 − ψ01 − ψ10 = ψ′00 + ψ′11 − ψ′01 − ψ′10.
Hence this quantity, the associativity of the edge, is well-
defined and invariant with respect to any singleton transfor-
mation.

An edge is either attractive,3 in which case it tends to pull
its two end vertices toward the same value, or repulsive,
in which case it tends to push its two end vertices apart
to different values, according to whether its associativity is
≥ 0 or < 0. A binary pairwise model is attractive iff every
one of its edges is attractive.

An attractive edge may be reparameterized such that three
of its entries are 0, and therefore may be pruned, leaving
only either ψ′00 or ψ′11 enodes, with form (x = 0, y = 0)
or (x = 1, y = 1), with a positive value. Similarly, we
may reparameterize a repulsive edge to leave just one enode
with form (x = 0, y = 1) or (x = 1, y = 0). For our
purpose of mapping to a perfect NMRF, this ability to prune
away many enodes can be helpful, though see §4.

3Other equivalent terms used are associative, ferromagnetic or
regular. This is equivalent to ψ for the edge being supermodular,
or having submodular cost function.

3.1.2 Connecting snodes

Whenever a singleton transformation is used to reparame-
terize an edge so as to leave one enode, it is easily checked
that the result on the singleton potentials is always to raise
the score of the appropriate connecting snodes, i.e. snodes
with opposite settings to the enode, thus making it more
likely for the enode to connect in the NMRF. As an exam-
ple, we show how a symmetric attractive edge with asso-
ciativity W > 0 is transformed to leave only ψ′00:(

W
2 0
0 W

2

)
=

(
0
W
2

)
⊕
(
W 0
0 0

)
⊕
(
0 W

2

)
⊕−W

2 .

Here ⊕ indicates combining the potentials appropriately,
with a constant of−W

2 . Observe that each singleton poten-
tial had its setting of 1 raised by W

2 > 0.

If singleton potentials are very high relative to edge weights
then connecting snodes may be avoided, preventing holes
and antiholes, and making inference easier. However, 0 sin-
gleton potentials and symmetric edge potentials are valid
settings, which will lead to connecting snodes when edges
are reparameterized so as to obtain one enode per edge.

3.2 Decomposition

We shall use the following decomposition theorem in the
proof of our main result in §4.2.1.

Theorem 3 (MRF Decomposition, Weller and Jebara, 2013
Theorem 7). If MRFA(VA,ΨA) and MRFB(VB ,ΨB)
both map to perfect NMRFs NA and NB , and have ex-
actly one variable s in common, i.e. VA ∩ VB = {s}, with
the same snodes for variable s (there must be at least one),
then the combined MRF ′(VA∪VB ,ΨA∪ΨB) maps to an
NMRF N ′ which is also perfect. The converse is true by
the definition of perfect graphs.

By repeatedly breaking apart an MRF at cut vertices, this
allows the question of which MRFs are tractable with the
NMRF approach to be focused only on sub-models whose
topologies form blocks of the original graph (see §2.1 for
definitions). Note the requirement thatNA andNB contain
the same snodes for the overlapping variable s, which we
shall examine in §4.2.1.

4 NEW RESULTS

We clarify the objective. Our aim is to classify which bi-
nary pairwise MRFs, identified only by their signed graph
topology (see §2.1), are tractable via a perfect NMRF for
any valid potentials, i.e. any finite singleton and edge po-
tentials consistent with the signed topology. If a topology
is intractable for some set of valid potentials, then it does
not meet our criterion for tractability. Note that without this
requirement, any MRF with finite edge potentials would be
tractable with sufficiently strong singleton potentials, since
they would directly force each variable’s assignment.
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We highlight important properties of perfect graphs, then
clarify the difference between our analysis and that of
Weller and Jebara (2013), henceforth ‘WJ’.

