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Abstract
We show how any binary pairwise model may be
‘uprooted’ to a fully symmetric model, wherein
original singleton potentials are transformed to
potentials on edges to an added variable, and then
‘rerooted’ to a new model on the original number
of variables. The new model is essentially equiv-
alent to the original model, with the same parti-
tion function and allowing recovery of the orig-
inal marginals or a MAP configuration, yet may
have very different computational properties that
allow much more efficient inference. This meta-
approach deepens our understanding, may be ap-
plied to any existing algorithm to yield improved
methods in practice, generalizes earlier theoret-
ical results, and reveals a remarkable interpreta-
tion of the triplet-consistent polytope.

1. Introduction
Undirected graphical models, also called Markov random
fields (MRFs), have become a central tool in machine
learning, providing a powerful and compact way to model
relationships between variables. However, many key prob-
lems, such as identifying a configuration with highest prob-
ability (termed maximum a posteriori or MAP inference),
estimating marginal probabilities of subsets of variables
(marginal inference) or calculating the normalizing par-
tition function, are typically computationally intractable,
leading to much work to identify settings where exact
polynomial-time methods apply, or to create approximate
algorithms that perform well.

Focusing on binary pairwise models (see §2 for definitions
and details), we provide a general meta-method for infer-
ence that generalizes and strengthens existing theoretical
results, deepens our understanding, and can help signifi-
cantly in practice. Suppose a model M has n variables
X1, . . . Xn with various singleton and edge potentials. We
start by uprooting this model to a uniquely determined ‘par-
Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

ent’ model M+ where all previous singleton potentials are
converted to edge potentials to a newly added variable X0.
This M+ model is elegantly symmetric: no singleton po-
tentials, and all edge potentials give a score only if incident
variables are different. This uprooting is not a novel idea
for MAP inference (Barahona et al., 1988; Sontag, 2007)
but we believe the other ideas presented here are new.

The uprooted M+ model is interesting in itself; for exam-
ple, its partition function is exactly twice that of the orig-
inal model M , which we may consider as the parent M+

model rooted at X0. A key idea is that we can reroot M+

at any other variable, for example X2, to yield an equiva-
lent model on n variables X0, X1, X3, . . . , Xn, which has
new singleton potentials determined by the edge potentials
to X2 in M+. In effect, this is a different view or ‘crys-
tallization’ of the parent symmetric M+ model. Call this
X2-rooted model M2 (we could root at any variable Xi to
obtain Mi; note that the original model M is M0).

We make the following observations.

• M2 indeed represents essentially the same model as M .
It lies in the equivalence class of models that map to the
same unique symmetric representation M+.

• M2 has the same partition function as M but may have
very different computational properties. The original
model M might be hard but M2 could be easy.

• Using any existing inference method for M2, it is not
hard also to recover all the original singleton marginals
or a MAP configuration of M , see §4.1.

• Hence we have a general meta-method for inference:
given any inference approach, instead of applying it to
M , we can instead consider various equivalent rerooted
models and apply the approach to one of them instead,
which may work much better.

• Many existing methods and bounds apply only to partic-
ular ranges of edge and singleton potentials, which are
changed after rerooting. Hence, we can generalize exist-
ing approaches. We discuss various implications in §5.
For example, we can use the very efficient max flow/min
cut method for MAP inference in a model if all edges
are attractive with no conditions on singleton potentials
(more generally if the model is balanced, see §2.1). This
might not be possible in the original model M but will
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be possible in some rerooted model iff there exists some
variableXi inM+ s.t. after rooting atXi, the remainder
Mi is balanced. This is equivalent to the condition that
M+ is almost balanced. This can be tested efficiently.

• Understanding that singleton and pairwise potentials ap-
pear different only due to a particular choice of root in
M+ provides an important fresh perspective, leading to
a re-evaluation of existing methods, and a remarkable in-
terpretation of the triplet-consistent polytope, see §5.

Binary pairwise models play an important role in many
fields such as computer vision (Blake et al., 2011). Further,
any discrete graphical model may essentially be converted
into an equivalent binary pairwise model, though this may
require a large increase in the number of variables.1

Contributions. After providing background in §2, we
explain the details of the uprooting and rerooting approach
in §3-4, showing how inference on a rerooted model allows
recovery of information about the original model. This
includes a discussion in §4.2 of the relation to clamping,
where we introduce a new clamping heuristic that performs
particularly well in settings that are likely to arise for re-
rooting. In §5, we discuss implications of rerooting, show-
ing how it generalizes theoretical results, may be used as
a meta-algorithm for inference methods, and provides a
fascinating perspective on the triplet-consistent polytope.
We provide an empirical evaluation in §6, showing that re-
rooting can be particularly effective for models with dense,
strong edges and weak singleton potentials.

Related Work. What we call uprooting has been de-
scribed previously as a way to reduce MAP inference ofM
to the MAXCUT problem in M+ (Barahona et al., 1988).
As we discuss in §4.2, uprooting to M+ may be viewed as
a de-clamping of the model atX0, while a rerooting may be
considered a re-clamping at a different variable. Hence, re-
rooting replaces an initial implicit clamp choice at X0 with
another. The choice of which root to choose is essentially
the question of which variable in M+ to clamp. Methods
to select a variable to clamp have been explored by Eaton
and Ghahramani (2009) and Weller and Domke (2016).

2. Preliminaries
We focus on undirected graphical models with n binary
variables X1, . . . , Xn ∈ {0, 1}. We consider a probability
distribution p(x) = eθ(x)/Z(θ) where x = (x1, . . . , xn)
is one particular configuration of all variables and θ(x) is
the score of configuration x, which decomposes into sin-
gleton and pairwise (log) potential terms. The topology of

1Eaton and Ghahramani (2013) show that this is strictly true if
all model states have probability strictly > 0, otherwise an arbi-
trarily good approximation is possible.

the model is the graph (V, E), that is V = {1, . . . , n}where
i corresponds to Xi, and E ⊆ V × V contains an edge for
each pairwise score relationship. We assume a reparam-
eterization to the minimal representation (Wainwright and
Jordan, 2008) wherein the score may be written

θ(x) =
∑
i∈V

θixi −
1

2

∑
(i,j)∈E

Wij1[xi 6= xj ], (1)

where 1[·] is the indicator function. Z(θ) is a normalizing
constant, called the partition function, which ensures that
probabilities sum to 1, i.e. Z(θ) =

∑
x∈{0,1}n e

θ(x).

Note that (1) gives a score to an edge only if its incident
variables are different. The factor of − 1

2 before the edge
potentials means that the signs and scaling of our parame-
ters are consistent with earlier work such as (Welling and
Teh, 2001; Weller and Domke, 2016). If Wij > 0 then the
edge (i, j) is attractive and tends to pull its incident vari-
ables towards the same value; if Wij < 0 then the edge is
repulsive and tends to push apart the values of its variables.