From the definition of a perfect graph (§2.1), if nodes are
removed from a graph, it can only make it easier to show
that it is perfect. By Theorem 1, perfection may be checked
by looking for possible odd holes or antiholes. In an NMRF
N , intuitively edge enodes are typically more likely than
singleton snodes to form part of an odd hole or antihole
(and hence lead to the graph not being perfect). This is be-
cause enodes each contain settings for two variables, lead-
ing to more adjacencies in N (see §3). Hence, it seems
reasonable always to reparameterize edges using singleton
transformations so that each edge results in just one enode
(see §3.1.1). Since this could cause arbitrary reparameter-
ized singleton potentials, WJ made the assumption that all
possible snodes could be present. We call this the snode
assumption.

In contrast, here we shall consider the full range of possi-
ble reparameterizations, including where snodes are some-
times absent, typically effected through being ‘absorbed’
by an edge potential, see §4.1. Accordingly, for such
absorbing edges, we must consider that all enodes from
its clique group could be present in the pruned NMRF.
Perhaps surprisingly, we shall show that the net effect of
adding enodes and removing snodes can be very helpful.

A central tool in WJ’s method was the following result.

Lemma 4 (Weller and Jebara, 2013 Lemma 16). Subject to
the snode assumption: For some valid potentials, any cy-
cle C in a binary pairwise MRF M generates an induced
(chordless) cycle H in its NMRF N with size at least as
great, and with the same parity (odd/even number of ver-
tices) as the number of repulsive edges (odd/even) in the
MRF’s cycle. In particular, if M has any frustrated cycle
with≥ 4 edges, or with 3 edges requiring any snode to link
the enodes in N , then this maps to an odd hole in N .

Essentially, each repulsive edge, which will have an enode
of the form (s = 0, t = 1) or (s = 1, t = 0), flips the
parity of the end variable as we move around the cycle. In
§4.1, we show that such holes may be ‘broken’ by using
absorbing edges to remove connecting snodes.

4.1 Absorbing Singleton Potentials, Breaks, Phantom
Edges and Surrogate snodes

Here we consider edges that absorb incident singleton
potentials. For example, consider the reparameterization
ψ′ij(xi, xj) = ψi(xi) + ψij(xi, xj) + ψj(xj), ψ

′(xi) =
0, ψ′(xj) = 0. This removes all snodes at Xi and Xj from
the pruned NMRF, though now any of the 4 possible enodes
for such an absorbing edge could be present.

Definition 5. Given a particular reparameterization of a
sub-MRF, a break at a variable vertex is a missing snode in

the pruned NMRF (typically because it has been absorbed
by an incident edge) such that it is not possible for enodes
from some incident edges to connect through the vertex. A
particular reparameterization of a sub-MRF signed topol-
ogy is unbroken if it contains no breaks.

A break can be very helpful but often raises new diffi-
culties. We illustrate the idea and introduce related new
terms with the following example. Consider a frustrated
5−cycle v1, . . . , v5 that has been reparameterized as in
§3.1.1 to have one enode per edge. For a range of single-
ton potentials, this will be unbroken and hence will form
an odd hole in the pruned NMRF, as described in Lemma
4. However, if we arrange that a particular vertex, say v3,
is broken with respect to the incident edges v2 − v3 and
v3− v4, then the odd hole could be avoided. This might be
achieved as follows: (i) first reparameterize as in §3.1.1 to
get one nonzero enode per edge, choosing a reparameter-
ization such that both the v2 − v3 enode and the v3 − v4
enode have setting v3 = 0, hence they only connect at
v3 via the snode (v3 = 1); (ii) now add a phantom edge
v1 − v3, which did not exist in the original MRF; this ini-
tially hasψ13(x1, x3) = 0 ∀x1, x3, but then is reparameter-
ized to absorb the singleton potentials ψ1(x1) and ψ3(x3),
i.e. ψ′13(x1, x3) = ψ1(x1)+ψ3(x3), ψ′1 = 0, ψ′3 = 0. This
now breaks the original odd hole at v3, preventing it from
connecting and apparently solving the problem. However,
at least one new odd hole has been introduced, formed by
NMRF nodes from the v3−v4−v5−v1 section of the orig-
inal MRF together with either one or two enodes from the
new phantom v1− v3 edge. To see this, recall that we have
chosen the v3 = 0 setting and suppose that the v5 − v1 en-
ode has setting v1 = a ∈ {0, 1}. Let ā = 1−a. We assume
that the phantom v1−v3 edge could have all 4 enodes, so in
particular this includes (v1 = ā, v3 = 1) which would con-
nect the ends (i.e. the enode for v3−v4 and that for v5−v1)
with one enode, and {(v1 = ā, v3 = 0), (v1 = a, v3 = 1)}
which would connect the ends with two enodes. Thus, there
is a new odd hole - we solved one problem but introduced
another, for no net benefit.