2.1. Attractive, Mixed and Balanced Models

If all edges of a model are attractive, i.e. if Wij ≥
0 ∀(i, j) ∈ E , then we say that the model is attractive, else
it is mixed. Sometimes a mixed model may be converted
to an equivalent attractive model by flipping (also called
switching) a subset of variables S, which reverses the signs
of their singleton potentials and of the edge potentials be-
tween variables in S and variables in V\S; if possible, such
a mixed model is called balanced. Harary (1953) showed
that a model is balanced iff it does not contain a frustrated
cycle, which is a cycle containing an odd number of re-
pulsive edges. This may be checked and, if balanced, then
a flipping set S found, in time linear in |E| (Harary and
Kabell, 1980). Hence, results for attractive models readily
extend to the larger class of balanced models.

Notation. For any a ∈ {0, 1}, let ā = 1 − a (this flips
0 ↔ 1). Similarly, for a vector x = (x1, . . . , xn), let x̄ =
(x̄1, . . . , x̄n) = (1 − x1, . . . , 1 − xn). For a configuration
y = (y0, y1, . . . , yn) of M+, and a ∈ {0, 1}, we may write
y = (a, x) to mean y = (a, x1, . . . , xn).

3. Uprooting a Model
We show how any model M on n variables X1, . . . , Xn

with singleton potentials may be uprooted to a unique sym-
metric (i.e. no singleton potentials) model M+ on n + 1
variables X0, X1, . . . , Xn. Edges to the extra variable X0

encode the original singleton potentials.2

2If the original model M has no singleton potentials, then it
may be regarded as already in M+ form. It may still be rooted at
any variable, as described in §4.
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M+ configuration edges: score X if ends are different
x0 x1 x2 x3 e01 e02 e03 e12 e13 e23
0 0 0 0
0 0 0 1 X X X
0 0 1 0 X X X
0 0 1 1 X X X X
0 1 0 0 X X X
0 1 0 1 X X X X
0 1 1 0 X X X X
0 1 1 1 X X X
1 0 0 0 X X X
1 0 0 1 X X X X
1 0 1 0 X X X X
1 0 1 1 X X X
1 1 0 0 X X X X
1 1 0 1 X X X
1 1 1 0 X X X
1 1 1 1

Table 1. An example showing all configurations of an uprooted
M+ model on 4 variables. The original model M has 3 variables
X1, X2, X3 then X0 was added. Each configuration of M fea-
tures twice: once as (0, x1, x2, x3) in the top half, and then again
with all settings flipped as (1, x̄1, x̄2, x̄3) in the bottom. Each
has the same score in M+, with the score determined only by
the edges which are activated: see the check marks on the right
and note their reflective symmetry across the horizontal line in the
middle of the table.
The pink shaded rows indicate the configurations for the rerooted
model M2 where X2 = 0. Observe that given the symme-
try, these correspond 1-1 with the configurations of M . Hence,
we can recover the partition function, marginal probabilities or
a MAP configuration for M by inference on M2. For example,
p0(X3 = 1) for M may be computed as p2(X3 6= X0) for M2,
i.e. sum over the rows shown in bold. Each of the rows in the top
half with x3 = 1 which is missing from M2 (that is, not shaded
pink) has an exactly corresponding row in the bottom half, as in-
dicated by blue curves in the table. See §3 and §4 for details.

Let y = (y0, y1, . . . , yn) be a configuration in M+ of its
n+ 1 variables, and let φ(y) be its score in M+. Requiring
φ(y) to be in the same form as (1) but with no singleton
potentials, and to match the scores of configurations in M
when x0 = 0, i.e. requiring φ(0, x) = θ(x), implies

φ(y) = −1

2

∑
E′
Wij1[yi 6= yj ], (2)

where the edges of M+ are E ′ = E ∪ F consisting of the
original edges E of M , together with new edges F which
are added to the new variable X0, given by F = {(0, i) :
θi 6= 0}. Weights for edges in E remain unchanged.
Weights for the new edges in F are set as W0i = −2θi.
To see this, note that the singleton potentials in (1) are al-
ready in the form θi1[xi 6= x0|x0 = 0].

Note the sign flip when a singleton potential is converted to

an edge potential, e.g. θi > 0 becomes a repulsive edge in
M+ with W0i < 0. This is an unavoidable consequence of
choosing parameters in (1) to match earlier work. It may be
helpful to think of θi > 0 as encouraging Xi to be different
to 0, i.e. a repulsive edge from X0 = 0.

Observe that each configuration x of M maps to two con-
figurations y0 and y1 in M+,

M : x = (x1, . . . , xn)→M+ :

{
y0 = (0, x)

y1 = ȳ0 = (1, x̄),

(3)
i.e. y0 = (0, x1, . . . , xn) and y1 = ȳ0 = (1, x̄1, . . . , x̄n).
Given the symmetry of (2), it is clear that φ(y0) = φ(y1).
See Table 1 and Figure 1 for an example.

The partition function for M+ is clearly twice that of M ,
i.e. Z(φ) = 2Z(θ). The original model M is exactly M+

conditioned on X0 = 0, and we can write M = M0.

4. Rerooting a Model
The symmetric model M+ with form (2) may be
rooted at any variable Xi by conditioning on Xi =
0 to yield a model on n variables consisting of
{X0, . . . , Xi−1, Xi+1, . . . , Xn}, which we write as Mi.3

See Table 1 and Figure 1 for an example.

Considering (3), for any i, there is a score-preserving 1-
1 correspondence between configurations in M and those
in Mi which matches x in M with whichever of y0 or y1
has xi = 0 (the xi coordinate is removed to give the con-
figuration in Mi). Equivalently, if x in M has xi = 0,
then it matches to (0, x1, . . . , xi−1, xi+1, . . . , xn) in Mi,
otherwise it matches to the same configuration but with all
settings flipped, i.e. (1, x̄1, . . . , x̄i−1, x̄i+1, . . . , x̄n).

4.1. Recovery of Original MAP Configuration,
Partition Function or Marginals

In this Section, we show that if inference can be performed
on a rerooted modelMi, then we can recover results for the
original model M .

4.1.1. MAP INFERENCE

For MAP inference, given the score-preserving 1-1 corre-
spondence of configurations noted above in §4, if a MAP
configuration is determined for Mi, then the corresponding
configuration in M is a MAP configuration for M with the
same score. Specifically, we have the following result.

Lemma 1. If (x∗0, . . . , x
∗
i−1, x

∗
i+1, . . . , x

∗
n) is a MAP con-

3Given the symmetry, one could instead equivalently consider
M+ conditioned on Xi = 1 but then one would need to flip vari-
ables after performing inference in order to match the original
interpretation in M .
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x2

x1 x3

x2

x0

x1 x3

x0

x1 x3

(a) Original model M = M0 (b) Uprooted symmetric model M+ (c) Equivalent model M2 rerooted at x2
n = 3 variables: x1, x2, x3 n+ 1 = 4 variables: x0, x1, x2, x3 n = 3 variables: x0, x1, x3

edge + singleton potentials: θ1, θ3 < 0; θ2 > 0 only edge, no singleton potentials edge + singleton potentials: θ′0, θ′1 > 0; θ′3 < 0
frustrated cycle almost balanced attractive

Figure 1. Examples of (a) an original model M = M0 on three variables, together with (b) its unique uprooted model M+, and (c) a
different rooting of M+ at x2 to yield M2, where now all edges are attractive. Solid blue (dashed red) edges are attractive (repulsive).

figuration for Mi, then the corresponding MAP configura-
tion for M , with the same score, is:{
m = (x∗1, . . . , x

∗
i−1, xi = 0, x∗i+1, . . . , x

∗
n) if x∗0 = 0

m̄ = (x̄∗1, . . . , x̄
∗
i−1, xi = 1, x̄∗i+1, . . . , x̄

∗
n) if x∗0 = 1.

4.1.2. MARGINAL INFERENCE AND COMPUTING Z

Since Mi and M have corresponding configurations with
equal scores, they have the same partition function.

In order to differentiate between probabilities obtained for
different models, we use the following notation: let pi be
the probability distribution in model Mi, in particular p0 is
the distribution for model M0 which is the original model
M ; let p+ be the distribution in the uprooted model M+.

Each model Mi is the result of conditioning on Xi = 0
in M+. We would like to perform (exact or approxi-
mate) inference on Mi to obtain pi, then use this to recover
marginals p0(Xj = 1) ∀j ∈ {1, . . . , n}. The following
result achieves this. See Table 1 for an example.
Lemma 2. Given distribution pi for any i ∈ {1, . . . , n},
the marginals p0(Xj = 1) for the original model
M = M0 may be recovered as follows:

p0(Xj = 1) =

{
pi(X0 = 1) j = i

pi(Xj 6= X0) j 6= i.

Proof. This follows from the symmetry of M+, see the
Appendix for details.

4.2. Relation to Clamping, How to Choose a Root?

Conditioning a model on a variable taking a particular
value is sometimes called clamping (Eaton and Ghahra-
mani, 2009; Weller and Jebara, 2014). Since Mi is M+

conditioned on Xi = 0, we may view uprooting from
M = M0 to M+ as de-clamping X0 back to a parent
model; then rerooting at variable Xi is a re-clamping at
Xi = 0 to obtain Mi.

In typical clamping for inference, one must condition a
variable to each of its values and combine all results (for ex-
ample, if estimating Z, one must sum the approximate sub-
partition functions). For binary variables, this requires run-
ning your inference algorithm twice. In contrast, a rooted
model gets a ‘clamping for free’ at the root variable, with
just one inference run required.

A natural question is how to choose a good root when re-
rooting a model? Given the interpretation of rooting as
clamping, we can draw on earlier work. Weller and Domke
(2016) examined a range of heuristics and concluded that
a fast method called maxW typically performs very well
for approximate inference.4 The idea behind maxW is that
many popular methods of approximate inference, such as
belief propagation, are exact on acyclic models but can
perform poorly when there are cycles composed of strong
edge weights. It is NP-hard to identify heavy cycles but
the following simple heuristic was shown to be empirically
effective. For each variable, a sum of absolute values of
incident edge weights is computed, then the variable with
the highest sum is selected to clamp. When it is clamped,
this variable is effectively removed from the model, thereby
eliminating any cycles which ran through it.

4.2.1. A NEW METHOD: MAXTW

In §6, we explore the value of rerooting using the earlier
maxW heuristic to select the root variable. We observe that
maxW sometimes performs well, but one setting where it
can perform poorly is if a choice must be made between one
variable that has a few strong edges and another that has
many weak edges. When rerooting, this may happen fre-
quently. For example, consider an initial model M with a
grid topology, and singleton potentials that are low relative
to edge potentials: in M+ this leads to X0 having a weak

4Weller and Domke (2016) showed that a more sophisticated
variant called maxW+core+TRE performed slightly better in gen-
eral, but TRE is redundant for the fully symmetric M+ model,
and the core idea makes no difference in the experiments we run.
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edge to every other variable, whereas other variables have
few strong edges. maxW simply picks the variable i with
highest

∑
j∈N (i) |Wij |, where N (i) is the set of variables

adjacent to i. However, the direct influence of a strong edge
weight does not keep increasing linearly with its weight,
rather it reaches a hard saturation level (Weller and Jebara,
2014, Supplement, Lemma 12). Here we address this by
introducing an alternative heuristic we call maxtW, which
picks the variable i with max

∑
j∈N (i) tanh |Wij

4 |. This
form was chosen based on earlier work on loop series ex-
pansions (Weller et al., 2014; Sudderth et al., 2007). See
results in §6 where maxtW can dramatically outperform
maxW on grids.

5. Implications of Rerooting
Rerooting provides a conceptual framework to view single-
ton and edge potentials as essentially equivalent except for
a choice of rooting of the symmetric uprooted M+ parent
model. After rerooting, it may be possible to apply many
methods or bounds that were unavailable for the original
model M . We consider important examples below.

5.1. MAP Inference

The success of many existing methods of MAP inference
depends critically on the nature of the edge potentials of
a model, but can be relatively insensitive to the singleton
potentials. For example, both the max flow/min cut method
(Greig et al., 1989) and the basic linear programming (LP)
relaxation over the local polytope LOC (Wainwright and
Jordan, 2008) provide an exact solution in polynomial-time
if the model is attractive. These approaches generalize to
balanced models, see §2.1.

With rerooting, these methods can now be used on the sig-
nificantly larger class of model where some rooting Mi ex-
ists which is balanced. This holds iff the uprooted model
M+ is almost balanced, which means it contains a vari-
able such that removing it renders the remaining model bal-
anced. See Figure 1 for an example.

Almost balanced models have received recent attention. Je-
bara (2009) introduced a method for MAP inference via
a reduction to the graph-theoretic challenge of identify-
ing a maximum weight stable set (MWSS) in a derived
weighted graph, which if perfect, allows an exact solution
to be obtained efficiently. Weller (2015b) showed that this
method applies iff the block decomposition of the modelM
yields blocks (maximal 2-connected components) which
are all almost balanced. With rerooting, we can extend this
method to models M that have uprooted models M+ that
are 2-almost balanced, i.e. models which can be rendered
balanced by deleting 2 variables (since by rooting at either
of these variables, the rooted model is almost balanced).

x1

x4

x3

x2

Figure 2. An example of a modelM which is not almost balanced,
hence does not satisfy the conditions of Weller et al. (2016) for
tightness of LP+TRI. Nevertheless, by Theorem 4, it is sufficient
if its uprooted M+ is 2-almost balanced. Hence LP+TRI will al-
ways be tight for (any rerooting of) this model provided singleton
potentials are not of the form: θ1, θ2 take one sign (either positive
or negative); and θ3, θ4 take the other. Solid blue (dashed red)
edges are attractive (repulsive). See §5.2 for details.