If the 5-cycle were part of a larger MRF, including say v6
that is not adjacent to any variable of the 5-cycle, one might
think that we could form the break at v3 yet avoid the prob-
lem above by introducing a phantom edge v3 − v6. How-
ever, this does not work: either the (v3 = 1, v6 = 0) or
(v3 = 1, v6 = 1) enode could play the role of what we call
a surrogate snode, i.e. it would play the same role as the
initial (v3 = 1) snode did in connecting the original odd
hole formed by v1, . . . , v5.

The reasoning above yields the following results.

Lemma 6. An unbroken cycle in an MRF with at least 4
edges, containing an edge reparameterized as an absorb-
ing edge, will lead to an odd hole in its NMRF for some
valid potentials.



Revisiting the Limits of MAP Inference by MWSS on Perfect Graphs

x1

x2

x3

x4

x5

x6

s

t

r1r2 a1 a2 a3

s

t

v2v1 v3 v4 v5

(i) BR balanced (ii) Tm,n with m = 2 and n = 3 (iii) Un with n = 5

Figure 2: Examples of the 3 block structures shown to be tractable by Weller and Jebara (2013). Solid blue (dashed red) edges are
attractive (repulsive). Our result subsumes these and goes much further, showing many more models to be tractable.

Lemma 7. A frustrated cycle in an MRF can be broken at
a vertex v only if its enodes have the same setting for v, and
by using an absorbing edge from v to another vertex on the
same cycle, which absorbs the connecting snode.

Despite these difficulties, we shall show that the break idea
will allow us to extend significantly the range of signed
MRF structures that may be handled efficiently with the
NMRF method, for any valid potentials.

4.2 Main Result

In this Section, we present and prove our main result, see
§2.1 for definitions.
Theorem 8. A binary pairwise MRF maps efficiently to a
perfect pruned NMRF for any valid potentials iff each block
of the MRF is almost balanced.

For comparison, the class of tractable models identified by
Weller and Jebara (2013) is much smaller. WJ’s class con-
sists of blocks only of the following 3 types: (i) BR bal-
anced subgraphs; (ii) Tm,n frustrated multi-triangles on a
common repulsive base s − t, where each additional vari-
able is connected using either 2 repulsive or 2 attractive
edges; and (iii) Un frustrated multi-triangles on a common
attractive base, where each additional variable is connected
by 1 attractive and 1 repulsive edge. Note that this admits
frustrated cycles only of size 3, and even then only in very
restricted configurations. See Figure 2 for examples.

Each of these 3 types are clearly almost balanced (the first
is balanced; the multi-triangles may be rendered acyclic by
deleting s or t) but our result adds much richer models to
the tractable range of the NMRF approach. For example,
we add frustrated cycles of any size and indeed include
frustrated blocks of any treewidth (as a specific example,
consider a balanced Kn structure together with one addi-
tional variable connected to all the others using any edges
that lead to a frustrated cycle).

We shall first prove sufficiency then necessity of the condi-
tion. In order to test whether a derived NMRF is perfect, we
use Theorem 1, hence must check for possible odd holes or
antiholes. Since an odd antihole of size 5 is isomorphic to
a hole of the same size, we need only check for odd holes,

together with odd antiholes of size ≥ 7 (see §2.1).