5.2. Local and Triplet Polytopes, Why ‘Rooting’?

Weller et al. (2016) showed that the LP relaxation on the
triplet-consistent polytope, LP+TRI, yields an exact MAP
configuration of a model M provided it is almost balanced
(for any singleton potentials). As above this can now be
generalized to be used for any model if its uprooted model
M+ is 2-almost balanced, since then a rooting exists which
is almost balanced. In fact, we can achieve a much stronger
result due to the following remarkable property of TRI.
Theorem 3 (TRI is ‘universally rooted’). LP+TRI yields
the same optimum score for M as for any rerooting Mi;
hence LP+TRI is either tight for all rerootings or for none.

Theorem 3 immediately yields the following new result.
Theorem 4. LP+TRI is tight for (any rerooting of) a model
M whose uprooted model M+ is 2-almost balanced.

See the Appendix §8 for details and proofs. This beauti-
fully shows the common nature of edge and singleton po-
tentials for TRI, examining the signs of all edges in M+ in
the same symmetric way.

Theorem 4 helps us to understand tightness of LP+TRI on
real-world vision tasks, where learned models are close to
attractive due to contiguity of objects. As a small example,
Theorem 4 shows that LP+TRI is tight for the model shown
in Figure 2, despite it not being almost balanced, provided
the signs of singleton potentials leave M+ 2-almost bal-
anced (this holds for all values unless: θ1, θ2 take one sign
(positive or negative); and θ3, θ4 take the other).

Here we sketch the reasoning. The following polytopes are
equivalent (see Deza and Laurent, 1997):

n variables +
(
n
2

)
edges

(
n+1
2

)
edges

Marginal polytope of M ↔ Cut polytope of M+

TRI relaxation ↔ MET relaxation
LOC relaxation ↔ RMET relaxation

MET, the semimetric polytope relaxation of the cut
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polytope, enforces triplet constraints on every triplet of
{X0, . . . , Xn}. In contrast, RMET, the rooted semimet-
ric polytope, enforces these same triplet constraints only
on triplets that include the root X0 variable.

This explains the name rooting. LOC is equivalent to
a specifically rooted RMET polytope, which is why ap-
proaches over LOC (including many message-passing al-
gorithms) deal differently with singleton and edge poten-
tials, and might benefit significantly from rerooting. TRI,
however, is equivalent to MET, which deals symmetrically
with all variables in M+ and corresponds to a simultane-
ous rooting at every variable. This intriguing observation
likely has further theoretical and algorithmic consequences,
which we aim to explore in future work.

5.3. Belief Propagation

Belief propagation (BP, Pearl, 1988), or more generally the
Bethe approximation (Yedidia et al., 2000), is a widely
used approach for approximate inference, guaranteed to
yield exact results in linear time for models without cycles.
When applied to models with cycles, it often yields strik-
ingly accurate results but may fail to converge altogether.

Much work has analyzed the convergence of BP, and the
uniqueness of a fixed point, relying either on the strength of
edge interactions (Heskes, 2004; Mooij and Kappen, 2005),
or just on their signs (Watanabe, 2011). Mooij and Kap-
pen (2007) refined their earlier result by considering also
singleton potentials, but these are incorporated quite differ-
ently to the edge potentials. Hence, by rerooting it may be
possible to provide theoretical guarantees on performance
that are not available on the initial model.

As one example, it is known that if a model has one cy-
cle, then the Bethe free energy is convex and BP has a
unique fixed point (Pakzad and Anantharam, 2002). Con-
sider the model shown in Figure 1. The original model (a)
is a frustrated cycle, hence the BP estimate of Z will be too
high, with unbounded high error as edge weights increase
(Weller, 2015a, §6.3). In contrast, the rerooted model (c)
is attractive, hence the BP estimate is always in the range
[Z/2, Z] for any potentials (Weller and Jebara, 2014).

5.4. FPRAS, Bounds

Jerrum and Sinclair (1993) devised a fully polynomial-time
randomized approximation scheme (FPRAS) for the parti-
tion function of a model M provided it is attractive and all
singleton potentials are consistent in taking the same sign
(positive or negative). This generalizes to any model with
uprooted model M+ which is balanced (see §2.1).

Various methods have been developed to bound the parti-
tion function or marginals of a model (Leisink and Kap-
pen, 2003; Ihler, 2007; Mooij and Kappen, 2008). These

treat singleton and edge potentials differently, hence may
be generalized by considering rerootings.

5.5. Remarks

Comparison to clamping. Some of the benefits of re-
rooting could also be obtained by usual clamping ofM . For
example, if a model can be rendered balanced by rerooting
at Xi, then this could also be achieved by clamping Xi in
the original model. However, this would require perform-
ing multiple inference runs and combining results, rather
than using the ‘free clamping’ available with a rerooting,
see §4.2. Further, several results, including Theorem 4 and
the observations in §5.2 on the triplet polytope, are not pos-
sible without considering rerooting.

Evaluation of inference methods. Approximate infer-
ence methods are typically evaluated empirically on a range
of models, where singleton and edge potentials are treated
quite differently. Often singleton potentials are drawn from
some fixed narrow range while edge potentials are drawn
from a range whose width is varied widely. From an up-
rooted model perspective, singleton and edge potentials are
equivalent. Hence: (i) Varying singleton and edge poten-
tials differently in empirical evaluations may be a peculiar
assumption, though it could be justified as reflecting typical
patterns in the real world; (ii) The implicit choice of root
may be poor in some cases (i.e. results might be improved
significantly by rerooting), which will obscure the under-
lying performance attributes of the inference method. We
examine the extent of this effect in §6.

6. Experiments
Following the observation in §5.5, we are interested in the
effect of rerooting in standard settings for empirical eval-
uation. We compared performance of estimating the par-
tition function and singleton marginals after different re-
rootings of three popular approximation methods: Bethe
(using the approach of Heskes et al., 2003 to ensure con-
vergence), tree-reweighted (TRW, Wainwright et al., 2005)
and naive mean field. For true values, we used the junc-
tion tree algorithm. All methods were implemented using
libDAI (Mooij, 2010), see the Appendix §9 for details.

We ran experiments on the following topologies and model
sizes: complete graphs on 10 and 15 variables; grids of
size 5 × 5 and 9 × 9. All potentials were drawn ran-
domly: mixed models used Wij ∼ U [−Wmax,Wmax], at-
tractive models used Wij ∼ U [0,Wmax], as Wmax was
varied; singleton potentials were drawn either from a low
range θi ∼ [−0.1, 0.1], medium range θi ∼ [−2, 2],
or from a range commensurate with edge potentials, i.e.
θi ∼ U [−Wmax/2,Wmax/2], with the factor of 2 needed
given the form of (1). These settings allow direct compar-
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ison to earlier work such as by Weller and Domke (2016)
or Weller et al. (2014). Others (Meshi et al., 2009; Son-
tag and Jaakkola, 2007) use binary variables with values
in {−1, 1} instead of {0, 1}, hence their edge (singleton)
potentials should be multiplied by 4 (2, respectively) when
making comparisons. We plot average error over 100 ran-
dom runs for each setting. All results are in the Appendix.