4.2.1 Sufficiency of the Condition

We provide a constructive proof that if a sub-MRF M1 on
(V1, E1) of the MRF is almost balanced, with any valid
potentials, then there is an efficient reparameterization that
leads to a perfect pruned sub-NMRF N1. Next we show
that sub-NMRFs for each block may be pasted together to
yield a perfect NMRF for the whole MRF.

Reparameterization Let s be a vertex whose deletion ren-
ders the remainder of the sub-MRF balanced. Let V ′1 =
V1 \ {s}. Let E′1 ⊆ E1 be all edges not incident to s. Pick
any vertex v ∈ V ′1 and a setting a ∈ {0, 1}. Let ā = 1− a.
First we shall reparameterize each edge in E′1 to have one
enode, as in §3.1.1. Start with edges incident to v and al-
ways choose the enode with setting v = a: if (v, u) ∈ E′1
is attractive then use (v = a, u = a), if repulsive then use
(v = a, u = ā). Hence, the parity of the setting of an end
vertex flips iff an edge is repulsive. Now iteratively extend
outward to the rest of V ′1 , as in breadth-first search. When-
ever a vertex w ∈ V ′1 is first reached by an edge, mark it
as either a or ā according to the setting of w in the enode
for the edge. Then for all other edges in E′1 incident to w,
use this same setting for w. Since the signed graph on V ′1 is
balanced, this is guaranteed to yield an efficient consistent
reparameterization across all edges in E′1.4 After this is
complete, the singleton potentials will have various values.

Now use absorbing edges between s and all variables in
V ′1 , creating phantom edges where necessary. These will
absorb all snodes: ∀w ∈ V ′1 , the edge s − w absorbs the
singleton potential of w; the singleton potential of s can
be shared among all the absorbing edges in any way (for
example, all could be absorbed into s− v).

See Figure 3 for an illustration of the construction for a
frustrated cycle on 6 variables.

4 This algorithm yields a consistent marking for all variables
in V ′

1 unless two paths from v to some w ∈ V ′
1 contain a different

number of repulsive edges, which happens iff joining the paths
would yield a frustrated cycle, contradicting the assumption that
the topology on V ′

1 is balanced. It can be extended to check all
edges in E′

1, with consistency iff the topology on V ′
1 is balanced.
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Figure 3: An example frustrated cycle on 6 variables, see §4.2.1.
The special vertex s was chosen as x1, removing this renders the
remaining graph balanced (in fact acyclic in this example). Solid
blue (dashed red) edges are attractive (repulsive). Straight edges
are reparameterized to have one enode, wavy edges absorb inci-
dent snodes and may have any enodes. Grey dotted wavy edges
indicate phantom edges that were added. v ∈ V ′

1 was selected as
x2 and a was chosen as 0. Marks are shown next to their vertices.

Lemma 9. With the reparameterization above, a perfect
pruned sub-NMRF N1 is obtained.

Proof. Let u−v be an edge ofE′1 (i.e. an edge not incident
to s). By construction, in N1 there is one u− v enode, say
(u = b, v = c) with b, c ∈ {0, 1} and its neighbors are all
either s− u or s− v enodes.

(i) No odd holes. Suppose an odd hole H exists and con-
sider candidate members. Consider first the enode from
edge u − v. To form an odd hole, we must have (s =
a, u = b̄) and (v = c̄, s = a) for some a ∈ {0, 1} else we
have a triangle. To continue past (v = c̄, s = a), we can-
not have anything with setting s = ā else it would form a
chord, so we must have (v = c, s = a); but then there is no
way to continue without forming a chord. Hence there is no
such u− v enode in H . The only remaining candidates are
the enodes from absorbing edges. More than one absorbing
edge must be involved to have sufficient nodes. To connect
across different edges, there must be enodes with different
settings for s but there is no way to do this without at least
one enode being adjacent to ≥ 3 others, contradiction.

(ii) No odd antiholes of size ≥ 7. Suppose an antihole A
of size ≥ 7 exists. Consider if the enode from edge u − v
could be in A. It has 4 neighbors given by (s = 0, u =
b̄), (s = 1, u = b̄), (s = 0, v = c̄), (s = 1, v = c̄), each
of which is adjacent to 2 of the others. But to be in A,
there must be 2 that are adjacent to 2 of the others, and 2
that are adjacent to 1 of the others, contradiction. The only
remaining possible nodes of A are enodes from absorbing
edge clique groups. If one of them, say p, is inA, then there
must be a set of 4 neighbors of p, say q1, q2, q3 and q4, all
in order going around A, with p and q1 both adjacent to q3
and q4, and q3 not adjacent to q4. For q3 and q4 not to be
adjacent, they must be in different clique groups with the

same setting for s, say s = a. To be adjacent to both, p and
q1 must each have setting s = ā. Now q2 is not adjacent
to q1, so has setting s = ā but then q2 is adjacent to q3,
contradiction.

Pasting Blocks Together It remains to show that perfect
sub-NMRFs for each block of the original MRF may be
pasted together to yield a perfect NMRF for the whole
MRF. We shall use the decomposition result of Theorem 3
but must take care since there it was required that when
sub-NMRFs are pasted together on a variable, they must
each have the same snodes for that overlapping variable,
with at least one snode present, yet in the construction
above we explicitly removed all snodes.

In fact, however, using methods similar to those of the
proof of Lemma 9, we shall show that there are certain
phantom snodes, i.e. snodes with 0 weight, which may be
added to the construction above for any sub-NMRF with-
out introducing any odd holes or antiholes. In particular,
we may always add the following snodes: for the special
vertex s, we may add (s = 0) or (s = 1); for all other
w ∈ V ′1 , we may add the snode with the mark for w, i.e.
the same setting for w as for all its incident enodes.

Checking for odd holes is straightforward. To check for
antiholes, suppose antiholeA exists of size≥ 7, containing
an added snode (u = a). There must be 4 distinct nodes,
say q1, q2, q3 and q4 consecutively in A, all adjacent to the
snode. These 4 must be enodes with setting u = ā. q1
and q4 are adjacent so have different settings for some other
variable, say q1 = (t = 0, u = ā) and q4 = (t = 1, u = ā).
But now q2 must be adjacent to q4, which is not possible.

The ability to add these phantom snodes is sufficient to al-
low the pasting we need. We show this by induction on k,
the number of blocks in the original MRF. The basis case
k = 1 is trivial. Now suppose the result holds for k blocks.
Recall from §2.1 that the blocks form a block tree. Hence
when considering k+1 blocks, we may examine the NMRF
for a leaf block Nk+1, which is connected to the rest of the
NMRF NR = ∪ki=1Ni at only one variable, say x. If NR

has no x snode already, then add one phantom snode, with
setting as above (if x is a special s variable, then either
(x = 0) or (x = 1) may be picked). Now in Nk+1, if
the same snode may be added according to the above rules,
then we are done. If not, then we are free to flip the repa-
rameterization for Nk+1 by picking the opposite value for
a in the construction above, i.e. we flip the marks of all
vertices w ∈ V ′k+1, thus allowing the appropriate snode to
be added. This completes the proof of sufficiency.

4.2.2 Necessity of the Condition

In this Section, we assume that the condition is violated,
i.e. that we have a 2-connected block (V1, E1) which is
not almost balanced, and show that this block will map to
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x4

x3

x2

x1

Figure 4: A minimal example of a block that is not almost bal-
anced, hence will lead to an odd hole in its NMRF for some valid
potentials. Solid blue (dashed red) edges are attractive (repulsive).
All triangles are frustrated with an odd number of repulsive edges.

an NMRF with an odd hole for some valid potentials. Not
being almost balanced implies that the block contains at
least 4 variables. It is easily seen that a minimal example
is a complete graph on 4 variables, where all triangles are
frustrated, see Figure 4 for one possibility.