As in §4.2, any rooting of a model M may be considered a
clamping of the uprooted model M+. The original model
M = M0 implicitly reflects the decision to clamp at X0,
which might be a good or bad choice depending on the set-
ting. Recall from §4.2 that maxW often performs well for
selecting a variable to clamp, picking one with highest sum
of incident edge strengths (taking absolute values). How-
ever, if a choice must be made between variable A with
many weak edges, or B with few strong edges, maxW may
make a poor choice by not recognizing thatA is often better
since the influence of strong edges saturates. Hence we in-
troduced the maxtW heuristic in §4.2.1, which selects vari-
able Xi with max

∑
j∈N (i) tanh |Wij

4 |.

Our plots show average error when applying the approxi-
mate inference method to: the original model M ; the up-
rooted model M+; then rerootings at: the worst variable,
the best variable, the maxW variable, and the maxtW vari-
able. Best and worst always refer to the variable at which
rerooting gave with hindsight the best and worst error for
the partition function (even in plots for marginals).

6.1. Results

Figure 3 summarizes results for Bethe, typically the most
accurate method. Looking across all results (see Appendix
§9), we make the following observations.

For complete graphs, maxW and maxtW perform well. Re-
rooting is very effective as edge strength grows, both at
low and medium levels of singleton potentials. This makes
sense, since in this setting, the default rooting atX0 has rel-
atively weak edges, and all variables in M+ have the same
number of edges, hence it is likely to be very beneficial to
switch to a different root with stronger edges. When sin-
gleton and edge potentials vary together, edges in M+ are
all similar, but X0 is an average variable to clamp, whereas
we do somewhat better by choosing a good variable.

For grids, maxtW is much better than maxW (maxW per-
forms very poorly in some cases), appearing to handle un-
even edge weights in M+ well. At low singleton poten-
tials, rerooting is very helpful but this benefit disappears
for stronger singleton potentials, where the original rooting
performs equally to maxtW.

Results for MF and TRW are qualitatively similar to Bethe,
with Bethe typically performing best. For mixed mod-
els with strong edges, MF performs very well. This is

likely due to MF optimizing within the marginal polytope,
whereas Bethe and TRW use the local polytope, in which
strong frustrated cycles can lead to high error.

Based on maxtW, we can suggest a guideline for when re-
rooting is likely to be helpful. For example, for a 4-way
grid with n variables, constant singleton potentials T and
edge weights W: 4 tanh W

4 + tanh 2T
4 > n tanh 2T

4 ⇔
4 tanh W

4 > (n − 1) tanh T
2 . This is conservative since

more randomness increases the value of rerooting by rais-
ing the chance of a better root. Demonstrating this, observe
in Figure 3 that when singleton potentials are low, the im-
provement in logZ estimate from rerooting using maxtW
is about the same for 9× 9 grids as for smaller 5× 5 grids.

7. Conclusion
We introduced the idea of uprooting and then rerooting any
binary pairwise graphical model. This immediately leads
to a meta-algorithm for inference into which any existing
approach may be slotted, and generalizes important the-
oretical results. Further, it provides an elegant concep-
tual framework for rethinking singleton and edge poten-
tials with methodological consequences for how we eval-
uate models and methods. One application in §5.2 leads to
Theorem 4, a strong result for tightness of LP relaxations
on the triplet-consistent polytope TRI, and a remarkable in-
terpretation of TRI as universally rooted.

Rerooting switches an implicit clamp choice in the up-
rooted model at X0 (perhaps a poor choice), instead to a
carefully selected clamp choice, almost for free. This ap-
plies even for large models where it is desirable to clamp
a series of variables: by rerooting, we may obtain one of
the series for free, sometimes achieving dramatic improve-
ments in accuracy with little work required. If there are
multiple connected components, each should be handled
separately, with its own X0-type variable. This could be
useful for (repeatedly) composing clamping and then re-
rooting each separated component.

Rerooting is particularly effective when a model has dense,
strong edge weights and weak singleton potentials (a diffi-
cult setting for many existing methods). Our new maxtW
heuristic performs particularly well in this setting (and
should also be helpful for standard clamping approaches),
sometimes dramatically outperforming the earlier maxW
method. maxtW also provides a useful guideline for when
uprooting is likely to be helpful, see the last paragraph of
§6.1.

It will be interesting in future work to study further conse-
quences of our interpretation of the triplet-consistent poly-
tope, to consider the value of rerooting for approaches to
learning graphical models, and to explore the benefits of
rerooting when variables have a higher number of labels.
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Complete graphs (fully connected) maxW and maxtW both perform well
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Figure 3. Average error of Bethe approximation for models with mixed potentials over 100 runs, showing smaller and larger models for
comparison. Top: complete graphs (10 and 15 variables). Bottom: toroidal grid graphs (5× 5 and 9× 9). Each column shows different
settings for singleton potentials: left is low range; centre is medium range; right varies singleton and edge potentials together. See §6.
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APPENDIX: SUPPLEMENTARY MATERIAL
Uprooting and Rerooting Graphical Models
Here we provide:

• Proof of Lemma 2.

• In §8, details of the polytopes and proofs from §5.2, including proofs of Theorems 3 and 4.

• In §9, details of experimental methods, and additional results.

Lemma 2. Given distribution pi for any i ∈ {1, . . . , n}, the marginals p0(Xj = 1) for the original model M = M0

may be recovered as follows:

p0(Xj = 1) =

{
pi(X0 = 1) j = i

pi(Xj 6= X0) j 6= i.

Proof. First, for j = i we have

p0(Xi = 1) = p+(Xi = 1|X0 = 0)

=
p+(Xi = 1, X0 = 0)

p+(X0 = 0)

=
p+(Xi = 0, X0 = 1)

p+(Xi = 0)
(symmetry of M+, note that p+(Xr = 0) =

1

2
for any r ∈ {0, . . . , n})

= pi(X0 = 1).

Next, for j 6= i, again using symmetry of M+,

p0(Xj = 1) = p+(Xj = 1|X0 = 0)

=
p+(Xj = 1, X0 = 0)

p+(X0 = 0)

=
p+(Xj = 1, X0 = 0, Xi = 0) + p+(Xj = 1, X0 = 0, Xi = 1)

p+(X0 = 0)

=
p+(Xj = 1, X0 = 0, Xi = 0) + p+(Xj = 0, X0 = 1, Xi = 0)

p+(Xi = 0)

=
p+(Xj 6= X0, Xi = 0)

p+(Xi = 0)

= pi(Xj 6= X0).

8. Details of the polytopes and proofs from section 5.2
Weller et al. (2016) showed that LP+TRI is tight (that is, the LP relaxation on the triplet-consistent polytope is guaranteed
to yield an optimum at an integral vertex) for any model which is almost balanced (that is, any model which contains
a variable s.t. if it is removed then the remaining model is balanced; any singleton potentials are allowed). We first
provide background and preliminary results in §8.1-8.2. For more extensive background, see (Wainwright and Jordan,
2008, Chapter 8), (Sontag, 2007) or (Deza and Laurent, 1997).

In §8.3, we prove Theorem 3, a general result which shows that TRI is ‘universally rooted’. Many optimization results that
apply for TRI for some rerooting of a model will automatically apply for all rerootings.

We shall apply Theorem 3 to show how the result of Weller et al. (2016) may be significantly strengthened in Theorem 4 to
demonstrate tightness of LP+TRI for any model M whose uprooted model M+ is 2-almost balanced (that is, the uprooted
model contains 2 variables s.t. if they are both removed then what remains in the uprooted model is balanced).
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Notation. As in 4.1.2, in order to differentiate between probabilities obtained for an initial model M = M0, its uprooted
model M+, and various rerooted models Mi, we use the following notation: let pi be the probability distribution in model
Mi, in particular p0 is the distribution for model M0 which is the original model M ; let p+ be the distribution in the
uprooted model M+.

Using similar reasoning to that used above in the proof of Lemma 2, we use the symmetry of M+ to show the following
results which will be useful in §8.3 for mapping rooted probabilities pi to ‘universal’ uprooted probabilities p+.

Lemma 5. (i) For any distinct i, j ∈ {0, . . . , n}, pi(Xj = 1) = p+(Xi 6= Xj);
(ii) for any distinct i, j, k ∈ {0, . . . , n}, pi(Xj 6= Xk) = p+(Xj 6= Xk).

Proof. (i) For distinct i, j ∈ {0, . . . , n},

pi(Xj = 1) = p+(Xj = 1|Xi = 0)

=
p+(Xj = 1, Xi = 0)

p+(Xi = 0)

= 2p+(Xj = 1, Xi = 0)

= p+(Xj = 1, Xi = 0) + p+(Xj = 0, Xi = 1) (symmetry of M+)

= p+(Xi 6= Xj).

(ii) For distinct i, j, k ∈ {0, . . . , n},

pi(Xj 6= Xk) = p+(Xj 6= Xk|Xi = 0)

=
p+(Xj = 1, Xk = 0, Xi = 0) + p+(Xj = 0, Xk = 1, Xi = 0)

p+(Xi = 0)

= 2 [p+(Xj = 1, Xk = 0, Xi = 0) + p+(Xj = 0, Xk = 1, Xi = 0)]

= p+(Xj = 1, Xk = 0, Xi = 0) + p+(Xj = 0, Xk = 1, Xi = 0)

+ p+(Xj = 0, Xk = 1, Xi = 1) + p+(Xj = 1, Xk = 0, Xi = 1) (symmetry of M+)

= p+(Xj = 1, Xk = 0) + p+(Xj = 0, Xk = 1)

= p+(Xj 6= Xk).

8.1. The marginal polytope and its relaxations LOC and TRI

Given a model M with n variables V and m edges E , we may consider a vector containing marginal probabilities for all n
single variables and all m pairs of variables that are directly related.

Specifically, regarding the score (1), for any configuration x = (x1, . . . , xn), let yij = 1[xi 6= xj ] then collect the x
and y terms together into a vector z = (x1, . . . , xn, . . . , yij , . . . ) ∈ {0, 1}n+m. Similarly collect together the potential
parameters into a vector w = (θ1, . . . , θn, . . . ,− 1

2Wij , . . . ) ∈ Rn+m. Now the score of a configuration x may be written
as w · z(x), and MAP inference may be framed as an integer linear program to find z∗ ∈ arg maxz:x∈{0,1}n w · z.

The convex hull of the 2n possible integer solutions in [0, 1]n+m is the marginal polytope M for our choice of singleton and
edge terms in (1). Regarding the convex coefficients as a probability distribution p0 over all possible states, the marginal
polytope may be considered the space of all singleton and pairwise mean marginals that are consistent with some global
distribution p0 over the 2n states, that is

M = {µ = (µ1, . . . , µn, . . . , µij , . . . ) ∈ [0, 1]d s.t. ∃p0 : µi = Ep0(Xi) ∀i, µij = Ep0(1[Xi 6= Xj ]) ∀(i, j) ∈ E}. (4)

Note that µi = p0(Xi = 1) and µij = p0(Xi 6= Xj).

Since an LP attains an optimum at a vertex of the feasible region, if w · µ is maximized over M then an exact integer
solution is always optimum. However, M has exponentially many facets (Deza and Laurent, 1997), hence a simpler,
relaxed constraint set is typically employed, yielding an upper bound on the original optimum. This set is often chosen as
the local polytope LOC, which enforces only pairwise consistency (Wainwright and Jordan, 2008). If an optimum vertex
is achieved at an integer solution, then this must be an optimum of the original discrete problem, in which case we say
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that the relaxation LP+LOC is tight. Sherali and Adams (1990) proposed a series of successively tighter relaxations by
enforcing consistency over progressively larger clusters of variables. At order r, the Lr polytope enforces consistency over
all clusters of variables of size ≤ r. L2 is the local polytope LOC. Next, L3 is the triplet-consistent polytope TRI, and so
on, with Ln = M ⊆ Ln−1 ⊆ · · · ⊆ L3 = TRI ⊆ L2 = LOC.

In order to obtain the explicit constraints for these polytopes, earlier work (Wainwright and Jordan, 2008; Weller et al.,
2016) uses a different (but equivalent) minimal reparameterization leading to a different (but equivalent) set of marginals.
To link to their notation, let αi = p0(Xi = 1), αij = p0(Xi = 1, Xj = 1), αijk = p0(Xi = 1, Xj = 1, Xk = 1). We next
present a derivation of the constraints for LOC and TRI following (Weller et al., 2016), see also (Wainwright and Jordan,
2008, Example 8.7).

Examining just one variable, we have αi = µi ∈ [0, 1] ∀i. In order to be consistent with these single variable marginals,
the matrix of pairwise marginals for edge (i, j) takes the form

(
p0(Xi = 0, Xj = 0) p0(Xi = 0, Xj = 1)
p0(Xi = 1, Xj = 0) p0(Xi = 1, Xj = 1)

)
=

(
1 + αij − αi − αj αj − αij

αi − αij αij

)
. (5)

The LOC constraints are exactly those that ensure that all 4 terms are ≥ 0, which leads to

LOC constraints for edge (i, j) : max(0, αi + αj − 1) ≤ αij ≤ min(αi, αj). (6)

These constraints may be reformulated in terms of our µij marginals by using µi = αi, and observing from (5) that

µij = αi + αj − 2αij ⇔ αij =
1

2
(µi + µj − µij) .5 (7)

To obtain the constraints for TRI, we use a ‘lift-and-project’ approach by ‘lifting’ to distributions over three variables,
deriving conditions, then projecting these back down to the one and two variable marginals that we are using. We must
ensure that the distribution over every triplet of variables Xi, Xj , Xk is valid and consistent with all edge and singleton
marginals. Given αi, αj , αk, αij , αik, αjk and using αijk = p0(Xi = 1, Xj = 1, Xk = 1) as defined above, we have:

With k = 0,(
p0(Xi = 0, Xj = 0) p0(Xi = 0, Xj = 1)
p0(Xi = 1, Xj = 0) p0(Xi = 1, Xj = 1)

)
=

(
1− αi − αj − αk + αij + αik + αjk − αijk αj + αijk − αij − αjk

αi + αijk − αij − αik αij − αijk

)
With k = 1,(

p0(Xi = 0, Xj = 0) p0(Xi = 0, Xj = 1)
p0(Xi = 1, Xj = 0) p0(Xi = 1, Xj = 1)

)
=

(
αk + αijk − αik − αjk αjk − αijk

αik − αijk αijk

)
.