As discussed near the start of §4, Weller and Jebara (2013)
identified the only 3 types of block that will map to a per-
fect NMRF for any valid potentials subject to the snode
assumption, which assumes that all connecting snodes are
present (see §3.1.2). If a block is not almost balanced then
clearly it is not one of these 3 types and thus, for some
valid potentials, in order to try to form a perfect NMRF, an
absorbing edge will be required to cause a break (see §4.1).

Given our conditions (including that the block is 2-
connected, hence there is a cycle containing any two edges,
Diestel, 2010, §3.1) and Lemma 6, in order to avoid an odd
hole, additional absorbing edges will be required, and these
must all share the same one incident variable, which we call
s. Let V ′1 = V1 \ {s}. Let E′1 ⊆ E1 be all edges of the
block not incident to s. To avoid an odd hole by Lemma 6,
in fact almost all variables in V ′1 must be broken by using
absorbing edges to s, adding phantom edges where needed.

The only possible exceptions are variables which in the
original block, are adjacent to s and have degree 2. We call
these close variables. For a close variable x, an odd hole
may be avoided by reparameterizing its incident edges,
s−x and say x− y, to obtain single enodes which connect
directly at x (since then the largest possible hole containing
the 2 enodes would have size 4: the s − x and x − y en-
odes, and 2 enodes from the absorbing edge s − y). As an
example, this allows a different reparameterization of a sin-
gle frustrated cycle. However, if a neighbor of s has degree
> 2 in the original block, then it must be broken in order
to prevent an unbroken longer cycle leading to an odd hole
by Lemma 6 (for example, consider Figure 4 and suppose
s = x1, then absorbing edges are required from s to all
other variables else there would be unbroken 4-cycles such
as x1 − x3 − x4 − x2 − x1). Further, note that by their
definition, in the sub-MRF obtained after deleting s from
the block, close variables are left with just one neighbor,

hence cannot be part of a cycle, and thus do not affect the
condition.

Now if enodes from any 2 edges in E′1 connect directly at
any variable in V ′1 that is not a close variable, then again
by Lemma 6, an odd hole will be formed in the NMRF.
Since single enodes from repulsive edges flip parity, while
those from attractive edges maintain parity, the only way
that this can be avoided throughout the block is if these
variables can be partitioned into two groups, with all inter-
group edges being repulsive and all intra-group edges being
attractive. This condition is equivalent to the topology on
V ′1 being a balanced signed graph (Harary, 1953; Harary
and Kabell, 1980 or see footnote 4).

This completes the proof of our main result, Theorem 8.

5 DISCUSSION

We have provided an exact characterization of which bi-
nary pairwise MRFs can map to perfect pruned NMRFs
for any valid potentials, allowing the full range of possible
reparameterizations. This is a significant theoretical con-
tribution, defining the power of the method. It extends the
work of Weller and Jebara (2013), and greatly expands the
range of models that are tractable with this approach.

Detecting if a given model satisfies our condition may be
performed efficiently in time O(|E||V |). First identify the
block structure, which is a standard application of depth-
first search (Hopcroft and Tarjan, 1973) and runs inO(|E|).
Next for each block, delete one vertex at a time, each
time testing the remainder of the block to see if it is bal-
anced. Testing a subgraph (V1, E1) for balance takes time
O(|E1|), see (Harary and Kabell, 1980), the algorithm is
similar to that described in footnote 4, checking all edges.

Note that each almost balanced block is tractable by other
methods in isolation: once a variable has been identified
such that deleting it renders the remainder of the block bal-
anced, simply solve for a MAP configuration conditioned
on each of the 2 settings of that variable then take the com-
bination with higher score. The MAP problem on the bal-
anced portion of the block may be solved efficiently with a
variety of methods, including the standard linear program-
ming relaxation (Johnson, 2008, p. 119). However, as far
as we are aware, our approach is the first that is guaran-
teed to handle an MRF containing Ω(|V |) such blocks, in-
cluding high treewidth frustrated structures, automatically
in polynomial time, thereby extending the family of models
that are tractable with any method.
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