As previously for LOC, we have the constraints that all terms are ≥ 0. By combining inequalities, we may project back
down by eliminating αijk. For example, if we combine the condition that the top right element of the matrix for k = 0
is ≥ 0 with the similar condition for the bottom right element of the same matrix, we obtain αj − αjk ≥ 0 which is one
of the LOC constraints for edge (j, k), see (6). Working through the various combinations yields all the previous LOC
constraints for the edges (i, j), (i, k) and (j, k), and in addition we obtain the following four new triplet constraints, which
are called cycle inequalities in (Wainwright and Jordan, 2008, Example 8.7).

TRI constraints in terms of α marginals for triplet of distinct i, j, k ∈ {1, . . . , n} : αi + αjk ≥ αij + αik

αj + αik ≥ αij + αjk

αk + αij ≥ αik + αjk

αij + αik + αjk ≥ αi + αj + αk − 1.
(8)

5This equivalence is essentially the covariance mapping described in (Deza and Laurent, 1997, §5.2).
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If we use (7) to rewrite these TRI constraints (8) in terms of µ marginals, then they take the following appealing form.

TRI constraints in terms of µ marginals for triplet of distinct i, j, k ∈ {1, . . . , n} : µjk ≤ µij + µik

µik ≤ µij + µjk

µij ≤ µik + µjk

µij + µik + µjk ≤ 2. (9)

Notice that (9) considers only terms of the form µij . Since µij is the probability that Xi and Xj take different values,
a simple way to see that the inequalities of (11) are valid is to observe that they clearly hold for any integer settings of
Xi, Xj , Xk ∈ {0, 1}3, and hence they must hold for any valid probability distribution over the 8 possible settings of these
three variables (since this yields a convex combination).

8.2. The cut polytope and its relaxations RMET and MET

As in §3: given a model M with variables {X1, . . . , Xn} on graph G(V, E) with vertices V = {1, . . . , n} and edges
E , its uprooted model M+ has variables {X0, . . . , Xn} on graph G′(V ′, E ′) with vertices V ′ = {0, 1, . . . , n} and edges
E ′ = E ∪F , where F = {(0, i) : θi 6= 0}. An uprooted model M+ is completely symmetric. The score (2) considers only
edges and examines only whether the end variables of each edge take the same value.

Given a subset S ⊆ V ′ = {0, 1, . . . , n}, let δ(S) ∈ {0, 1}|E′| be the cut vector of edges of E ′ which run between the vertex
partitions S and V ′ \ S, defined by δ(S)ij = 1 iff i and j are in different partitions.

The cut polytope (Barahona and Mahjoub, 1986) of G′ is the convex hull of all such cut vectors, that is CUT = conv
{δ(S) : S ⊆ V ′}. Although there are 2n+1 choices of S, CUT has 2n vertices since by definition δ(S) = δ(V ′ \ S). In
fact, there is a simple linear bijection between CUT and the marginal polytope M of M .

Given d ∈ CUT with entries d(i, j) for each edge (i, j) ∈ E ′, d maps to µ ∈ M where µj = d(0, j) for j ∈ V, and
µij = d(i, j) for (i, j) ∈ E . To see this, d(i, j) may be interpreted as the marginal probability that i, j ∈ V ′ lie in different
partitions.

As an aside, note that the marginal polytope of M+, which we call M+, is closely related, but different, to CUT. M+ has
n + 1 additional dimensions for the singleton marginal dimensions of its n + 1 variables, though given the symmetry of
M+, these are all 1/2.

MAP inference for the model M on G is equivalent to the weighted max cut problem for G′:

max
µ∈M

w · µ = max
e∈CUT

w′ · d, w′ij =

{
θj i = 0

− 1
2Wij (i, j) ∈ E.

(10)

The bijection between M and CUT may also be used to map the LOC and TRI relaxations of M to corresponding relaxations
of CUT in [0, 1]|E

′|, called the rooted semimetric polytope RMET and the semimetric polytope MET, respectively. The
constraints for the MET polytope (which corresponds to TRI) take the following form, sometimes described as unrooted
triangle inequalities (Deza and Laurent, 1997, §27.1):

MET constraints ∀ distinct i, j, k ∈ V ′ = {0, 1, . . . , n} : d(i, j)− d(i, k)− d(j, k) ≤ 0 (11)
d(i, j) + d(i, k) + d(j, k) ≤ 2.

Note that the MET constraints (11) restricted to triplets i, j, k ∈ V = {1, . . . , n} are identical to the TRI constraints for
µ marginals in (9). Both enforce triplet consistency on the marginal probabilities of edges having end vertices which are
different.

Remarkably, the constraints on d for RMET, the rooted triangle inequalities, which are equivalent to the LOC constraints
on µ for LOC (6), are exactly just those of (11) for which one of i, j, k is 0, the vertex that was added to G to yield G′.
Hence, RMET may be regarded as MET rooted at 0. Correspondingly, we may consider TRI to be a version of LOC that
is universally rooted.

To see this, we shall consider the LOC constraints for edge (i, j) ∈ E (6), and show that they are exactly the MET
constraints (11) applied to triplet (0, i, j) in V ′. Consider the triangle 0ij of G′ shown in Figure 4.
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0

i j
d(i, j) = µij

d(0, i) = µi d(0, j) = µj

Figure 4. Illustration of edge marginals for the MET polytope, shown in orange, and their values in terms of µ marginals for the model
M , shown in blue.

Recall that µi = αi, µj = αj , and from (7) that µij = αi + αj − 2αij . Hence, the MET constraints (11) with k = 0
become:

d(i, j)− d(i, k)− d(j, k) ≤ 0 ⇔ αi + αj − 2αij − αi − αj ≤ 0 ⇔ αij ≥ 0

d(i, k)− d(i, j)− d(j, k) ≤ 0 ⇔ αi − αi − αj + 2αij − αj ≤ 0 ⇔ αij ≤ αj
d(j, k)− d(i, j)− d(i, k) ≤ 0 ⇔ αj − αi − αj + 2αij − αi ≤ 0 ⇔ αij ≤ αi
d(i, j) + d(i, k) + d(j, k) ≤ 2 ⇔ αi + αj − 2αij + αi + αj ≤ 2 ⇔ αij ≥ αi + αj − 1,

which exactly match the LOC constraints (6), as required.

8.3. New results

With the background in §8.1-8.2, we are ready to prove our new results.

Notation. Let µi, wi be the µ,w vectors corresponding to rerootings at Xi. In particular, µ0, w0 are the µ,w vectors for
the original model M = M0.
Theorem 3. (TRI is ‘universally rooted’) LP+TRI yields the same optimum score forM as for any rerootingMi; hence
LP+TRI is either tight for all rerootings or for none.

Proof. First, note that the MAP score for M is the same as that for any rerooting Mi. One way to see this follows the
observations in §3-4: each configuration x of M maps to exactly 2 configurations of M+: y0 = (0, x) and y1 = ȳ0 =
(1, x̄), with the potentials of M+ set so that score(x) = score(y0) = score(y1). Hence, in particular, a MAP configuration
for M maps to two MAP configurations for M+ with the same score, and exactly one of these will be in any rerooting Mi

as a MAP configuration for that rerooted model with the same score.

It remains to show that maxTRI(Mi) w
i · µi is the same for any rerooting of a model M . We shall use a similar idea,

converting the problem for M into a problem over the graph G′ of the uprooted model, in such a way that this problem
over G′ is the same for all rerootings Mi. In fact, we shall show a score-preserving linear bijection between TRI(Mi) and
MET, where we must still show that this is the same no matter which rerooting Mi is used.

In §8.2, we gave a simple linear bijection between M and CUT, which naturally extends to a linear bijection between
TRI(M) and MET(M). Further it is clear that this is score preserving if we use w′ from (10). That is, we have for any µ ∈
TRI(M), a linear bijection between µ and d ∈ MET(M) s.t. w · µ = w′ · d. If these are maximized over their respective
(equivalent) polytopes, then we obtain the same maximum.

It remains to show that for all rerootings, MET(M) = MET(Mi) and that wi maps to the same vector w′ for each MET.
MET(M) = MET(Mi) follows directly from Lemma 5. Each wi maps to the same vector w′ by construction, see (2).

The next result follows as a simple application of Theorem 3 to the earlier result of Weller et al. (2016).
Theorem 4. LP+TRI is tight for (any rerooting of) a model M whose uprooted model M+ is 2-almost balanced.

Proof. First, ifM+ is 2-almost balanced with special variablesXi andXj , then if we root at eitherXi orXj , we obtain an
almost balanced model (that is, Mi or Mj) on which LP+TRI is tight by the result of Weller et al. (2016). Now if LP+TRI
is tight for Mi, then by Theorem 3, LP+TRI is tight for any rerooting of Mi, including M .
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Following our result, Weller (2016) demonstrated a still stronger result: LP+TRI is tight for any model M whose uprooted
modelM+ does not contain an odd-K5 as a signed minor. An odd-K5 is the complete graph on 5 variables where all edges
are repulsive. Since an odd-K5 is clearly not 2-almost balanced (if any 2 variables are removed, the remaining model is a
frustrated triangle), all 2-almost balanced models are a subset of those that do not contain an odd-K5 as a signed minor.
Further, the condition of Weller (2016) was shown to be both sufficient and necessary for tightness for models with all
potentials that respect the edge signs of the uprooted model. For details, see (Weller, 2016).

9. Details of experimental methods, and additional results
For all inference methods, we used the open source libDAI library (Mooij, 2010) and averaged over 100 random models.
We show results first for smaller models (complete graph on 10 variables and 5 × 5 grids), and then in Figure 11 for
Bethe for larger models (complete graph on 15 variables and 9 × 9 grids). Wherever possible, we were consistent with
the approaches of Weller and Domke (2016). We experienced difficulty with mean field (MF), since a randomly initialized
run could return a very suboptimal solution. Hence, each time we used 100 random initializations and took the solution
with highest estimate of the partition function (the most accurate since MF always provides a lower bound). Still, we
experienced some convergence difficulties and advise caution in interpreting our MF results.

For MF,
MF[tol=1e-7,maxiter=10000,damping=0.0,init=RANDOM,updates=NAIVE]

For Bethe,
HAK[doubleloop=1,clusters=BETHE,init=UNIFORM,tol=1e-7,maxiter=10000]
This is guaranteed to converge to a stationary point of the Bethe free energy (whereas BP may not converge).

For TRW,
TRWBP[updates=SEQFIX,tol=1e-7,maxiter=10000,logdomain=0,nrtrees=1000,...
damping=0.25,init=UNIFORM]
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complete graph K10, mixed potentials
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complete graph, attractive potentials
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Figure 5. Average error plots over 100 runs for the Bethe approximation, complete graph with 10 variables
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5 x 5 grid graph, mixed potentials
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5 x 5 grid graph, attractive potentials
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Figure 6. Average error plots over 100 runs for the Bethe approximation, 5 x 5 grid graph
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complete graph K10, mixed potentials
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Figure 7. Average error plots over 100 runs for the TRW approximation, complete graph with 10 variables
Note the very low scale for l1 error of marginals for low singleton potentials.
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5 x 5 grid graph, mixed potentials
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5 x 5 grid graph, attractive potentials
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Figure 8. Average error plots over 100 runs for the TRW approximation, 5 x 5 grid graph
Note the very low scale for l1 error of marginals for low singleton potentials.
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complete graph K10, mixed potentials
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complete graph, attractive potentials

er
ro

ro
fl

o
g
Z

maximum edge strength W
max

2 4 8 12 16
0

0.2

0.4

0.6

0.8

maximum edge strength W
max

2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

maximum edge strength W
max

2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

l 1
er

ro
ro

fm
ar

gi
na

ls

maximum edge strength W
max

2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

1.2

maximum edge strength W
max

2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

1.2

maximum edge strength W
max

2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

1.2

low singleton θi ∼ [−0.1, 0.1] medium singleton θi ∼ [−2, 2] singleton + edge potentials scale together

Figure 9. Average error plots over 100 runs for the MF approximation, complete graph with 10 variables
Results for the error of marginals for the complete graph look interesting and warrant further investigation, though we suspect
these may be due to problems with our MF algorithm implementation.
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5 x 5 grid graph, mixed potentials

er
ro

ro
fl

o
g
Z

maximum edge strength W
max

2 4 8 12 16
0

0.5

1

1.5

2

2.5

3

maximum edge strength W
max

2 4 8 12 16
0

0.5

1

1.5

2

2.5

maximum edge strength W
max

2 4 8 12 16
0

0.5

1

1.5

2

2.5

l 1
er

ro
ro

fm
ar

gi
na

ls

maximum edge strength W
max

2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

0.6

Original M
M+
worst
maxW
maxtW
best

maximum edge strength W
max

2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

0.6

maximum edge strength W
max

2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

0.6

low singleton θi ∼ [−0.1, 0.1] medium singleton θi ∼ [−2, 2] singleton + edge potentials scale together

5 x 5 grid graph, attractive potentials
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Figure 10. Average error plots over 100 runs for the MF approximation, 5 x 5 grid graph
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Bethe results for larger models, mixed potentials

complete graph K15, mixed potentials
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9 x 9 grid graph, mixed potentials
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Figure 11. Average error plots over 100 runs for the Bethe approximation, mixed potentials


